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Abstract: The existing studies indicate polymers will present obviously different properties in tension
and compression (bimodular effect) which is generally ignored because of the complexity of the
analysis. In this study, a functionally graded piezoelectric cantilever beam with bimodular effect was
investigated via analytical and numerical methods, respectively, in which a one-dimensional theoretical
solution was derived by neglecting some unimportant factors and a two-dimensional numerical
simulation was performed based on the model of tension-compression subarea. A full comparison was
made to show the rationality of one-dimensional theoretical solution and two-dimensional numerical
simulation. The result indicates that the layered model of tension-compression subarea also makes
it possible to use numerical technique to simulate the problem of functionally graded piezoelectric
cantilever beam with bimodular effect. Besides, the modulus of elasticity E* and the bending stiffness
D* proposed in the one-dimensional problem may succinctly describe the piezoelectric effect on
the classical mechanical problem without electromechanical coupling, which shows the advantages
of one-dimensional solution in engineering applications, especially in the analysis and design of
energy harvesting/sensing/actuating devices made of piezoelectric polymers whose bimodular effect
is relatively obvious.

Keywords: functionally graded piezoelectric materials; bimodulus; cantilever beams; tension and
compression; neutral layer

1. Introduction

Piezoelectric materials have an electromechanical coupling characteristic, which makes them a
good candidate for a variety of electromechanical devices, for example, sensors and actuators used
extensively in electromechanical conversion. Piezoelectric sensors are usually a laminated original
made by ceramic slice, so it is easy to cause stress concentration and promote the growth of interfacial
microcracks. In order to overcome this difficulty, scholars developed functionally graded piezoelectric
materials (FGPM) whose properties of materials change continuously along certain direction. There is
no obvious interface in FGPM, thus the damage due to the stress concentration at the interface is
effectively avoided. Studies on FGPM have attracted the attention of scholars from all over the world.
In recent years, with the development, universality and miniaturization of electronic devices, new
piezoelectric materials continue to emerge, among which piezoelectric polymers play an increasingly
important role [1–4]. Piezoelectric polymers are attractive for wearable due to their flexibility and

Polymers 2019, 11, 1728; doi:10.3390/polym11111728 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-8880-3961
https://orcid.org/0000-0003-4356-7173
http://dx.doi.org/10.3390/polym11111728
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/11/11/1728?type=check_update&version=2


Polymers 2019, 11, 1728 2 of 24

conformability over piezoelectric ceramic materials. Studies of piezoelectric polymers have gradually
become a hot topic for scholars. In this study, we will introduce the concept of bimodular materials into
the above analyses. Thus, our work relates to three aspects of properties of materials, i.e., functionally
graded, piezoelectric and bimodular, which are reviewed briefly as the following.

In the 1990s, the concept of functionally grade materials [5] was first introduced into the field of
piezoelectric materials. From that time on, more scholars from all over the world have been involved
in the study of FGPM and successfully fabricated FGPM sensors and actuators [6–8]. The stress
concentration can be effectively avoided and also there is no paste interface by using FGPM to produce
smart devices, which greatly increases the performance and life-time of smart devices. From the late
twentieth century to the early twenty-first century, scholars made great efforts to achieve solutions
of relating problems on piezoelectric beams and FGPM beams, thus accelerating the application of
FGPM sensors and actuators in the field of engineering. Aimed at the shape control and deformation
problems of beams with piezoelectric actuators, Wang et al. [9] and Yang and Ngoi [10] obtained
the exact solutions and analytical expressions of the bending problems. Under various mechanical
boundary conditions, Smits et al. [11] derived the constituent equations for piezoelectric bimorphs.
By adopting Euler–Bernoulli beam theory, Elshafei et al. [12] made a static analysis for beams with
piezoelectric actuators subjected to axial, transverse, and torsion loads, and derived the equation
of motion of the structure system. Without specifying the function expressions of materials, Zhong
and Yu [13,14] proposed the general elasticity solutions for FGPM beams subjected to various loads.
Huang et al. [15,16] obtained two piezoelasticity solutions for FGPM cantilever beams under different
loading conditions, and presented piezoelectricity solutions for the two actuators subjected to a constant
voltage. Shi and Chen [17] studied the problem of a FGPM cantilever beam and obtained a set of
analytical solutions for the beam subjected to different loadings. By studying the electrostatic problem
of FGPM cantilevers, Xiang and Shi [18] suggested a general formula to calculate the tip deflection of a
FGPM actuator when two types of plane problem (plane stress problem and plane strain problem)
are not satisfied. Under different loading cases and different boundary conditions, Yao and Shi [19]
studied the steady-state forced vibration of a FGPM beam. By proposing a solution modification of
a piezoelectric bimorph cantilever under loads, Shi et al. [20] obtained the analytical solutions of a
piezoelectric bimorph cantilever under three different loading conditions. There are many other topics
on FGPM beams; due to the length limit of the paper, the review in detail is not presented here.

By comparison with the FGPM, bimodular material seems to be relatively less well-known.
In the light of the classical theory of elasticity, elastic moduli in tension and compression are the
same. However, many studies indicate that some materials [21,22], like ceramics, plastics, steel
concrete, graphite, powder metallurgy materials, polymeric materials, and some composites, will
present different elastic properties when they are stretched and compressed, that is, they have
different moduli in tension and compression and thus are referred to as bimodular materials. In 1982,
Ambartsumyan [23] published the first monograph titled by Elasticity Theory of Different Moduli, in
which the constitutive model of bimodular materials and corresponding structural analysis based on
the materials model are systematically introduced. In this monograph, Ambartsumyan pointed out that
some structural materials including reinforced and unreinforced polymers have considerably strong
bimodular characteristics. The bimodular characteristics of polymers is mainly concerned with the
manufacturing process, masses of contact materials and reinforced materials, as well as temperature.
The publication of this book marks that the idea of bimodular materials has entered the field of vision
of scholars. Thereafter, bimodular problems concerning materials and structures have been extensively
studied [24–26]. These researches indicate that the introduction of bimodular effect of materials will
modify the mechanical properties of structures to some extent. Unfortunately, due to the complexity
of its analysis, the bimodular effect of materials is often neglected, especially in the analysis of some
specialized materials and structures, for example, intelligent materials and structures mentioned above.

More recently, He et al. [27] introduced the bimodular effect into the analysis of FGPM structures,
for the first time, and obtained a two-dimensional electroelastic analytical solution for a FGPM beam
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with different moduli in tension and compression. Although the effectiveness of the analytical work
was verified by comparing with the existing theoretical work presented by Zhong and Yu [13], it is
also a pity that the comparison was based on the degraded analytic expressions from He et al. [27]
since the work of Zhong and Yu [13] did not consider the bimodular effect. Now that existing
analytical works are not fully qualified for this comparative work, we have to resort to the numerical
technique based on existing software such as ABAQUS. For a traditional piezoelectric problem, the
use of ABAQUS appears to be only a step-by-step process. However, how about after introducing the
bimodular effect and functionally graded properties of the materials? In addition, similar to the bending
problem of classical beams, a so-called one-dimensional solution and two-dimensional solution under
different application conditions always exists. Now that the two-dimensional theoretical solution for a
bimodular FGPM beam can be obtained [27], what is the form of one-dimensional solution? For the
above two reasons, we think it is necessary to obtain the one-dimensional theoretical solution and also
perform the two-dimensional numerical simulation for the problem of bimodular FGPM cantilever
beam. Therefore, this study may serve as a new supplement to the existing works, not only from the
theoretical aspect but also from the point of view of numerical simulation.

In this study, we will derive one-dimensional theoretical solution by neglecting some unimportant
factors and perform two-dimensional numerical simulation based on the model of tension-compression
subarea. The whole paper is organized as follows. In Section 2, the solving problem will be described,
including the definition of different properties in tension and compression and the constitutive equation
of FGPM in a two-dimensional case. The one-dimensional theoretical solution will be derived in
Section 3 and the two-dimensional numerical simulation will be performed in Section 4. Next, in
Section 5, we will make extensive comparisons with existing studies which not only include previous
studies of our themselves [27] but also the work from other authors, to show the validity of our work,
and also study the evolution from classical beams to bimodular FGPM beams as well as discuss the
deformation of flexible piezoelectric structures. According to the results allude to above, some main
conclusions will be drawn in Section 6.

2. The Problem Description

As indicated above, the characteristics of material considered in this study include the bimodular
effect, the functionally graded property and the piezoelectric characteristic. In practical applications,
there is a large number of materials containing three properties above, for example, the functionally
graded material made of piezoelectric ceramics and steel, at the same time, the bimodular effect is
considered due to the existence of ceramics, which present relatively obvious different elastic properties
in tension and compression (see [23]). Among these applications, they usually exist in a certain
structural form, for example, the form of cantilever beam; thereby it is necessary to study a bimodular
functionally graded piezoelectric cantilever beam.

An orthotropic functionally graded piezoelectric cantilever beam with bimodular effect is
considered here, as shown in Figure 1, in which the right end of the beam is fully fixed and the left end
free; h × b stands for the rectangular section dimension of the beam and l is the length of the beam
(h� l). Without losing generality, the loads may be considered as single form load, for example, the
upper layer of the beam is subjected to uniformly distributed load q, or the left end of the beam is
subjected to a shear force P or a bending moment M, or the combined loads from above load forms,
as shown in Figure 1. It is obvious that the loads acting in plane coordinate system xoz may cause
downward bending of the beam, thereby generating the so-called tensile part and compressive part,
bounded by the neutral layer. Thus, we establish a rectangular coordinate system in which z = 0
is exactly at the neutral layer, as shown in Figure 1. The upper and lower edge layers are z = −h2

and z = h1, respectively, in which h1 is the tensile height and h2 the compressive height according to
previous studies [28,29]. Note that due to the introduction of functionally graded property, physical
parameters of materials of the beam are also functions of coordinates. Generally, it is assumed that
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physical parameters vary only along certain direction, for example, the thickness direction. In this
study, material parameters are assumed to vary with z, in the light of the following rules

s+i j = s0
i jF

+(z), d+i j = d0
i jF

+(z),λ+i j = λ0
i jF

+(z),

s−i j = s0
i jF
−(z), d−i j = d0

i jF
−(z),λ−i j = λ0

i jF
−(z)

(1)

where F+(z) = eα1z/h, F−(z) = eα2z/h are gradient functions in tension and compression, respectively;
superscript “+” denotes a tensile quantity and “−” compressive quantity; s+/−

i j , d+/−
i j ,λ+/−

i j are elastic

coefficient, piezoelectric coefficient and dielectric coefficient, respectively; s0
i j, d0

i j,λ
0
i j are values of

corresponding material parameters at the neutral layer (z = 0), respectively. Note that a set of very
small electrodes are adhered discontinuously to the upper and lower surfaces of the beam, and at
the same time the beam is poled along the direction of z. In two-dimensional problem, let the stress
components and strain components be σ+/−

x , σ+/−
z , τ+/−

zx and ε+/−
x , ε+/−

z ,γ+/−
zx , respectively; let the

electrical displacement components and the electrical field components be D+/−
x , D+/−

z and E+/−
x , E+/−

z ,
respectively, thus the physical equations give

ε+/−
x
ε+/−

z
γ+/−

zx

 =


s+/−

11 s+/−
13 0

s+/−
13 s+/−

33 0
0 0 s+/−

44



σ+/−

x
σ+/−

z
τ+/−

zx

+


0
0

d+/−
15

d+/−
31

d+/−
33
0


{

E+/−
x

E+/−
z

}
(2)

and {
D+/−

x
D+/−

z

}
=

[
0

d+/−
31

0
d+/−

33

d+/−
15
0

]
σ+/−

x
σ+/−

z
τ+/−

zx

+

 λ+/−
11 0
0 λ+/−

33

{ E+/−
x

E+/−
z

}
, (3)

where superscript “+/−” still denotes a tensile (compressive) quantity, similar to Equation (1). It
may be inferred that the constitutive relation in two-dimensional case may be moderately simplified
in one-dimensional problem, according to our previous study concerning one-dimensional and
two-dimensional problems of bimodular FGM beams [30].
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3. One-Dimensional Theoretical Solution 

In one-dimensional problem, we may consider the simplest case, i.e., the pure bending problem 
shown in Figure 2, in which the left end of the cantilever beam is subjected to a bending moment M. 
Obviously, the beam will generate downward bending under the action of the bending moment in 
plane coordinate system xoz, thus forming a so-called tensile zone and compressive zone. We still 
establish the neutral layer at 0z = , and the tensile modulus of elasticity is denoted by ( )E z+  and 

Figure 1. Scheme of a bimodular functionally graded piezoelectric materials (FGPM) cantilever beam
under combined loads.

3. One-Dimensional Theoretical Solution

In one-dimensional problem, we may consider the simplest case, i.e., the pure bending problem
shown in Figure 2, in which the left end of the cantilever beam is subjected to a bending moment M.
Obviously, the beam will generate downward bending under the action of the bending moment in
plane coordinate system xoz, thus forming a so-called tensile zone and compressive zone. We still
establish the neutral layer at z = 0, and the tensile modulus of elasticity is denoted by E+(z) and the
compressive one by E−(z); similarly, the tensile and compressive heights are h1 and h2, respectively, as
shown in Figure 2.
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3.1. Mechanical Stress and Deflection

Note that in such a one-dimensional pure-bending problem, there is no stresses σ+/−
z and τ+/−

zx
as well as the corresponding strain ε+/−

z and γ+/−
zx , only existing σ+/−

x and ε+/−
x , from the point of

view of deformation. Thus, the constitutive relation of FGPM with different properties in tension and
compression, i.e., Equations (2) and (3), may be simplified as

ε+/−
x = s+/−

11 σ+/−
x + d+/−

31 E+/−
z

ε+/−
z = 0
γ+/−

zx = 0
(4)

and  D+/−
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11 E+/−
x

D+/−
z = d+/−

31 σ+/−
x + λ+/−

33 E+/−
z

. (5)

In existing studies for two-dimensional problem [13,14,27], Dx >> Dz may be found, thus we may
assume Dz ≈ 0 in the one-dimensional problem. From Equation (5), we have

E+/−
z = −

d+/−
31

λ+/−
33

σ+/−
x . (6)

Substituting Equation (6) into Equation (4), we obtain

ε+/−
x =

 s+/−
11 λ+/−

33 − (d+/−
31 )

2
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33
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x
E∗

, (7)

where E∗ is defined as the modulus of elasticity in one-dimensional problem, i.e.,

E∗ =
λ+/−

33

s+/−
11 λ+/−

33 − (d+/−
31 )

2 . (8)

We note that if the above equation is rewritten as the form E∗ = [s+/−
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31 )
2
/λ+/−

33 ]
−1

, it may
clearly explain the piezoelectric effect on the modulus of elasticity in classical problem. Specially, when

s+/−
11 >> (d+/−

31 )
2
/λ+/−

33 (for example, for the piezoelectric materials PZT-4, it is the case), we may have
E∗ = 1/s+/−

11 , which is exactly the reciprocal relationship between flexibility coefficient and stiffness
coefficient. From the viewpoint of regression satisfaction, this fact verifies indirectly the correctness of
Equations (4) and (5) in one-dimensional case. After substituting the functionally graded form, i.e.,
Equation (1), into Equation (7), we have

σ+/−
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λ+/−
33

s+/−
11 λ+/−

33 − (d+/−
31 )

2 ε
+/−
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λ0
33

s0
11λ

0
33 − (d

0
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2 ·
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eαiz/h
ε+/−

x , (9)
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where eαiz/h are gradient functions, introduced earlier in Equation (1), αi(i = 1, 2) corresponds to
“+/−”; and s0

11,λ0
33 and d0

31 represent the values of material parameters s11,λ33 and d31 at the neutral
layer (z = 0), respectively.

If we let the curvature radius of the beam in bending be ρ, the strain at any point may be expressed
as, according to plane section assumption in a one-dimensional case,

ε+/−
x =

z
ρ

. (10)

Substituting Equation (10) into Equation (9), we obtain

σ+/−
x =

λ0
33

s0
11λ

0
33 − (d

0
31)

2 ·
z

ρ · eαiz/h
=

k0

ρ
z

eαiz/h
, (11)

where k0 =
λ0

33

s0
11λ

0
33−(d

0
31)

2 . Thus, we obtain the bending stress in tensile and compressive zone for the

one-dimensional pure-bending problem, i.e., for 0 ≤ z ≤ h1,

σ+x =
k0

ρ
ze−α1z/h, (12)

and for −h2 ≤ z ≤ 0,

σ−x =
k0

ρ
ze−α2z/h. (13)

Note that ρ, h1 and h2, as well as the deflection of the beam are still not determined yet. Next, we will
use the conditions of internal forces on the section to determine them.

Let the normal internal force acting on any section be N, thus N = 0 will give∫ h1

0
σ+x bdz +

∫ 0

−h2

σ−x bdz = 0. (14)

Substituting Equations (12) and (13) into Equation (14), we have∫ h1

0

k0b
ρ

e−α1z/hzdz +
∫ 0

−h2

k0b
ρ

e−α2z/hzdz = 0. (15)

where k0b/ρ is a constant and may be deleted in the above equation. If we let
∫ h1

0 e−α1z/hzdz = e−α1h1/h
(
−

hh1
α1
−

h2
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1

)
+ h2

α2
1
= A+

1∫ 0
−h2

e−α2z/hzdz = eα2h2/h
(
−

hh2
α2

+ h2

α2
2

)
−

h2

α2
2
= A−1

, (16)

from Equation (15), we may obtain
A+

1 + A−1 = 0, (17)

which is used for solving the tensile and compression section height, i.e., h1 and h2.
The bending moment acting on any section is M(x) = M, this will give∫ h1

0
σ+x bzdz +

∫ 0

−h2

σ−x bzdz = M. (18)

We have, after substituting Equations (12) and (13) into Equation (18)∫ h1

0

k0b
ρ

e−α1z/hz2dz +
∫ 0

−h2

k0b
ρ

e−α2z/hz2dz = M. (19)
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If we let 
∫ h1

0 e−α1z/hz2dz = e−α1h1/h
(
−

hh2
1

α1
−

2h2h1
α2

1
−

2h3

α3
1

)
+ 2h3

α3
1
= A+

2∫ 0
−h2

e−α2z/hz2dz = eα2h2/h
(

hh2
2

α2
−

2h2h2
α2

2
+ 2h3

α3
2

)
−

2h3

α3
2
= A−2

, (20)

thus from Equation (19), we have a familiar form concerning deformation as follows

1
ρ
=

M
k0b(A+

2 + A−2 )
=

M
D∗

, (21)

where D∗ is defined as the bending stiffness of a bimodular FGPM beam, D∗ = k0b(A+
2 + A−2 ).

Substituting Equation (21) into Equations (12) and (13), we have, for 0 ≤ z ≤ h1,

σ+x =
M

b(A+
2 + A−2 )

ze−α1z/h, (22)

and for −h2 ≤ z ≤ 0,

σ−x =
M

b(A+
2 + A−2 )

ze−α2z/h. (23)

If we let the deflection be w, Euler-Bernoulli equation in small-deflection case will give

1
ρ
= −

d2w
dx2 =

M
k0b(A+

2 + A−2 )
. (24)

Integrating the above equation with respect to x will yield (M is a constant)

w(x) = −
M

2k0b(A+
2 + A−2 )

x2 + cx + d, (25)

where c and d are two integrating constants and may be determined by the following boundary
conditions:

w =
dw
dx

= 0, at x = l. (26)

Thus,

c =
Ml

k0b(A+
2 + A−2 )

, d =
−Ml2

2k0b(A+
2 + A−2 )

. (27)

Substituting it into Equation (25), we finally obtain

w(x) = −
M

2k0b(A+
2 + A−2 )

(x− l)2. (28)

For the convenience of the next comparison, when the cantilever beam is subjected a
uniformly-distributed load on its upper surface, M(x) = qx2/2, the two integrating constants may be
again determined as

c =
ql3

6k0b(A+
2 + A−2 )

, d = −
ql4

8k0b(A+
2 + A−2 )

. (29)

Thus, we have
w(x) =

q

24k0b(A+
2 + A−2 )

(−x4 + 4l3x− 3l4). (30)



Polymers 2019, 11, 1728 8 of 24

3.2. Electrical Displacement

Next, we will derive the electrical displacement components D+/−
x in one-dimensional case.

Note that the electrical displacement is generated not only from the electrical voltage application in
piezoelectric elements, as indicated in actuator model, but also from the mechanical load, as indicated
in sensor model which agrees with our study model, according to Figure 2 (under the action of
bending moment).

From Equations (1), (6), (22) and (23), we have

E+/−
z = −

d0
31eαiz/h

λ0
33eαiz/h

M
b(A+

2 + A−2 )
ze−αiz/h = −

d0
31

λ0
33

M
b(A+

2 + A−2 )
ze−αiz/h = −

l0M
b(A+

2 + A−2 )
ze−αiz/h, (31)

where l0 = d0
31/λ0

33. Let the potential function be Φ+/−, the relation of electrical field and potential in
two-dimensional problem will give

E+/−
x = −

∂Φ+/−

∂x
, E+/−

z = −
∂Φ+/−

∂z
. (32)

Obviously, if E+/−
z is known, Φ+/− = −

∫
E+/−

z dz+ f (x)where f (x) is an unknown function concerning
only x. However, in the one-dimensional problem, we think the variation of Φ+/− with x is only
embodied in the bending moment which has been included in E+/−

z (see Equation (31)). This fact
may be further demonstrated, from the side, based on the previous work [31] concerning purely
piezoelectric materials without bimodular functionally graded properties, in which the potential
function was determined as, in a two-dimensional case [31],

Φ(x, z) =
(

h2

8
−

z2

2

)
d31

λ33

P
I

x, (33)

where I is the moment of inertia of cross section, P is the concentrated force acting on the left end
of the beam thus Px stands for the bending moment. Obviously, f (x) in the integration Φ+/− =

−

∫
E+/−

z dz + f (x) may be neglected, thus Φ+/− = −
∫

E+/−
z dz holds. Accordingly, we have

Φ+/− = −

∫ z

0
E+/−

z dz =
l0M

b(A+
2 + A−2 )

∫ z

0
ze−αiz/hdz =

l0M
b(A+

2 + A−2 )

e−αiz/h

−hz
αi
−

h2

α2
i

+ h2

α2
i

. (34)

Substituting Equation (34) into the first expression of Equation (32) and also noting M(x) = qx2/2 if
uniformly-distributed load is still considered here, E+/−

x may be determined as, for 0 ≤ z ≤ h1,

E+
x = −

∂Φ+

∂x
=

l0qx

b(A+
2 + A−2 )

e−α1z/h

 hz
α1

+
h2

α2
1

− h2

α2
1

, (35)

and for −h2 ≤ z ≤ 0,

E−x = −
∂Φ−

∂x
=

l0qx

b(A+
2 + A−2 )

e−α2z/h

+ hz
α2

+
h2

α2
2

− h2

α2
2

. (36)

From the first expression of Equation (5), D+/−
x is, for 0 ≤ z ≤ h1,

D+
x = λ+11E+

x =
λ0

11l0qx

b(A+
2 + A−2 )

 hz
α1

+
h2

α2
1

− eα1z/h h2

α2
1

, (37)
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and for −h2 ≤ z ≤ 0

D−x = λ−11E−x =
λ0

11l0qx

b(A+
2 + A−2 )

 hz
α2

+
h2

α2
2

− eα2z/h h2

α2
2

. (38)

Finally, we obtain the bending stress σ+/−
x , the vertical deflection w and electrical displacement

D+/−
x in the one-dimensional problem.

4. Two-Dimensional Numerical Simulation

In this section we will use the software ABAQUS to simulate a bimodular FGPM cantilever beam
subjected to a uniformly-distributed load q on its upper surface, as shown in Figure 3, in which other
physical quantities and the establishment of coordinate system are the same as those in Sections 2
and 3. At the same time, it is assumed that 1 corresponds to the x direction, 2 to the y direction and 3 to
the z direction.
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4.1. Constitutive Equation of Piezoelectrical Materials

In ABAQUS, e-form constitutive equation of piezoelectrical materials is adopted, such that σi j = DE
ijklεkl − eϕmijEm

qi j = eϕmijε jk + Dϕ(ε)
i j E j

(i, j, k, l, m = 1, 2, 3), (39)

where σi j is the stress component; εi j is the strain component; qi j is the electrical displacement

component; DE
ijkl is the stiffness coefficient matrix; Dϕ(ε)

i j is the piezoelectrical stress constants matrix;

eϕmij is the dielectric constant matrix; Em and E j are electrical field strength.
The z axis is set to be the polarization direction, corresponding to the 3-direction of ABAQUS.

Since the elastic properties of ABAQUS are represented by the stiffness coefficient matrix Di jkl of
corresponding material, which is the inverse matrix of the flexibility matrix, it is necessary to transform
the flexibility coefficient matrix of the above material into the stiffness coefficient matrix, i.e.,

[
si j

]
=



s11 s12 s13 0 0 0
s21 s22 s23 0 0 0
s31 s32 s33 0 0 0
0 0 0 s66 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44


⇒

[
ci j

]
=



c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c66 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44


. (40)

Note that since we define the variation form of functionally graded materials in advance, the flexibility
coefficient si j = s0

i je
αiz/h, where i = 1, 2 due to the bimodular effect, thus, the stiffness coefficient will

change as ci j = c0
i je
−αiz/h, otherwise si j and ci j cannot satisfy [si j][ci j] = [s0

i j]e
αiz/h[c0

i j]e
−αiz/h = [E], where
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[E] is an unit matrix. At the same time, piezoelectrical strain constants ei j = di jcE
ij = d0

i je
αiz/hc0

i je
−αiz/h =

e0
i j, where cE is short circuit elastic stiffness constant matrix, thus piezoelectrical stress constants matrix is

[
ei j

]
=

[
e0

i j

]
=


0 0 0 0 e15 0
0 0 0 0 0 e15

e31 e31 e33 0 0 0

. (41)

The constitutive equation of piezoelectric materials is expressed as follows, in the form of matrix,

σ11

σ22

σ33

σ12

σ13

σ23


=



c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c66 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44





ε11

ε22

ε33

γ12

γ13

γ23


−



0 0 e31

0 0 e31

0 0 e33

0 0 0
e15 0 0
0 e15 0




E1

E2

E3

 (42)

and


D1

D2

D3

 =


0 0 0 0 e15 0
0 0 0 0 0 e15

e31 e31 e33 0 0 0





ε11

ε22

ε33

γ12

γ13

γ23


+


λ11 0 0
0 λ11 0
0 0 λ33




E1

E2

E3

. (43)

In ABAQUS, the double-subscript second-order tensor mark, 11, 22, 33, 13, 23 and 12, correspond to
the vector components, 1, 2, 3, 4, 5 and 6, respectively. Thus, the above two equations are expressed as,
in ABAQUS

σ11

σ22

σ33

σ12

σ13

σ23


=



D1111 D1122 D1133 0 0 0
D2211 D2222 D2233 0 0 0
D3311 D3322 D3333 0 0 0

0 0 0 D1212 0 0
0 0 0 0 D1313 0
0 0 0 0 0 D1313





ε11

ε22

ε33

γ12

γ13

γ23


−



0 0 e311

0 0 e322

0 0 e333

0 0 0
e113 0 0

0 e223 0




E1

E2

E3

 (44)

and


q1

q2

q3

 =


0 0 0 0 e113 0
0 0 0 0 0 e113

e311 e322 e333 0 0 0





ε11

ε22

ε33

γ12

γ13

γ23


+


D11 0 0

0 D11 0
0 0 D33




E1

E2

E3

, (45)

where, Di jkl is the modulus of elasticity, Di j is the dielectric coefficient and qi is the electrical
displacement component. Through the comparison of the above two sets of equations, it is easy
to see the corresponding relationship of constants, which can be used to input values of the constants.
For example, we should input c11 at the location of D1111 in ABAQUS; input e31 at the location of e311

and input λ11 at the location of D11.

4.2. Modeling and Simulation

ABAQUS software is one of the large-scale finite element software at present which can analyze
complex engineering mechanics problems including the problem of piezoelectric materials. However,
the software itself does not involve different properties in tension and compression and functionally
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graded properties of materials varying in a form of continuous function. For this purpose, we should
resort to subareas model in tension-compression and layer-wise theory to simulate the problem
studied, which inevitably complicates the analysis process further. The detailed steps for modeling
and simulation are as follows.

(i) Establishment of entity structure

The solid model of a FGPM cantilever beam is established, in which the length of the beam l is set
to be 1 m, the section height h to be 0.2 m and the section width b to be 0.08 m.

(ii) Determination of neutral layer and tension-compression subarea

Note that comparing to common piezoelectric cantilever beam, the subarea of tension and
compression of beam under external loads is a newly introduced feature, we must determine the
unknown neutral layer first, thus realizing the so-called tension-compression subarea. For this
purpose, a set of functionally graded indexes should be chosen to determine the tensile height and the
compressive one of the beams, according to the one-dimensional theoretical solution. For example,
consider the case α1 = −2 and α2 = −3. Substituting the given values into Equations (16) and (17) and
also noting the section total height h = 0.2 m, we may have h1 = 0.06 m and h2 = 0.14 m. It is easy to see
that due to the tensile modulus E+(z) = E0e−α1z/h is totally greater than the compressive modulus
E−(z) = E0e−α2z/h, the neutral layer will locate below the geometrical middle surface, i.e., h1 < h2, see
Figure 4, in which E0 is the modulus of the neutral layer.
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Figure 4. E+(z) and E−(z) when α1 = −2 and α2 = −3.

As indicated above, the change of material properties as certain direction in ABAQUS cannot be
defined as a continuous function, therefore according to conventional practice, we adopt layer-wise
model to simulate the functionally graded properties of the materials. Without losing the computational
accuracy, the beam is divided into a moderate number of layers; the physical parameters of the material
in each layer are regarded as the same, thus indirectly realizing the continuous change of materials
properties as the thickness direction if the layer numbers are enough. For this purpose, bounded by
the neutral layer, the upper part and the lower part of the beam are divided equally, thus the beam is
divided into 40 layers along the thickness direction, with each layer 5 mm thick, as shown in Figure 5.
It is easy to see that there are 12 layers in the tensile zone and 28 layers in the compressive zone.
Note that the coordinate origin now locates at the neutral layer.
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(iii) Determination of properties of materials

The material constant at the neutral layer z = 0 is shown in Table 1, which may be input into
ABAQUS directly. Material constants on other layers which do not locate at the neutral layer may
be computed and input into the program, via the layering model of tension-compression subarea
established in Step (ii).

Table 1. Physical properties of PZT-4 materials [32].

Elastic Constant
(10−12 m2

·N−1)
Piezoelectric Constant

(10−12 C·N−1)
Dielectric Constant

(10−8 F·m−1)

s0
11 s0

12 s0
13 s0

33 s0
44 d0

31 d0
33 d0

15 λ0
11 λ0

33
12.4 −3.98 −5.52 16.1 39.1 −135 300 525 1.301 1.151

(iv) Establishment of boundary conditions

The left end of the beam is free and the right end is fully fixed, which agrees with the mechanical
model shown in Figure 3. For this purpose, we need to define the fixed constrain on the right end of
the cantilever beam in ABAQUS, including displacement and rotation.

(v) Mesh division

In this simulation, an 8-node linear piezoelectric brick C3D8E is adopted, in which the size ratio
is set to be 0.01 and the mesh size is 5 mm × 10 mm. C3D8E may well realize the simulation of a
cantilever beam under the mechanical load and electrical load.

(vi) Step module and adding loads

An analysis step named Static General is established to apply the load. In this simulation,
uniformly-distributed load form is considered only. For this purpose, a uniformly-distributed load
(q = 1 N/m2), along the negative direction of z axis, is applied on the upper surface of the beam.

Up to now, the modeling job has been finished. We note that in the above steps, the difference
introduced by bimodular functionally graded properties embodies mainly in Steps (ii) and (iii), which
makes the analysis more complicated.

(vii) Operation and results output

After a job is established, submit the job and calculate and output the results. It should be noted
here that although the numerical simulation is based on a three-dimensional case, the problem we study
still attributes to two-dimensional plane problem. Therefore, we only output the results concerning
plane problem, and meanwhile, it is also convenient to compare these outputs with our previous
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study [27] which is exactly the case of two-dimensional problem. Figure 6 shows the cloud diagram of
the mechanical stresses, σx, σz and τxz, the mechanical displacement, u and w, as well as the electrical
displacement, Dx and Dz in a two-dimensional problem.
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Figure 6. Cloud diagrams of mechanical stresses and displacements, and electrical displacements:
(a) The cloud diagram of σx; (b) The cloud diagram of σz; (c) The cloud diagram of τxz; (d) The cloud
diagram of u; (e) The cloud diagram of w; (f) The cloud diagram of Dx; (g) The cloud diagram of Dz.

5. Comparisons and Discussions

5.1. Comparison of One-Dimensional Solution and Two-Dimensional Simulation

Due to the fact that in the derivation of one-dimensional theoretical solution, some assumptions
have to be introduced to obtain a simple but clear expression, the validity of one-dimensional solution
should be further verified. For this purpose, we use the results from the two-dimensional numerical
simulation to validate the rationality of the one-dimensional solution.
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Figure 7 shows the comparison results between one-dimensional theoretical solution and
two-numerical numerical simulation. Figure 7a–c and Figure 7d–f show that the bending stress
σx and the electrical displacement Dx at different cross sections x = 0.25l, 0.5l, 0.75l vary with the
thickness direction, respectively; Figure 7g shows the deflection w(x) at z = 0. From Figure 7, it is easy
to see that the two solutions curves are roughly close to each other, which indicates the validity of
one-dimensional theoretical solution, to some extent. Besides, Tables 2 and 3 further show the relative
errors of the one-dimensional solution and two-dimensional simulation concerning σx at x = 0.25l and
the vertical deflection w(x), respectively. It is obvious that the relative errors are within acceptable
limits. Note that in Table 2, the value of ABAQUS simulation at the neutral layer z/h = 0 gives 0.2813
but zero (while the theoretical solution gives zero, according to Equation (11)). This error may be
caused by the large discreteness of the finite element calculation itself, especially near the neutral
layer. The neutral layer may be regarded as a computing-sensitive zone in which the tensile and
compressive stresses change their positive or negative sign at this layer and for bimodular functional
graded materials, coefficient of materials is continuous at this layer but their first-order derivative
to z-direction is not continuous, see our previous study [29]. To obtain more accurate results, there
is a need to increase the number of mesh division, especially at the neutral layer, thus enlarging the
amount of computation.

It should be noted here, that since the one-dimensional theoretical solution is derived on a
relatively simple case, the number of physical quantities obtained is relatively limited. Due to pure
bending, for example, only σx is derived while τxz and σz cannot be obtained in this way; similarly, only
the deflection w(x) may be obtained in the one-dimensional solution while the so-called horizontal
displacement u cannot be considered.

Table 2. Relative errors of two solutions of σx (x = 0.25l).

z/h ABAQUS Simulation
(Pa)

Theoretical Solution
(Pa)

Relative Errors
%

−0.7 −1.5745 −1.6675 5.58
−0.6 −1.9871 −1.9294 2.99
−0.5 −2.2859 −2.1703 5.33
−0.4 −2.4750 −2.3437 5.60
−0.3 −2.4741 −2.3727 4.27
−0.2 −2.1492 −2.1352 0.66
−0.1 −1.3278 −1.4411 7.86
0.0 0.2813 0 -
0.1 2.7493 2.3760 15.71
0.2 5.9989 5.8042 3.35
0.3 9.7701 10.6338 8.12

Table 3. Relative errors of two solutions of w(x).

x/l ABAQUS Simulation
(10−9 m)

Theoretical Solution
(10−9 m)

Relative Errors
%

0.0 −4.1261 −4.2083 1.95
0.1 −3.5882 −3.6474 1.62
0.2 −3.0502 −3.0884 1.24
0.3 −2.5167 −2.5364 0.78
0.4 −1.9961 −1.9998 0.19
0.5 −1.4993 −1.4905 0.59
0.6 −1.0408 −1.0235 1.69
0.7 −0.6385 −0.6174 3.42
0.8 −0.3132 −0.2940 6.54
0.9 −0.0896 −0.0787 13.91
1.0 0.0000 0 -
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Figure 7. Comparisons of one-dimensional solution and two-dimensional simulation: (a) σx at x = 0.25l;
(b) σx at x = 0.5l; (c) σx at x = 0.75l; (d) Dx at x = 0.25l; (e) Dx at x = 0.5l; (f) Dx at x = 0.75l; (g) w(x) at
z = 0.
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5.2. Comparison of Two-Dimensional Numerical Simulation and Existing Solution

He et al. [27] derived a two-dimensional theoretical solution for FGPM cantilever beam with
bimodular effect under combined loads. Therefore, it is interesting to compare the two-dimensional
numerical results presented in this study with the existing solution from He et al. [27].

Figures 8–10 show the comparison results of the two-dimensional numerical simulation and the
existing solution, in which the computational data of the existing solution are from [27]. Tables 4–6
further show the relative errors of the two-dimensional simulation presented in this study and existing
work [27], in which σx, τxz, u, Dx and Dz at x = 0.25l are considered. The results show that the two
solutions are approximately equal, and the relative error is also in the acceptable range, excluding a
few points.
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He et al. [27] derived a two-dimensional theoretical solution for FGPM cantilever beam with 
bimodular effect under combined loads. Therefore, it is interesting to compare the two-dimensional 
numerical results presented in this study with the existing solution from He et al. [27]. 

Figures 8–10 show the comparison results of the two-dimensional numerical simulation and the 
existing solution, in which the computational data of the existing solution are from [27]. Tables 4–6 
further show the relative errors of the two-dimensional simulation presented in this study and 
existing work [27], in which xσ , xzτ , u , xD  and zD  at 0.25x l=  are considered. The results 
show that the two solutions are approximately equal, and the relative error is also in the acceptable 
range, excluding a few points. 
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Figure 8. Comparisons of two-dimensional simulation presented in this study and existing solution
from He et al. [27] at x = 0.25l: (a) Stress σx; (b) Stress σz; (c) Stress τxz; (d) Electrical displacement Dx;
(e) Electric displacement Dz; (f) Mechanical displacement u.



Polymers 2019, 11, 1728 17 of 24

Polymers 2019, 11, 1728 17 of 25 

 

  
(c) (d) 

  
(e) (f) 

Figure 8. Comparisons of two-dimensional simulation presented in this study and existing solution 
from He et al. [27] at 0.25x l= : (a) Stress xσ ; (b) Stress zσ ; (c) Stress xzτ ; (d) Electrical 

displacement xD ; (e) Electric displacement zD ; (f) Mechanical displacement u . 

  
(a) (b) 

  
(c) (d) 

-0 .8 -0.6 -0 .4 -0 .2 0.0 0 .2 0 .4
0.0

0.5

1.0

1.5

2.0

2.5

τ xz
/p

a

z /h

 p re s en te d
 e x is tin g

-0 .8 -0 .6 -0.4 -0 .2 0.0 0 .2 0 .4
-3

-2

-1

0

1

2

D
X/C

/m
2

 

z /h

 p re se n te d
 e x is tin g

x 10-9

-0.8 -0.6 -0.4 -0.2 0.0 0 .2 0 .4
-2

-1

0

1

2

3

D
z/C

/m
2

 

z /h

 p resen ted
 ex is ting

x10-10

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-4

-2

0

2

4

6

8

 u
/m

 

z/h

 presented
 ex is ting

x10-10

-0 .8 -0.6 -0 .4 -0 .2 0 .0 0 .2 0 .4
-20

-10

0

10

20

30

40

50

 σ
x/p

a

z /h

 p re se n te d
 e x is tin g

-0 .8 -0 .6 -0 .4 -0 .2 0 .0 0 .2 0 .4
-0 .2

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

 σ
z/p

a

z /h

 p re se n ted
 e x is tin g

-0 .8 -0 .6 -0 .4 -0 .2 0.0 0 .2 0 .4
0

1

2

3

4

5

τ xz
/p

a

z /h

 p re se n te d
 e x is tin g

-0 .8 -0 .6 -0 .4 -0 .2 0 .0 0 .2 0 .4
-8

-6

-4

-2

0

2

4

D
X/C

/m
2

 

z /h

 p re se n te d
 e x is tin g

x10-9

Commented [M3]: Please check if there is Figure 8 citation 

in this manuscript 

Polymers 2019, 11, 1728 18 of 25 

 

  
(e) (f) 

Figure 9. Comparisons of two-dimensional simulation presented in this study and existing solution 
from He et al. [27] at 0.5x l= : (a) Stress xσ ; (b) Stress zσ ; (c) Stress xzτ ; (d) Electrical displacement 

xD ; (e) Electric displacement zD ; (f) Mechanical displacement u . 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-2

-1

0

1

2

3

D
z/C

/m
2

 

z/h

 presented
 existing

x10-10

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-4

-2

0

2

4

6

8

 u
/m

 

z/h

 presented
 existing

x10-10

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-40

-20

0

20

40

60

80

100

 σ
x/p

a

z/h

 presented
 existing

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 σ
z/p

a

z/h

 presented
 existing

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
0

1

2

3

4

5

6

7

τ xz
/p

a

z /h

 presented
 existing

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-8

-6

-4

-2

0

2

4

D
X/C

/m
2

 

z/h

 presented
 ex isting

x10-9

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-2

-1

0

1

2

3

D
z/C

/m
2

 

z/h

 presented
 existing

x10-10

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-3

-2

-1

0

1

2

3

4

5

 u
/m

 

z/h

 presented
 existing

x10-10

Commented [M4]: Please check if there is Figure 9 citation 

in this manuscript 

Figure 9. Comparisons of two-dimensional simulation presented in this study and existing solution
from He et al. [27] at x = 0.5l: (a) Stress σx; (b) Stress σz; (c) Stress τxz; (d) Electrical displacement Dx;
(e) Electric displacement Dz; (f) Mechanical displacement u.

1 
 

 
(a) (b) 

(c) (d) 

  
(e) (f) 

 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-40

-20

0

20

40

60

80

100

 σ
x/p

a

z/h

 presented
 existing

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 σ
z/p

a

z/h

 presented
 existing

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
0

1

2

3

4

5

6

7

τ xz
/p

a

z/h

 presented
 existing

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-8

-6

-4

-2

0

2

4

D
X/C

/m
2

 

z/h

 presented
 ex isting

x10-9

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-2

-1

0

1

2

3

D
z/C

/m
2

 

z/h

 presented
 existing

x10-10

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-3

-2

-1

0

1

2

3

4

5

 u
/m

 

z/h

 presented
 existing

x10-10

Figure 10. Cont.



Polymers 2019, 11, 1728 18 of 24

1 
 

 
(a) (b) 

(c) (d) 

  
(e) (f) 

 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-40

-20

0

20

40

60

80

100

 σ
x/p

a

z/h

 presented
 existing

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 σ
z/p

a

z/h

 presented
 existing

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
0

1

2

3

4

5

6

7

τ xz
/p

a

z/h

 presented
 existing

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-8

-6

-4

-2

0

2

4

D
X/C

/m
2

 

z/h

 presented
 ex isting

x10-9

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-2

-1

0

1

2

3

D
z/C

/m
2

 

z/h

 presented
 existing

x10-10

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
-3

-2

-1

0

1

2

3

4

5

 u
/m

 

z/h

 presented
 existing

x10-10

Figure 10. Comparisons of two-dimensional simulation presented in this study and existing solution
from He et al. [27] at x = 0.75l: (a) Stress σx; (b) Stress σz; (c) Stress τxz; (d) Electrical displacement Dx;
(e) Electric displacement Dz; (f) Mechanical displacement u.

From the above results, it is easy to see that among the two-dimensional mechanical physical
quantities, stresses σx, τxz and σz as well as displacements u and w, their importance is different.
For stress components, the bending stress σx is still the dominant stress, the shear stress τxz is secondary
and σz is almost negligible; for displacement components, it is obvious that only w is the interesting
variables in our analysis while u is negligible small. This conclusion is consistent with the existing
results. Similarly, among the two-dimensional electrical physical quantities, for example, Dx and Dz,
the final result indicates Dx > Dz and in some cases even Dx >> Dz, this fact may well explain the
rationality of the assumption Dz ≈ 0 in the derivation of one-dimensional theoretical solution.

Table 4. Relative errors of two solutions of σx and τxz (x = 0.25l).

z/h
σx τxz

ABAQUS
(Pa)

Analytical
(Pa)

Errors
%

ABAQUS
(Pa)

Analytical
(Pa)

Errors
%

−0.7 −1.5745 −1.5004 4.94 0.0257 0.0000 -
−0.6 −1.9871 −1.8570 7.01 0.3090 0.2817 9.69
−0.5 −2.2859 −2.1748 5.11 0.6349 0.6086 4.32
−0.4 −2.4760 −2.3987 3.22 0.9928 0.9693 2.42
−0.3 −2.4741 −2.4451 1.19 1.3638 1.3474 1.22
−0.2 −2.1492 −2.1921 1.96 1.7137 1.7110 0.16
−0.1 −1.3278 −1.4598 9.04 1.9818 2.0034 1.08
0.0 0.2813 0 - 2.0697 2.1306 2.86
0.1 2.7493 2.4601 11.76 1.8770 1.9534 3.91
0.2 5.9989 5.8575 2.41 1.3238 1.3181 0.43
0.3 9.7701 10.3926 5.99 0.0377 0.0306 23.20
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Table 5. Relative errors of two solutions of u (x = 0.25l).

z/h ABAQUS
(10−10 m)

Analytical
(10−10 m)

Errors
%

−0.7 8.3955 7.4356 12.91
−0.6 7.1834 6.3564 13.01
−0.5 5.9828 5.2900 13.10
−0.4 4.7887 4.2308 13.19
−0.3 3.5975 3.1756 13.29
−0.2 2.4065 2.1214 13.44
−0.1 1.2138 1.0660 13.86
0.0 0.0178 0.0088 -
0.1 −1.1818 −1.0522 12.32
0.2 −2.3855 −2.1174 12.66
0.3 −3.5941 −3.1873 12.76

Table 6. Relative errors of two solutions of Dx and Dz (x = 0.25l).

z/h
Dx Dz

ABAQUS
(10−9 C/m2)

Analytical
(10−9 C/m2)

Errors
%

ABAQUS
(10−9 C/m2)

Analytical
(10−9 C/m2)

Errors
%

−0.7 −2.3014 −2.5480 9.68 −0.0769 0.0000 -
−0.6 −1.0508 −1.2423 15.42 1.5915 1.4459 10.07
−0.5 −0.2199 −0.3746 41.30 2.1005 2.0677 1.59
−0.4 0.2929 0.1685 73.83 2.1626 2.1316 1.45
−0.3 0.5455 0.4712 15.77 1.9038 1.8621 2.24
−0.2 0.5982 0.5957 0.42 1.4800 1.4252 3.85
−0.1 0.5651 0.5883 3.94 1.0100 0.9440 6.99
0.0 0.5199 0.4832 7.60 0.5887 0.5098 15.48
0.1 0.3928 0.3416 14.99 0.2730 0.1741 56.81
0.2 0.1905 0.1211 57.31 −0.0166 −0.0157 5.73
0.3 −0.0088 −0.1640 94.63 −0.0074 0.0000 -

In addition, it should be noted here that, from Figures 9e and 10e, we may find that Dz obtained
by the two solutions have obvious difference, and for some points the maximum relative error is even
greater than 50%. However, comparing with Dx having the same attribute, Dz is an unimportant
quantity, as indicated above. Therefore, even if there is slightly big difference in Dz, its influence on the
whole problem is relatively limited, this is the reason why we obtained the one-dimensional theoretical
solution by neglecting Dz. Since the quantity itself can be ignored, the difference of this quantity is
even more insignificant.

5.3. Comparison of One-Dimensional Theoretical Solution and Existing Solutions

In existing studies, Shi and Chen [17] gave a set of analytical solutions for the problem of a FGPM
cantilever beam subjected to different loadings, and Yang and Liu [31] derived the solution for the
problem of a piezoelectric cantilever beam under an end load. In this section, we will compare the
one-dimensional solution derived in this paper with the two solutions mentioned above.

Before comparison, it is necessary to degrade these solutions into a one-dimensional case since
they were obtained based on different conditions. For example, in [17], the effect of body force Fz is
considered, and only the elastic parameter S33 changes along the z direction; while in this study, the
different properties in tension and compression are taken into account, and all the material parameters
change along the z direction. For the convenience of comparison, we let the body force Fz from [17] be
zero, and the elastic parameter S33 from [17] be a constant, that is,

m1 = 0, m2 = 0, m3 = 0, m4 = 0, r1 = 0, r2 = 0, F = −P. (46)
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where the meaning of these quantities above can be found in [17]. At the same time, we redefine some
quantities from Section 3 as follows

α1 = α2 = 0, and M = −Px. (47)

Thus, the problem solved in this study and the problem in [17] are now degraded to the problem of
a piezoelectric cantilever beam under an end load, that is, the problem solved in [31]. The detailed
degradation is shown as follows.

Firstly, let us degrade the solution obtained in [17]. Substituting Equation (46) into the
Equations (14) and (17) in [17], we may obtain

d∗ = 0, a1 = 0, a3 = 0, a4 = 0, b2 = − 2P
h3 , b5 = 0, b6 = 3P

2h , d1 = 0, d2 = 0,

d3 = 0, d4 = 0, A1 = 0, A3 = 0, A4 = 0, B2 = −
2gP
h3 , B5 = 0, B6 =

gP
2h

(48)

From Equation (48) and the Equation (11) in [17], it can be obtained that

R1 = 0, R2 = a2S33 −A2g33, R3 = 0, R4 = 0, M3 = 0, Qx3 = 0. (49)

Thus, from Equations (48) and (49), the Equation (8) in [17] can be written as

σ′x = −
12P
h3 xz (50)

where “′” represents the corresponding quantity derived from [17]. From Equations (48) and (49) as
well as the Equation (13) in [17], we have

w′(x) =
1
3

R2z3
−

6P
h3 S13z2x +

2P
h3 S11(x3

− 3L2x + 2L3). (51)

When z = 0, the deflection equation at the axis of the piezoelectric cantilever beam can be obtained

w′(x) =
2P
h3 S11(x3

− 3L2x + 2L3). (52)

Next, let us degrade the one-dimensional solution derived in this study. Substituting Equation (47)
into Equation (9), we have

σx =
λ33

s11λ33 − (d31)
2

z
ρ

. (53)

Since α1 = α2 = 0, we may obtain
h1 = h2 = h/2. (54)

The integrations in Equation (20) may be simplified as A+
2 =

∫ h/2
0 z2dz = h3

24

A−2 =
∫ 0
−h/2 z2dz = h3

24

. (55)

From Equations (55) and (24), we obtain

1
ρ
= −

d2w
dx2 = [s11 −

(d31)
2

λ33
]
12M
bh3 = −[s11 −

(d31)
2

λ33
]
12P
bh3 x. (56)

Integrating the above equation with respect to x will yield

w = [s11 −
(d31)

2

λ33
]
2Px3

bh3 + cx + d. (57)
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From Equation (26), we may obtain

c = −[s11 −
(d31)

2

λ33
]
6Pl2

bh3 , d = [s11 −
(d31)

2

λ33
]
4Pl3

bh3 . (58)

Thus

w =
2P
bh3 [s11 −

(d31)
2

λ33
](x3
− 3l2x + 2l3). (59)

Substituting Equation (56) into Equation (53), we finally obtain

σx = −
12P
bh3 xz. (60)

By comparing the above equation with Equation (50), it is easy to see that they are identical except the
beam width b, which is considered to be unit 1 in [17].

In addition, from Equations (50) and (60), it is easy to find that σx is the same as the corresponding
expression, i.e., the Equation (29) in [31]. For the deflection w, Equation (59) in this study and the
Equation (38) in [31] are identical, only with a slight difference in Equation (52). We note that s11 �

(d31)
2/λ33 for the piezoelectric materials PZT-4, as indicated in Section 3.1, thus s11 − (d31)

2/λ33 ≈ s11.
From Equations (52) and (59), we may find, w′ ≈ w.

5.4. Evolution for One-Dimensional Theoretical Solution

For the one-dimensional solution of beams with different properties of materials, it is convenient
to compare all kinds of solution due to the consistency in form. Among the solutions, we take two
important physical quantities as our comparing objects, one is modulus of elasticity of materials, E∗,
and another is bending stiffness of beams, D∗, since they are closely associated with final solutions.
For example, if bending stiffness D∗ is known, the deflection is also easily determined by the classical
Euler-Bernoulli equation in small-deflection case, 1

ρ = d2w
dx2 = M

D∗ , where D∗ is associated with the
modulus of elasticity E∗ of materials. For this purpose, Table 7 gives E∗ and D∗, step by step, from
classical beams to bimodular FGPM beams, via bimodular beam [33] and bimodular FGM beam [29].
Interestingly, this order may be called an evolution of material properties from classical beams to
bimodular FGPM beams and, in turn, may also be called a regression from bimodular FGPM beams to
classical beams.

Table 7. Evolution for one-dimensional solution of beams (rectangular section).

Material Types of Beams Modulus of Elasticity Bending Stiffness

Classical beams E = const. 1
12 bh3E

Bimodular beams [33] E+, E− = const., where E+ , E− b
3 (E

+h3
1 + E−h3

2)

Bimodular FGM beams
[29]

{
E+(z) = E0eα1z/h

E−(z) = E0eα2z/h , where α1 , α2 and E0

is neutral layer modulus

E0b(A+
2 + A−2 ), where A+

2 =
∫ h1

0 eα1z/hz2dz

A−2 =
∫ 0
−h2

eα2z/hz2dz

Bimodular FGPM beams
(this study)

E∗ =
λ+/−

33

s+/−
11 λ+/−

33 −(d
+/−
31 )

2

=
λ0

33

s0
11λ

0
33−(d

0
31)

2 e−αiz/h
, where


s+/−

11 = s0
11eαiz/h = 1/E+/−(z)

d+/−
31 = d0

31eαiz/h

λ+/−
33 = λ0

33eαiz/h
(i = 1, 2 )

and s0
11, d0

31,λ0
33 are neutral layer modulus

D∗ = k0b(A+
2 + A−2 ), where

k0 =
λ0

33

s0
11λ

0
33−(d

0
31)

2

and

 A+
2 =

∫ h1

0 e−α1z/hz2dz

A−2 =
∫ 0
−h2

e−α2z/hz2dz
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It should be noted here that there is an important difference in A+
2 and A−2 for bimodular FGM

beams and bimodular FGPM beams. It is found that the integral function index has more than one
negative sign for bimodular FGPM beams, i.e., eαiz/h in bimodular FGM beams is now changed as
e−αiz/h in bimodular FGPM beams, this because, for bimodular FGPM beams, the original definition
for material properties is based on flexibility coefficient s+/−

11 but stiffness coefficient E+/−, and they
satisfy s+/−

11 = s0
11eαiz/h = 1/E+/−(z), thus generating the negative sign.

5.5. Discussion on Flexible FGPM Cantilever Beam

In many electromechanical devices, ultra large deflections of cantilevers are generally needed for
the sake of application requirements. For example, Merupo et al. [34] investigated the flexoelectric
response in soft polyurethane films and their use for large curvature sensing. More recently, Seveno and
Guiffard [35] presented the realization of a cantilever-based PZT thin film deposited onto an ultra-thin
aluminum foil as a substrate and showed that a very flexible actuator with low voltage-induced ultra
large deflections can be obtained by this method. In the above studies, the large deformation analyses
of piezoelectric structures are required, not only for static or dynamic problems but also for sensor
or actuator models. Thus, via the one-dimensional solution obtained in this study, the deflection of
flexible piezoelectric cantilever beam is easily obtained.

The bending stiffness of bimodular FGPM beams, D∗, has been derived in the Section 3.1,
which gives

D∗ =
λ0

33

s0
11λ

0
33 − (d

0
31)

2 b(A+
2 + A−2 ). (61)

Here, if a large deflection bending is to be considered, the classical Euler-Bernoulli equation will be

1
ρ
=

d2w/dx2

[1 + (dw/dx)2]
3/2

=
M(x)

D∗
, (62)

where ρ is still the curvature radius of the cantilever beam and w is the deflection. We note that
here the curvature expression is mathematically precise and has not been the small curvature case
mentioned above which reads 1/ρ = d2w/dx2. Via our previous studies concerning flexible cantilever
beams made of classical materials [36], it is convenient to derive the deflection only by replacing the
bending stiffness term D∗ in the solution obtained. This conclusion shows, from the side, the advantage
of one-dimensional theoretical solution in predicting deformation of flexible piezoelectric cantilever
structures.

6. Concluding Remarks

In this study, we used analytical and numerical methods to investigate a FGPM cantilever beams
with different properties in tension and compression, in which one-dimensional theoretical solution
was derived and two-dimensional numerical simulation was also performed. We made extensive
comparisons to validate the rationality of the one-dimensional solution and two-dimensional numerical
simulation in this study. The following main conclusions can be drawn.

(i) In the one-dimensional theoretical solution obtained, the presence of modulus of elasticity E∗

and bending stiffness D∗ for a bimodular FGPM beam may clearly describe the piezoelectrical effect
on the classical problem without electromechanical coupling. The influences introduced by three
important material coefficients, i.e., elastic coefficient, piezoelectric coefficient, and dielectric coefficient
are all included in E∗ and D∗.

(ii) In the two-dimensional numerical simulation, the layered model of tension-compression
subarea opens the possibilities for the realization of numerical technique to the problem of FGPM
cantilever beam with bimodular effect, although the software itself does not involve different properties
in tension and compression of materials.
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(iii) The respective advantages of the two solutions are obvious. Comparing with the complex
two-dimensional solution, the simplicity in form and the convenience in use make the one-dimensional
solution more advantageous in engineering application, for example, in the stage of preliminary design
of energy harvesting/sensing/actuating devices based on piezoelectric effect. At the same time, the
two-dimensional solution may serve as an effective reference for the refined analysis in the stage of
final design.

The work proposed in this study is helpful for predicting the mechanical behavior of some
electromechanical devices. Especially, if these electromechanical devices are made of piezoelectric
polymers, they will display relatively strong bimodular properties in tension and compression, which
should be given more attention in the stage of analysis and design. The relative work is in progress.
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