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The last decade has witnessed unprecedented developments in the genetic and epigenetic analyses of solid tumours. Transcriptional
and DNA copy-number studies have improved our understanding and classification of solid tumours and highlighted the patterns of
genomic aberrations associated with outcome. The identification of altered transcriptional and translational silencing by microRNAs
and epigenetic modification by methylation in tumours has showed a layer of additional intricacy to the regulation of gene expression
in different tumour types. The advent of massive parallel sequencing has allowed whole cancer genomes to be sequenced with
extraordinary speed and accuracy providing insight into the bewildering complexity of gene mutations present in solid tumours.
Functional genomic studies using RNA interference-screening tools promises to improve the classification of solid tumours by probing
the relevance of each gene to tumour phenotype. In this review, we discuss how these studies have contributed to solid tumour
classification and why such studies are central to the future of oncology. We suggest that these developments are gradually leading to
a change in emphasis of early clinical trials to a therapeutic model guided by the molecular classification of tumours. The investigation
of drug efficacy later in development is beginning to rely on patient selection defined by predictive molecular criteria that complement
solid tumour classification based on anatomic site.
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BACKGROUND

Therapeutic decision-making in oncology after surgical resection
of the tumour (adjuvant treatment) is based on an assessment
of the risk of tumour relapse. Risk profiling is a complex and
often imprecise task that has focussed on the clinical and histo-
pathological features of the tumour. Molecular profiling of gene
expression over the last decade has shown that heterogeneity in
outcome and survival in cancer can be explained, in part, by
genomic variation within the primary tumour (Brenton et al,
2005).

Recent developments in tumour classification have shown that
although the genetic mutations that occur in solid tumours may be
heterogeneous and complex, mutations often occur in genes
that function in common cell signalling pathways that may render
them sensitive to targeted approaches (Figure 1). The implications
for the management of solid tumours are profound. Not only will
these strategies improve the classification within each tumour
type, but they will also guide the development of therapeutic
approaches to limit tumour growth and contribute to the delivery
of personalised medical care (van’t Veer and Bernards, 2008).
These developments will lead to the exploitation of specific
signalling pathways in individual tumours that will cross organ-

specific boundaries to improve patient outcome and survival. Such
progress promises to drive the identification of predictive models
of drug response enabling drug delivery governed by the genomic
heterogeneity specific to each tumour. Predictive models are those
used to predict response to a particular therapy and prognostic
models are those used to predict clinical outcome independently of
therapy.

We suggest that improved classification of solid tumours will
contribute to the development of therapeutic strategies guided
either by aberrations in single genes, or by the activation of
specific signalling pathways, or by patterns of tumour genomic
instability (Figure 1).

GENE EXPRESSION PROFILING AND DNA
COPY-NUMBER ANALYSIS

Improved molecular classification of solid tumours is essential to
identify biomarkers, which reflect the molecular mechanisms
functionally involved in tumour-type specific survival, drug
resistance, tumour relapse and patient outcome in a highly
sensitive and specific manner. Current molecular classification
models have not been proven to act as independent markers of
disease outcome in comparison to validated methods and have
frequently not adhered to strict guidelines required for biomarker
validation (McShane et al, 2005). Ultimately, refined molecular
models classifying solid tumours will lead to the identification of
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new drug targets and patients at low risk of relapse who will not
benefit from adjuvant chemotherapy (Swanton et al, 2008).

There have been several issues raised with molecular classifica-
tion and forecasting strategies in cancer medicine regarding the
reproducibility of predictive expression signatures derived from
relatively small studies (Brenton et al, 2005; Ein-Dor et al, 2006).
Studies used to derive gene expression signatures predictive of
outcome or treatment response have frequently been derived from
small and clinically heterogeneous patient series with validation
and training tumours originating from the same patient cohorts.
The capacity of hypothesis-generating microarray studies to lead
to biased predictive models that ‘overfit’ a list of genes to the
cohort under study, that may not validate in truly independent and
unrelated clinical cohorts, is well documented. As a result, recent
research has focussed on a refinement of predictive classifiers from
well-characterised, rather than clinically heterogeneous, patient
cohorts.

One such approach has been published recently in a homo-
geneous group of patients with adenocarcinoma of the lung of
defined clinical stage to attempt to define new prognostic models
suitable for clinical application across multiple hospital sites
(Shedden et al, 2008). The authors standardised pathological
assessment, collection of tumours and clinical information from
each institution involved in the study at the outset. Two-blinded
external validation cohorts were used to test their prognostic
methods, unlike many earlier studies that have tended to divide a
single cohort from one study into a training and validation set.
Higher expression of genes involved in cell-cycle progression and
chromosome segregation correlated with poorer outcome. The
authors noted the improved performance of their models when
clinical and gene expression data were combined.

Alternative approaches, include retrospective analyses of tissue
from clinical trials. The Trial Assigning IndividuaLized Options for

Treatment (Rx), (TAILORx: http://www.cancer.gov/clinicaltrials/
ECOG-PACCT-1) is currently validating one such 21 gene signature
by RT–PCR, developed from an analysis of three breast cancer studies
in 447 patients, to guide risk stratification among patients with node-
negative oestrogen receptor (ER)-positive breast cancer treated with
tamoxifen (Paik et al, 2004; and for review see Swanton et al, 2008).

Traditional prognostic classifiers from heterogeneous clinico-
pathological patient groups have failed to provide a robust
signature predictive of outcome in ER-negative breast cancer for
which prognostic signals seem to be much weaker (Teschendorff
et al, 2007). Profiling studies using a novel statistical approach that
may reduce the false discovery rate have shown that ER-negative
breast cancer is divided into four main subtypes of disease
and that heterogeneity in outcome relates to the expression of
an immune response gene expression set that seems to be
independent of lymphocyte recruitment (Teschendorff et al, 2007).

Changes in DNA copy number have been shown to drive a high
proportion of changes at the mRNA level and outcome stratifica-
tion in breast cancer can be improved by the parallel assessment of
gene expression and change in copy number (Chin et al, 2006).
Studies of DNA copy number alterations with expression data in
171 breast cancers of relatively small size and low Nottingham
Prognostic Index (reflective of breast cancer demographics in the
modern screening era) have been published recently (Chin et al,
2007). This work highlighted that breast cancer is considerably
more heterogeneous than earlier studies had portrayed (Chin et al,
2006) and showed the existence of a low genomic instability index
(defined as the fraction of the genome altered) tumour cohort
consisting disproportionately of ER-negative and basal samples.
Two other clusters consisted of intermediate/high grade tumours
characterised by high genomic instability index. Therefore,
ER-negative tumours seem to have distinct clusters defined
by high or low genomic instability index. Intriguingly, unlike
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Figure 1 Classification of defined genetic abnormalities in solid tumours to optimise tumour response. Figure shows the three methods through which
improved molecular classification of solid tumours is challenging the traditional approach to cytotoxic delivery (green font indicates theoretical or proven
sensitivity and red font indicates resistance based on molecular aberration). Mutations (EGFR) or amplification (HER2) guides the use of EGFR tyrosine
kinase inhibitors in NSCLC and breast cancer, respectively. Assessing whether genomic instability is an exploitable phenotype is currently under investigation
(CINATRA: chromosomal instability and anti-tubulin response assessment) and new approaches evolving from molecular analysis of solid tumours may be
directed towards activated pathways in solid tumours through the attenuation of Wnt and Hedgehog signalling. CIN¼ chromosomal instability,
MMR¼mismatch repair, CRC¼ colorectal cancer, mAb¼monoclonal antibody, EGFR¼ epidermal growth factor receptor.
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ER-positive tumours for which genomic instability index correlates
with clinical outcome, no such correlation was observed in ER-
negative tumours.

CHROMOSOMAL INSTABILITY CLASSIFIES SOLID
TUMOURS INTO A POOR PROGNOSTIC CATEGORY

There is now good pre-clinical evidence to suggest that distinct
patterns of genomic instability, as opposed to defined aberrations
in signalling pathways discussed later, may affect the therapeutic
response.

Chromosomal instability (CIN) is associated with poorer
outcome in many solid tumours including breast and colon cancer
(Furuya et al, 2000; Risques et al, 2003; Kronenwett et al, 2004;
Carter et al, 2006; Walther et al, 2008). Recently, a gene expression
signature associated with CIN and the combined level of tumour
chromosomal aberrations, termed total functional aneuploidy,
predicted poorer outcome in six cancer types (Carter et al, 2006).
The expression of the CIN signature was higher in metastatic
samples compared with primary tumours and was able to classify
grade 1 and 2 breast cancers according to outcome.

Rapid acquisition of multidrug resistance is frequently wit-
nessed after the exposure of solid tumours to consecutive ‘non-
cross resistant’ chemotherapy regimens, with diminished patient
benefit as lines of treatment progress. Aneuploid cells acquire
multidrug resistance at a higher rate than diploid cells that may be
catalysed by chromosome reassortments at each mitosis (Duesberg
et al, 2000). Chromosome missegregation may promote an evolu-
tionary benefit within the solid tumour mass by altering gene dosage
across the tumour population as evidenced by the transcriptional
changes induced by single-cell chromosome transfer experiments
(Upender et al, 2004). A compelling hypothesis generated from these
observations is that the selection of a drug resistance gene encoded
on a missegregated chromosome after chemotherapy exposure is
associated with ‘multiple unselected phenotypes’ induced by genes
encoded on the same chromosome that may promote resistance to
unrelated drug compounds (Duesberg et al, 2000).

CIN may refer to both structural DNA copy-number alterations
and numerical changes of whole chromosomes. Evidence suggests
that CIN may be an exploitable phenotype and that cytotoxic
compounds exist that may have preferential activity in cells with
distinct patterns of genomic instability (Roschke and Kirsch, 2005).
Conversely, functional genomic analysis has identified that numeri-
cally CIN tumour cells may be relatively resistant to microtubule
stabilising agents owing to similarities between pathways regulating
the separation of chromosomes at mitosis and response to taxanes
(Swanton et al, 2007). In contrast, our evidence suggests that a near
diploid stable karyotype (frequently observed in mismatch repair
deficient, microsatellite-unstable colorectal cancers) is associated
with sensitivity to mitotic inhibitors, such as taxanes and kinesin 5
inhibitors. This work has led to the initiation of a phase II clinical
trial of Epothilone 906 in colorectal cancer. This trial, called
CINATRA (Chromosomal Instability and Anti-Tubulin Response
Assessment) aims to assess whether patients with MMR deficient,
karyotypically stable colo-
rectal cancers harbour disease, which is intrinsically more sensitive
to microtubule-stabilising agents than the CIN tumours (Swanton
et al, 2006). The challenge over the next decade will be to identify
therapeutic strategies to limit chromosome missegregation and CIN
and exploit weaknesses inherent to tumour karyotype as a targetable
phenotype.

FUNCTIONAL GENOMIC TUMOUR CLASSIFICATION
AND THERAPEUTIC SELECTION

Studies have shown that drugs with similar mechanisms of action
share common gene expression signatures that may play a

functional role in drug response (Lamb et al, 2006). This has led
to the concept that genetic heterogeneity within the primary
tumour may influence drug response and provoked efforts
to classify tumours by drug sensitivity status. Unfortunately,
small datasets, from which the early studies were derived, have
not yielded gene signatures of sufficient power to predict drug
sensitivity (Sorlie et al, 2006). Efforts to improve on these
signatures by combining cell-line gene expression analysis with
matched drug sensitivity data to classify sensitivity to combination
chemotherapy in vivo have been published (Potti et al, 2006;
Bonnefoi et al, 2007). The negative predictive value of this method
may be sufficiently robust to enable the selection of patients with
multidrug resistant disease for novel therapeutic clinical trials.

The identification of genes functionally involved in drug
response using RNA interference-screening techniques has started
to yield information enabling the genetic dissection of tumour
gene expression. RNA interference screening was used recently to
determine that PI3K pathway activation, through PTEN loss and/or
PI3KCA mutation, was the main regulator of trastuzumab
resistance (Berns et al, 2007) indicating that these patients may
derive more benefit from treatment with AKT or mTOR inhibitors.

TUMOUR CLASSIFICATION BASED ON miRNA
ANALYSIS

MicroRNAs (miRNAs) are small non-coding RNAs that negatively
regulate gene expression through the inhibition of mRNA
translation or the initiation of mRNA degradation. The tissue-
specific expression of miRNAs has provoked intense investigation
to identify whether these non-coding RNAs can reflect signatures
of tumour origin, prognosis and outcome. In one of the first
investigations of 217 miRNAs in 334 tumour and normal tissue
samples, miRNA expression profiling segregated tumours by
developmental origin and had the capacity to correctly identify
the tissue of origin of poorly differentiated tumours, in contrast to
an mRNA-based tissue classifier (Lu et al, 2005). In contrast to
mRNA profiling, which does not consistently differentiate between
tumour and normal tissue, the majority of miRNAs studied
had lower expression in tumour compared with normal tissue. The
authors suggest that tumour-specific miRNA repression results
from differences in the differentiation status between tumour and
normal tissue and propose that a signature of 200 miRNAs may be
sufficient to classify human cancer. In agreement with these data,
Rosetta Genomics showed the potential of miRNA profiling to
define the origin of carcinoma of unknown primary and accurately
classify tumour type (Rosenfeld et al, 2008).

In a breast cancer specific study comparing miRNA to mRNA-
expression profiles, we have showed that several miRNAs are
differentially expressed between the Luminal A/B, Her2þ , basal
and normal-like breast cancers (Blenkiron et al, 2007). This study
shows that alterations in miRNA expression are complex and may
relate to genomic loss or gain, changes in primary transcription
and miRNA biogenesis. We did not detect significant enrichment
for down- or up-regulated predicted target mRNAs and suggest
that the predominant activity of miRNA influence lies in mRNA
translational control.

miRNA EXPRESSION AND PROGNOSTICATION

Expression of miRNAs may offer prognostic and predictive
information in several solid tumours. Yu et al (2008) presented
data showing that a signature of five miRNAs can predict treat-
ment outcome in NSCLC and serves as an independent predictor
of recurrence free and overall survival. Four miRNAs; miR-7,
miR-128a, miR-210 and miR-516-3p are associated with tumour
aggressiveness in ER-positive, lymph-node negative breast cancer.
Expression of miR-210 was associated with early relapse in
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ER-negative, lymph-node negative disease and in a cohort of 69
triple-negative breast cancers (Foekens et al, 2008). The potential
prognostic role of miR-210 in this disease has been supported in a
separate study, which showed the induction of miR-210 by tumour
hypoxia in a HIF1a-dependent manner (Camps et al, 2008).

If the association of miRNAs with prognosis can be shown to be
directly causative, they may represent excellent therapeutic targets
because of their potential ability to influence multiple biological
processes by altering the expression and translation of many
mRNAs. In this regard, several miRNAs have now been attributed
with direct roles in tumour invasion, tumour growth and motility
and in the activation or repression of cancer survival signalling
and angiogenic pathways (Ovcharenko et al, 2007; Fish et al, 2008;
Kefas et al, 2008; Lujambio et al, 2008).

CANCER GENOME SEQUENCING STUDIES

Sequencing analysis of the human genome has enabled bench-
marks to be set, by which cancer genomes can be compared.
Developments in bioinformatics tools and sequencing platforms
have led to the publication of several genome-wide sequencing
studies in solid tumours. In 2006, Velculescu et al. (Sjoblom
et al, 2006) presented sequencing results for 13 023 genes in
11 breast and 11 colorectal cancers. Following stringent validation
procedures they identified 365 mutations in 236 genes. This study
showed that each tumour harboured mutations in B90 genes that
displayed significant heterogeneity between tumour types.

This group and others have provided similar genomic analysis
of glioblastoma multiforme and pancreatic cancer (Jones et al,
2008; McLendon et al, 2008; Parsons et al, 2008). After sequencing
of 20 661 genes, 63 genetic alterations were found on average in
each pancreatic cancer belonging to a set of 12 signalling pathways
altered in greater than two-thirds of tumours (Jones et al, 2008).
The authors speculate that the lower somatic mutation rate in
pancreatic cancer compared with breast or colorectal cancer may
be explained by a requirement for fewer divisions in the initiation
of pancreatic neoplasia compared with breast or colorectal cancer.

Glioblastoma multiforme (GBM) sequencing analysis has shown
recurrent mutations in isocitrate dehydrogenase 1 (IDH1) in 12%
of patients (Parsons et al, 2008). These mutations seemed to occur
in younger patients and most patients with secondary GBMs.
Tumours harbouring these mutations seem to be associated with
an increase in overall survival of patients. Pathways altered in
these tumours were similar to those in pancreatic, breast and
colorectal cancer, although some GBM-specific pathways incor-
porating ion-channels and pathways involved in transmission of
synaptic or neural signals and axonal guidance were noted.

The Cancer Genome Atlas Research Network recently published
data of a similar analysis in GBM-combining gene expression
profiling, DNA copy-number analysis with methylation and
nucleotide sequencing analysis (McLendon et al, 2008). These
data show a connection between MGMT promoter methylation and

the hypermutator phenotype in temozolomide-treated GBM. The
MGMT promoter methylation results in a failure to repair
alkylated guanine residues resulting from treatment. Unrepaired
alkylated guanines initiate repetitive cycles of mismatch repair
triggering cell death. The dependence of cell death on a competent
MMR pathway initiates a strong selective pressure for inactivation
of the MMR pathway and the resultant hypermutator phenotype.
This is one of the first studies to show the emergence of genomic
instability resulting from a selection pressure driven by chemo-
therapy and has major clinical implications regarding the use of
temozolomide and the development of new drugs in this disease.

CONCLUSIONS AND PERSPECTIVES

Classification studies in solid tumours have showed the complex
heterogeneity of gene and miRNA expression that may account for
the unpredictable clinical behaviour and response to therapy in
solid tumours, exacerbated further by underlying tumour genomic
instability. We propose a model, (Figure 1) whereby improved
molecular classification of solid tumours is in the process of
directing therapeutics guided by the status of single genes within
the tumour (mutation/deletion/amplification or loss), the activa-
tion of specific signalling pathways and the genomic instability and
epigenetic status of the tumour.

Clinical trials investigating activity of EGFR-directed therapies
using kRAS and EGFR receptor mutation status as biomarkers of
response have altered the landscape of targeted therapy use.
Clinical strategies to maximise response to Her2-targeted agents in
tumours with PI3KCA mutations and/or PTEN loss are being
considered based on knowledge of downstream signalling path-
ways. The specific targeting of a distinct pattern of genomic
instability is the subject of investigation in the phase II trial
CINATRA discussed in this paper.

Finally, although most genes are only mutated at low frequency
in each tumour type, the identification of functional gene groups
belonging to the same signalling pathway, may provide opportu-
nities for therapeutic exploitation. For example, all pancreatic
cancers analysed had gene alterations in the Wnt and Hedgehog
signalling pathways. Therefore, although a large number of genes
are mutated in solid tumours, the number of pathways through
which they function is relatively small. These studies provide a
compelling focus for pathway directed, rather than traditional
tumour-type specific interventions.
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