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a b s t r a c t

Glucose-6-phosphate dehydrogenase deficiency (G6PD deficiency;
OMIM #300908) is the most common inborn error disorders
worldwide. While the G6PD is the key enzyme of removing
oxidative stress in erythrocytes, the early diagnosis is utmost vital
to prevent chronic and drug-, food- or infection-induced hemolytic
anemia. The characterization of the mutations is also important for
the subsequent genetic counseling, especially for female carrier
with ambiguous enzyme activities and males with mild mutations.
While multiplex SNaPshot assay and Sanger sequencing were
performed on 500 G6PD deficient males, five newly discovered
variations, namely c.187G > A (p.E63K), c.585G > C (p.Q195H),
c.586A > T (p.I196F), c.743G > A (p.G248D), and c.1330G > A
(p.V444I) were detected in the other six patients. These variants
were previously named as the Pingtung, Tainan, Changhua, Chiayi,
and Tainan-2 variants, respectively. The in silico analysis, as well as
the prediction of the structure of the resultant mutant G6PD
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1. Data

This dataset presented the in silico and structural analysis of the five newly discovered variations,
namely c.187G > A (p.E63K), c.585G > C (p.Q195H), c.586A > T (p.I196F), c.743G > A (p.G248D), and
c.1330G > A (p.V444I) (Fig. 1), detected in the six Taiwanese G6PD deficient patients using Sanger
Sequencing (Table 1).

The comparison sequence of these variants in G6PD protein of different species [2], including Homo
sapiens, Mus musculus, Danio rerio (zebrafish), Drosophila melanogaster (fruit fly), and Caenorhabditis
eleganswere presented in Fig. 2. The in silico analysis using SIFT [3], PolyPhen-2 [3], Mutation Taster [4]
and Slicing Finder [5] softwares, as well as the conservation between species and allele frequency in
Taiwanese population [6] were summarized in Table 2. Furthermore, the amino acid alterations were
presented in the functional domains [7] (Fig. 3) and inpartial 3Dmodel of G6PD [8] (Fig. 4). The structure
of the resultantmutant G6PD proteinwere analyzed by HOPE, Have yOur Protein Explained [9] (Table 3).
2. Experimental design, materials and methods

2.1. Mutation identification: sanger sequencing

In 500 G6PD-deficient male newborns detected by G6PD enzyme activity assay [10], nine of which
do not carry any of the 21 common mutations described in Taiwan and Southeast Asia using multiplex
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Fig. 1. Detection of five new G6PD variations by Sanger sequencing. G6PD gene sequence showed the wild type sequence with
variants of different individuals. (A) c.187G > A in patient A397, (B) c.585G > C in patient A367, (C) c.586A > T in patient A 129, (D)
c.743G > A in patient A244 and (E) c.1330G > A in patients A281 and A453. The red arrows showed substitution in a hemizygous
state in the missense mutations observed.
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SNaPshot assay [1]. Their dried blood spots used in newborn screening were subsequently subjected to
mutational analysis by sequencing. The whole coding exons and exon-intron boundary sequences of



Table 1
G6PD activity in newborn screening and following referral for patients carrying newly discovered G6PD variations.

Patient Number A129 A244 A281 A367 A397 A453

Sex Male Male Male Male Male Male
Place of Birth Changhua Chiayi Tainan Tainan Pingtung Tainan
Age at newborn screening (day) 2 2 2 2 3 3
G6PD activity in newborn screening (U/gHb)a 0.2 5.5 5.3 1.7 5.7 5.1
Age when confirmed (day) 34 9 22 15 14 11
Confirmed G6PD activity (U/gHb)b 0.1 6.1 5.5 0.2 8.6 6.5
Variation found c.586A > T c.743G > A c.1330G > A c.585G > C c.187G > A c.1330G > A

a Clinical referral was recommended for those enzyme activity &6.0 U/gHb.
b The confirmed diagnosis was performed through a quantitative enzyme activity assay by using fresh whole blood. G6PD-

deficiency would be suggested for those with G6PD activity &10.0 U/gHb.
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G6PD genewere amplified and analyzed by forward and reverse Sanger sequencing. Putativemutations
were confirmed by sequencing of an independent PCR product. The study protocol was reviewed and
approved by the Institutional Review Board of Taipei City Hospital, Taiwan.
2.2. Sequence alignments between species

Conservation of the peptide sequence around the affected residues was assessed by alignment of
orthologous and human G6PD sequences with ClustalW2, [2].
2.3. Severity prediction and allele frequency in population

Different online algorithms were used to predict the functional consequences of the five variants.
The in silico analyses were performed using the SIFT [3], PolyPhen-2 [3], MutationTaster2 [4], and
Human Splicing Finder [5] programs. Furthermore, the allele frequency of the alterations in Taiwanese
population was listed as provided in Taiwan Biobank [6].
2.4. Distribution of mutations along the coding region and protein sequence

Distribution of alterations was highlighted in the coding region and the functional domains [7]. The
A at the ATG translational initiation codon was numbered as 1 in reference accession number
NM_001042351. The amino acid numbers were counted from the N-terminal Met of human G6PD
protein.
2.5. 3D structure model of wide type G6PD protein

The 3D structure of G6PD variations observed in this study were presented based on the X-ray
crystal structure available at the Protein Data Bank from human G6PD protein (PDB code 1QKI) [8].
2.6. Prediction of structural effects of variations

When protein structure is important to predict the effects of variants [11], effect of mutations over
G6PD protein structure was determined using HOPE (Have yOur Protein Explained) software [9].



Fig. 2. The similarity alignment of G6PD proteins across different species. The red characters show the corresponding positions of
the five substitutions between species whereas the conserved residues were outlined in green box. The species abbreviations are: D.
melanogaster, Drosophila melanogaster; C. elegans, Caenorhabditis elegans.
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Fig. 3. Schematic representation of alterations in G6PD coding regions and protein functional domains. (A) The coding region of the
G6PD gene containing 13 exons. (B) The G6PD protein of 515 amino acids contains two binding domains, namely NAD(P)-binding
domain (blue box, amino acids 25e210) and C-terminal domain (green box, amino acids 212e503), and two binding sites,
namely NAD(P) binding site (left red box, amino acids 38e44) and G6P-binding site (middle red box, amino acids 198e206), and one
dimer interface (right red box, amino acids 380e425). The five mutations were highlighted in black in the coding region and protein
domains.

Table 2
The severity prediction for five newly discovered G6PD missense variations.

Nucleotide
substitution

Amino acid
substitution

SIFT PolyPhen-
2

Mutation
Taster

Splicing
finder

Conservationa Allele Frequencyb Predicted Classc

c.187G > A p.E63K Tolerated Benign Disease
causing

Potential
alteration

Moderately <2/1417d III-IV

c.585G > C p.Q195H Damaging Probably
damaging

Disease
causing

Potential
alteration

Highly <1/1000 II

c.586A > T p.I196F Damaging Probably
damaging

Disease
causing

Potential
alteration

Highly <1/1000 II

c.743G > A p.G248D Damaging Probably
damaging

Disease
causing

Probably
no
impact

Highly <1/1000 III

c.1330G > A p.V444I Tolerated Possibly
damaging

Disease
causing

Potential
alteration

Highly <1/1000 III

a Sequence comparison between Homo sapiens, Mus musculus, Danio rerio (zebrafish), Drosophila melanogaster (fruit fly), and
Caenorhabditis elegans and Saccharomyces cerevisiae as shown in Fig. 2.

b Allele frequency in Taiwanese population (https://taiwanview.twbiobank.org.tw/browse38, accessed on 25 April 2019) [6].
c Classification of G6PD variants in the study according to the WHO definition [7].
d Two alleles in 1417 people with indeterminate sex.
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Fig. 4. Close-up views of the ribbon diagram of human G6PD as generated by Swiss PDB viewer. (A) The 3D model structure of G6PD
closed to the G6P-binding site, and the Glu63, Gln195, Ile196 and Val444 residuals. (B) A close-up view of G6PD protein contains the
NAD(P)-binding site and Gly248 residual. The G6P- and NAD(P)-binding sites were highlighted in cyan, while the residuals were
presented in red.

Table 3
Structure prediction of the G6PD variations by HOPE algorithm.

Mutants Structure prediction by HOPE algorithma

p.E63K The wide-type residue forms a salt bridge with arginine at position 104. The difference in charge will disturb the
ionic interaction made by the original, wild-type residue.

p.Q195H The wild-type residue forms a hydrogen bond with arginine at position 192. The size difference between wild-
type and mutant residue makes that the new residue is not in the correct position to make the same hydrogen
bond as the original wild-type residue did.

p.I196F The mutant residue is bigger than the wild-type residue and is located in a domain that is important for the
activity of the protein and in contact with residues in another domain. The mutation can affect this interaction
and as such affect protein function.

p.G248D The wild-type residue is a glycine, the most flexible of all residues. This flexibility might be necessary for the
protein's function. Mutation of this glycine can abolish this function.

p.V444I The mutant residue is bigger than the wild-type residue and is located in a domain that is important for binding
of other molecules. The mutation might affect this interaction and thereby disturb signal transfer from binding
domain to the activity domain.

a Using software Have yOur Protein Explained (HOPE, http://www.cmbi.ru.nl/hope/) [9].
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