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Dark-field X-ray microscopy is a diffraction-based synchrotron imaging

technique capable of imaging defects in the bulk of extended crystalline

samples. Numerical simulations are presented of image formation in such a

microscope using numerical integration of the dynamical Takagi–Taupin

equations and wavefront propagation. The approach is validated by comparing

simulated images with experimental data from a near-perfect single crystal of

diamond containing a single stacking-fault defect in the illuminated volume.

1. Introduction

Dark-field X-ray microscopy (Simons et al., 2015) (DFXM) is a

full-field X-ray imaging technique similar to X-ray topography

(Berg, 1931; Lang, 1957). However, unlike the latter, DFXM

utilizes an X-ray objective lens placed between the sample and

the detector to create a magnified image and can therefore

achieve a spatial resolution better than the detector pixel size.

The spatial bandwidth is limited by the small numerical

aperture (NA ’ 10�3) of this objective lens. Compared with

classical X-ray topography, this provides angular resolution of

the scattered beam direction (Poulsen et al., 2017), which

makes it possible to quantitatively measure strains and rota-

tions of the crystal lattice by sequentially collecting images

while rotating the sample and moving the objective lens.

Traditionally, the quantitative analysis of DFXM data and

the theoretical description (Poulsen et al., 2017, 2021) of the

method have relied on strong approximations. Most important

is the kinematical approximation, which is to omit multiple

scattering effects, and which holds for small and for highly

deformed crystals. Another approximation, which is built into

the geometric optics treatment of Bragg scattering, is that

infinitesimal sub-volumes in the sample scatter according to

the Bragg law for a perfect infinite crystal, and that the

intensities scattered from such sub-volumes add together

incoherently. In some cases (e.g. for near-perfect crystallites

and small defect structures), however, such approximations

are not valid.

Here we present a method for simulating DFXM images

based on wavefront propagation combined with a framework

that treats multiple scattering events (known as the dynamical

theory of X-ray diffraction) (Authier, 2001). This method is

able to handle the effects of coherence, dynamical scattering,

aberrations of the objective lens and detector imperfections,

and as such it is a more realistic model of DFXM for near-

perfect crystals than the geometric optics model. This will be

useful for understanding the type of contrast observed in
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DFXM images and can aid in experimental planning and data

analysis.

Furthermore, a number of advanced approaches to DFXM

have been suggested in the literature and tested by various

authors [e.g. magnified topo-tomography (Jakobsen et al.,

2019), confocal Bragg microscopy and tele-ptychography

(Pedersen et al., 2020), Fourier ptychographic DFXM (Carlsen

et al., 2022)]. To date, the theoretical models used in these

examples rely on idealized models of the underlying physics.

Again, a more realistic forward model would be useful for

testing the limits of their applicability.

In this paper we discuss the steps that are required for such

a simulation and present an implementation and some initial

results. We compare simulated and experimental data for a

near-perfect single-crystal diamond containing only one single

stacking fault in the imaged field of view (FOV).

2. Method

Recent developments in DFXM are moving towards studying

the dynamics of isolated defects, such as dislocations, domain

walls and acoustic waves in near-perfect single crystals

(Dresselhaus-Marais et al., 2021; Holstad et al., 2021). Here,

dynamical effects cannot be ignored. In these cases, the

analysis of DFXM data has often relied on the weak beam

approximation, where it is assumed that even highly perfect

crystals scatter approximately kinematically when the sample

is rotated to the tails of the rocking curve. At this position, the

bulk of the crystal does not scatter strongly. Instead, only small

strained volumes near defects and surfaces contribute to the

scattered intensity.

Much has been published on the subject of simulating X-ray

topography images (Taupin, 1964; Authier, 1968; Epelboin &

Soyer, 1985). These methods are applicable in our case, but a

few extra precautions must be taken due to our need for high

quantitative accuracy, and the added complication caused by

the objective lens. There exist useful solutions (Chubar et al.,

2013; Pedersen et al., 2018; Celestre et al., 2020) for simulating

synchrotron sources and X-ray optical components of the

kinds applied in a DFXM instrument with coherent wavefront

methods. A full simulation based on coherent wavefronts is

therefore within reach by combining these established

methods.

In dark-field transmission electron microscopy (DFTEM),

simulating images with dynamical diffraction effects is done

routinely. Although superficially similar to DFXM, the

methods cannot be transferred from one technique to the

other. The most common methods in DFTEM are either

Bloch-wave methods that rely on the column approximation

which cannot be applied to DFXM where the scattering angles

often exceed 10�, or multi-slice methods that require the

atomic structure of the sample to be well sampled, which is not

feasible for DFXM where sample sizes often exceed 100 mm

(Kirkland, 1998).

X-ray topography methods, on the other hand, rely on the

two-beam approximation (Taupin, 1964), which cannot be

applied to electron microscopy where potentially hundreds of

reflections contribute significantly to the images.

Here we apply the formalism of the Takagi–Taupin equa-

tions, which make use of the two-beam approximation to

simplify the scattering problem. This allows us to treat Bragg

scattering in an averaged way, removing the requirement to

over-sample the unit cell. Instead, the sampling is limited by

the divergence of the incident X-rays and the size of features

in the sample. Propagation from the sample to the detector is

handled by established paraxial Fourier optics methods.

We split the simulation flow into five steps as follows:

(i) Beam: calculate the amplitudes of the modulated waves

of the beam incident on the sample.

(ii) Sample: calculate the complex scattering function

throughout the sample crystal.

(iii) Integration: numerically integrate the Takagi–Taupin

equations to get the complex amplitudes of the scattered beam

on the exit surface of the sample.

(iv) Propagation: propagate the scattered complex ampli-

tudes through the imaging optics to the detector.

(v) Detector: interpolate the propagated field to the

detector pixels and account for detector characteristics.

A schematic drawing of the steps and flow of the simulation

is shown in Fig. 1.

2.1. Defining the beam

We work in a paraxial wave-optics formalism and use a

coherent mode decomposition to describe the state of

the X-ray beam at a given plane. This is given by a

number of modes, labeled with p: E(p)(x, y; z), where E

is the amplitude function of a modulated plane wave:

research papers

Acta Cryst. (2022). A78, 482–490 Mads Carlsen et al. � Simulating dark-field X-ray microscopy images 483

Figure 1
Schematic drawing illustrating the different steps of the simulation flow.



E ¼ <½EðrÞ expðik0 � r� i!tÞ� p̂p, where r = (x, y, z) is the

spatial position, k0 is the modes’ wavevector, h- ! is the photon

energy and p̂p is the polarization vector.

If a mode is known on a plane z = 0, then the mode’s

amplitude on another plane can be found by applying a

(linear) coherent wavefront propagator:

EðpÞðx; y; zÞ ¼ P0!z½E
ðpÞðx; y; 0Þ�: ð1Þ

We assume that the radiation is beam-like, i.e. that it has a

limited extent in two dimensions in real space and in all

dimensions in reciprocal space. The reciprocal-space distri-

bution is around a central wavevector k0, which defines the

nominal direction and wavelength of the incident beam.

2.2. Defining the sample

In the Takagi–Taupin (Takagi, 1962, 1969; Taupin, 1964)

approach to X-ray scattering in the two-beam approximation,

the only quantities of interest are the average electric

susceptibility of the crystal, �0, and the two scattering

constants �h and �h that describe the cross section for scat-

tering and back-scattering, respectively. These may be

spatially modified by a displacement field u(r) of the strained

crystal:

�0hðrÞ ¼ exp½�iQ � uðrÞ��h ð2Þ

�0
h
ðrÞ ¼ exp½iQ � uðrÞ��h: ð3Þ

Here Q is the reciprocal-lattice vector of the given reflection

in an undeformed reference lattice. This dependence on the

displacement field explains the high sensitivity to small strains.

�h and �h can often be considered constants, but in samples

with twin boundaries there may be discontinuous jumps in the

values of this function, which explains contrast observed at

presumably strain-free inversion twin domain boundaries in

polar materials (Klapper, 1987).

In this paper we focus on slab-shaped single crystals, i.e.

crystals with two parallel surfaces and infinite size in the

orthogonal directions (see Fig. 2). The normal of the exit

surface is called n̂n.

We utilize a discrete representation of the sample structure

on an orthogonal grid defined by the three directions x̂x, ŷy and

ẑz ¼ n̂n, and corresponding step sizes dx, dy and dz. It is neces-

sary that the surface normal of the crystal slab is parallel to the

ẑz axis, but we make no requirement on the last free rotation.

The number of grid points in each direction will be labeled Nx,

Ny and Nz, giving a total size of the simulated domain of Lx =

dx(Nx � 1), Ly = dy(Ny � 1), L = dz(Nz � 1). L is the thickness

of the simulated crystal slab.

The complex value of these scattering functions needs to be

known with high resolution. For simple test cases, where the

displacement field is given by an analytical expression, this is

not a point of concern. If, however, the displacement field is

generated by a numerical simulation, then it needs to be

computed with sufficient resolution to at least match the

resolution of the experiment (’50 nm) throughout the volume

of the sample. The size of the sample can be up to several

hundred micrometres.

For highly deformed samples, the scattering function

contains a phase factor of the shape exp(iQ � u). In order to

limit the phase variation between adjacent voxels to less than

2�, step sizes must be below |ru|/(2�|Q|), which means small

steps must be used for highly deformed samples. In samples

with nanometre-sized domains or other small structures, all

structural features must be resolved.

2.3. Integrating the Takagi–Taupin equations

Scattering of X-rays by a deformed crystal is treated in the

formalism of the Takagi–Taupin equations (TTEs). In

formulating the TTEs, there is an arbitrary choice of the

vector k0, which leads to slightly different versions of the final

equations. The ones chosen here are referred to as the

symmetrical TTEs (Vartanyants & Robinson, 2001) that arise

when k0 is taken to be the vacuum wavevector of the incident

beam as opposed to the more conventional choice of the

refracted wavevector used in the original publications:

2 k0 � rrrð ÞE
ðpÞ
0 ¼ �ik2�0E

ðpÞ
0 � ik2C�0

h
E
0ðpÞ
h

2 kh � rrrð ÞE
ðpÞ
h ¼ �ik2ð�0 þ �ÞE

ðpÞ
h � ik2C�0hE

ðpÞ
0 ; ð4Þ

where � ¼ 2 sinð2�Þ� is a measure of the misorientation away

from the vacuum Bragg condition, � is the rocking angle and C

is the polarization factor. E
ðpÞ
0 are the modes of the plane-wave

decomposition of the incident beam and EðpÞp are the corre-

sponding modes of the scattered beam, which is given relative

to the wavevector kh = k0 + Q.

The TTEs are typically solved using a finite-difference

integration scheme. A number of different algorithms have

been used in the literature with the pioneering work done by

Taupin (1964), Authier (1968), Epelboin & Soyer (1985). In

this paper we use a novel, more flexible scheme which is

documented by Carlsen & Simons (2021). In contrast to other

established methods, this method is able to operate on an
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Figure 2
Scattering geometry and simulated box in the case where the scattering
plane is normal to ŷy. The two angles �0 and �h fully specify the scattering
geometry in this case.



orthogonal grid representation of the sample structure, which

is achieved by implicitly utilizing Fourier interpolation. This,

however, causes a less efficient use of computer resources.

The geometry of the problem is set by the shape of the

incident beam, the vectors k0 and Q, as well as the choice of a

computational grid. The plane spanned by the two vectors k0

and Q is called the scattering plane.

When the scattering plane is normal to the ŷy axis, the TTEs

decouple into a set of 2D problems that can be solved slice-by-

slice. If we are free to choose the orientation of the compu-

tational grid, we can always choose a geometry where this

becomes the case.

When Q is parallel to the surface of the crystal, we say that

we have a symmetric Laue geometry. In this case we can

choose an orientation of the computational grid where Qjjx̂x,

where the TTEs take a particularly simple form.

In order to solve the TTEs, we impose zero Dirichlet

boundary conditions in the two transverse dimensions, x and y.

These boundary conditions require the sample grid to be large

enough to fit the entire Borrmann triangle extending from

every point where the incident beam amplitude is non-zero.

This is fulfilled if the non-zero part of the amplitude is fully

contained in the rectangle defined by (see Fig. 2)

maxð0;Lk0x=k;Lkhx=kÞ< x<

minðLx;Lx þ Lk0x=k;Lx þ Lkhx=kÞ

maxð0;Lk0y=k;Lkhy=kÞ< y<

minðLy;Ly þ Lk0y=k;Ly þ Lkhy=kÞ; ð5Þ

where Lx, Ly are the lengths of the simulated domain in the x

and y directions, and L is the thickness of the crystal. For a

given incident beam and Q, this sets a minimum on the size of

the simulated domain in the two transverse directions.

With the sample structure and the boundary conditions

given, the TTEs constitute an initial value problem, where the

initial value is the amplitude of the incident X-rays on the z = 0

surface. This can be solved by an appropriate finite-difference

scheme to yield the amplitudes of both the transmitted and

scattered beams on the exit surface z = L.

2.4. Propagating through the optics

In DFXM, the scattered beam at the exit surface of the

sample is imaged onto a detector using an objective lens in a

magnifying geometry. The propagation through the lens is

challenging to simulate due to the inherent thick-lens behavior

of the compound refractive lens (CRL) which is typically used

as the objective lens. For this, we use a computational

approach where each lens in the CRL is treated as a thin lens

and a paraxial FFT (fast Fourier transform) propagator is used

to propagate the wavefront between each lens.

To do this, we make use of a method for propagating

wavefronts with rapidly varying quadratic phases that come

from the transmission function of the lenses that treats the

quadratic component analytically (Ozaktas et al., 1996; Chubar

& Celestre, 2019). To simulate an aberrated CRL, a separate

aberration function is included at each lenslet in the CRL.

These methods have previously been used to model thick

CRLs like the one used in this study (Pedersen et al., 2018;

Celestre et al., 2020).

It is useful to introduce a new optical axis (ẑzi) aligned with

the average wavevector of the scattered beam, kh. To bridge

the gap between these two coordinate systems, we project the

values from the exit surface of the crystal to the z = 0 plane of

the new coordinate system.

The inherent near-field nature of the imaging geometry,

which is determined by the fact that the FOV is as large as the

aperture of the objective lens, is handled by first multiplying

the field with the near-field phase factors:

�n:f: ¼ exp
i�ðx2

i þ y2
i Þ

�d1

� �
: ð6Þ

The need to over-sample this function can effectively limit the

size of the FOV that is possible to simulate for a given pixel

size.

2.5. Detector characteristics

With the mode amplitudes on the detector plane given, we

now need to interpolate these values to the detector pixels and

incoherently sum over the modes of the incident beam.

If the purpose of the simulation is to estimate the resolution

or to create a data set to be used to test the data analysis

procedures, one should remember to include non-ideal

behavior introduced at the detector. The most important

effects are the incoherent point spread of the detector,

background signal, counting noise and non-linear response.

The detector used here is an indirect detector composed of

a scintillator crystal (25 mm-thick gadolinium gallium garnet),

optical microscope (Mitutoyu M Plan Apo 10�, NA = 0.28

and tube lens) and pco.edge 5.5 sCMOS camera with pixel size

6.5 mm. Contributions to the incoherent point spread function

arise from the diffraction limit due to the finite NA of the

optical microscope, the finite thickness of the scintillator

(especially when it is larger than the depth-of-focus of the

optical microscope), scattering within the scintillator and the

optical microscope, and aberrations.

Counting statistics/readout noise can be the critical factor

when imaging small grains or weak reflections. The non-linear

response (saturation) might be quite important for perfect

crystals, as the images have interesting features over a very

large dynamic range.

3. Comparison with experiment

To test our approach, we simulate a section-topography-type

experiment with a near-perfect single-crystal diamond slab of

thickness 300 mm containing a single stacking-fault defect. The

sample is imaged in a symmetric Laue geometry in a {111}

reflection with [110] entrance and exit surfaces.

The investigated defect is a stacking fault, which arises by

the addition or removal of a single close-packed plane of

atoms in the face-centered cubic (f.c.c.) parent lattice of the

diamond. The fault vector is of the family bs:f: ¼ ð1=3Þh111i
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which is not a translational symmetry of the f.c.c. lattice. These

planar defects are bounded by the surfaces of the crystal and

Frank-type partial dislocations (Frank, 1951; Kowalski et al.,

1989). In the described experiment, the edges of this defect lie

outside the Borrmann triangle and the effects of the strain

originating at the edges can be ignored. This allows us to treat

the stacking fault as an infinite planar defect [on one side u(r)

= 0, on the other u(r) = bs.f.]. In the Takagi–Taupin description,

the stacking fault thus becomes a discrete jump in the phase of

the scattering function of magnitude 2�[hk‘] � bs.f. = �2/3�
when imaged using a [111] reflection not orthogonal to the

stacking-fault normal (Klapper, 1987). A sketch of the sample

geometry is shown in Fig. 3.

This constitutes a good test sample, as the defect (aside

from the 12 possible orientations of the defect) only has a

single continuous degree of freedom: the position of the

stacking fault along the normal. Furthermore, diamond is one

of a few materials where macroscopic crystals with very low

defect density are available. Provided our method captures all

the relevant physics, we should therefore be able to perfectly

recreate the experimental data.

The dynamical scattering patterns produced by isolated

stacking faults in diamonds have previously been studied in

detail by classical X-ray topography (Kowalski et al., 1989).

Experiments were carried out at the ESRF dark-field X-ray

microscopy beamline, ID06-HXM (Kutsal et al., 2019), after

the EBS (Extremely Brilliant Source) upgrade. A Si(111)

Bragg–Bragg double-crystal monochromator selected X-rays

with photon energy 17 keV from the undulator source. The

spot size of the beam on the condenser lens is limited by a slit

in the vertical direction to 0.2 mm. Based on parameters of the

X-ray source given by the ESRF, we estimate a vertical

coherence length of 340 mm at the distance of 50 m from the

source to the condenser lens, which is significantly larger than

the aperture of the condenser lens. The horizontal coherence

length is estimated to be 40 mm, which is smaller than the FOV

but much larger than the extent of the coherent point spread

function of the objective lens. The objective lens consists of 70

individual biconcave Be lenses of apex curvature 50 mm. The

CRL is further modified with a 100 mm square aperture after

the last lens

To describe the incident X-rays, we use only one coherent

mode for each wavelength and 41 different wavelengths

covering a relative energy spread of 6 � 10�4 in total. For each

energy component, the amplitude at the sample position is the

Fourier transform of the complex transmission function of an

aberration-free 1D condenser lens with a Gaussian-shaped

absorbing aperture and a hard cut-off at 140 mrad. Conse-

quently, the angular spectrum in the transverse direction is a

top-hat profile with a small Gaussian smoothing at the edges,

whereas the spatial profile is a diffraction-limited focal spot

with some ringing due to the hard cut-off (see Fig. 4). We omit

the use of several transverse mutually incoherent modes. The

effects of including these would be small, since the effective

source size is small compared with the NA of the objective

lens.

In the experimental realization we make the observations in

a laboratory frame defined by x̂xlab, ŷylab and ẑzlab, where ẑz is

parallel to k0. In this experiment the scattering is vertical in the

laboratory frame, meaning that ŷylab is normal to the scattering

plane. We choose the integration grid such that ŷy ¼ ŷylab.

The simulation used a grid of 2048 � 2048 � 3001 points

with step sizes of 60, 60 and 100 nm, respectively. This matches

the 300 mm thickness of the sample and the ’100 mm FOV in

the y direction. The large size in the x direction was necessary

to satisfy the constraints of equation (5). Step sizes in x and y

directions are chosen to be larger than the resolution of the

final images, and the step size in z is chosen such that the

integration error of the finite-difference scheme is lower than

the noise level of the final images. The execution time is

dominated by the integration of the TTEs, which took 3.5 h

per energy point running on a single core. The simulation was

parallelized over the modes.

The computation time was dominated by the integration of

the TTEs, which involved ’10 000 1D Fourier transforms of

the 2048 � 2048 arrays used in this example compared with

just ’150 2D Fourier transforms for the simulation of the

optics. The use of computer resources scales linearly with the

number of modes, so if a transversely incoherent model was to

be used, the needed resources would increase by a factor of

the number of modes. In the study presented here computa-
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Figure 3
(a) 3D sketch of the simulated geometry where the blue sheet represents
the incident/transmitted X-ray beam, the red represents the scattered
rays and the yellow plane represents the stacking fault. (b) 2D slice of the
simulated geometry showing the same features as (a) with definitions of
useful angles and distances.

Figure 4
Vertical profile in (a) reciprocal and (b) real space of the beam used in the
simulation of this paper.



tion time was not an issue, but if high-throughput simulation

was needed, large performance gains could likely be achieved

by applying a more efficient algorithm for the integration of

the TTEs (Epelboin & Soyer, 1985). The integration of the

TTEs can also be parallelized into separate 2D problems for

each vertical slice of the sample and should easily scale with

available computer resources. If the thick-lens effects are not

critically important, the CRL may well be approximated by a

single convolution step (Pedersen et al., 2018). Furthermore,

the large number of energy modes used in this example was

only necessary to ensure proper sampling of the high-

frequency features used as lens aberration and avoid aliasing

problems in Fig. 9. If these are not important, a much smaller

number of energy points would be sufficient.

3.1. Near-field measurements

The microscope used for the experiment provides the

possibility to additionally carry out traditional X-ray topo-

graphy by placing a detector closely behind the sample

(40 mm in the examples shown here) without using the

objective lens. This is useful for alignment and for low-

resolution characterization of the sample.

For a single coherent mode [Fig. 5(b)] this propagation

distance causes recognizable Fresnel-diffraction fringes

around sharp features in the scattered field. In a poly-

chromatic simulation [Fig. 5(c)], these fringes are blurred out.

The difference in wavelength (which causes a small difference

in the free-space propagator) is not sufficient to explain this

blurring. Rather, the broadening is caused by the slight

difference in scattering angle of the different energy compo-

nents in the incident beam [Fig. 5(d)]. The features in the

simulated image, however, are not as wide as in the measured

data [Fig. 5(a)]. This is likely explained by the incoherent point

spread of the detector.

The vertical divergence of the condensed line beam is large

compared with the intrinsic width of the dynamical rocking

curve of the diamond sample. The crystal therefore acts as an

analyzer when rocked in the condensed line beam (see Fig. 6).

The width of the rocking curve is largely determined by the

divergence of the incident beam, but the finite-energy band-

width blurs the sharp cut-off caused by the condenser lens’

physical aperture. The asymmetry of the measured rocking

curve [Fig. 6(c)] reveals a misalignment of the condenser

lens.

High-frequency defects in the condenser lens are visible in

the spatially resolved rocking curve of perfect parts of the

crystal [see Fig. 6(b)] as vertical stripes. The stripes are blurred

along the rocking-angle direction due to the finite bandwidth

of the incident X-rays – an effect which is confirmed by the

simulations shown in Fig. 6(a).

When the crystal is rocked, a different part of the spectrum

of the incident beam will be in the Bragg condition and

therefore the sample will scatter in slightly different directions

as a function of the rocking angle � [sketched in Fig. 6(d)].

Due to the finite propagation distance from the sample to the

detector, this change in angle translates to a change in position

of the measured image. This mix of position and angular

information, which is avoided by the use of an objective lens, is

unavoidable in X-ray topography methods due to the finite

propagation length, but it is exaggerated in this study due to

the relatively large propagation distance and large vertical

divergence compared with more usual topography experi-

ments.

3.2. DFXM images

To simulate the DFXM images, we use a model of an ideal

CRL. The physical aperture of the CRL is defined by a

0.1 � 0.1 mm square absorbing slit placed at the exit of the

lens. The only fitted parameters for the whole simulation are

the relative positions of the sample, lens and detector as well

as the noise level of the detector. The intensity of the simu-

lated images is scaled to match the intensity of the measured

images. The same scaling parameter is used for all images. The

experimental images are overexposed (saturated) at the direct

image of the stacking fault; therefore we here choose a color

map that clips the highest intensities in the simulated images.

As can be seen in Fig. 7, the DFXM simulation qualitatively

recreates the features of the experimental images. However,

there are a number of deviations:
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Figure 5
X-ray section topography of the single diamond (110) sample containing
a single stacking-fault defect in the imaged volume, imaged at a
propagation distance of 40 mm. (a) Experimental image, (b) simulated
image with one coherent mode, (c) polychromatic simulated image. The
dotted white lines in (a)–(c) mark the edge of the Borrmann triangle. (d)
Sketch of the scattering geometry in reciprocal space in the laboratory
frame. The incident beam consists of a continuum of rays of different k0

vectors (blue rectangle); due to the divergence and finite bandwidth of
the incident beam, this smears out the Ewald’s sphere to a shell. For a
given rotation of the crystal only points on the dotted line (the bisection
of the Q vector) satisfy the Bragg condition. Different energy
components scatter at slightly different angles.



(i) We underestimate the magnification of the imaging setup

by about 5%, which leads to an incorrect scaling of the images.

This is most likely due to a small deviation of the apex radius

of curvature from the nominal value of 50 mm in the individual

lenses of the CRL used as objective lens.

(ii) The simulated images contain a smaller number of

Borrmann fringes (the horizontal stripe features) than the

measured data. We attribute this to the known high sensitivity

of the spacing of Borrmann fringes to small macroscopic strain

gradients (Rodriguez-Fernandez et al., 2021). Alterntively, a

slight miscalibration of the photon energy or sample thickness

could also lead to this difference.

(iii) The simulated images have a regular pattern of vertical

streaks close to the right-hand side of the images. These are

due to Fresnel diffraction from the hard edge of the square

aperture in the objective lens. This is likely an artifact of the

assumption of perfect transverse coherence in the horizontal

direction or of the perfectly sharp edges of the aperture that

are somewhat jagged in practice.

(iv) The measured images contain noise with the appear-

ance of vertical streaks and speckle-like features close to the

brightest features. This can be explained either by the aber-

rations in the condenser lens or in the objective lens, as will be

discussed later.

In Figs. 7(c), 7(d) we simulate an

image where the objective lens is

displaced from the center of the scat-

tered beam such that rays that are

specularly reflected fall outside the

aperture of the objective lens in the

bottom part of the displayed ROI

(region of interest). In that region, only

diffusely scattered X-rays will contri-

bute to the image. This results in

the disappearance of the dynamical

features, while the direct image of the

stacking fault can still be seen. In visible

light microscopy, this is referred to as

‘dark-field contrast’.

In the geometric optics treatment,

weak beam contrast is explained by the

presence of small regions where the

lattice is strained and rotated away from

the average lattice. In these regions,

rays are scattered if they satisfy the

exact Bragg condition for the deformed

lattice. A stacking fault is in principle a

perfectly sharp defect with no spatial

extent so no such region exists. The

appearance of weak beam contrast

therefore illustrates the inability of the

geometric model to handle diffraction

effects that are important when

describing scattering from small struc-

tures with a characteristic size on the

order of the wavelength or smaller.
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Figure 6
(a) Simulated spatially resolved rocking curve of a slice of the diamond crystal away from the
stacking fault using an aberrated model of the condenser lens. (b) Measured spatially resolved
rocking curve of a slice of the diamond crystal away from the stacking fault. (c) Measured and
simulated spatially integrated rocking curves of a diamond single crystal in the region containing a
single stacking fault. (d) Sketch of the scattering geometry in reciprocal space in the laboratory
frame. The incident beam consists of a continuum of rays of different k0 vectors (blue rectangle);
due to the divergence and finite bandwidth of the incident beam, this smears out the Ewald’s sphere
to a shell. For a given rotation of the crystal only points on the dotted line (the bisection of the Q
vector) satisfy the Bragg condition. When the crystal is rotated by an angle � (thereby rotating Q
into Q0), this line is moved and a different part of the incident spectrum satisfies the Bragg condition.
This leads to scattering in a different direction in the laboratory frame (comparing red and pink
arrows).

Figure 7
Measured (a), (c) and simulated (b), (d) DFXM images of a stacking-fault
defect in a diamond single crystal. (a), (b) show images where the
objective lens is placed in the center of the diffracted beam. (c), (d) show
images where the lens is displaced from the diffracted beam leaving the
bottom half of the FOV in the dark field. The dotted white line marks the
edge of the Borrmann triangle.



Since the stacking fault is thought to be a perfectly sharp

defect, the width of the image of this defect can serve as a

rough estimate of the resolution of the instrument. The

stacking fault is a 2D feature, and therefore the width of the

image is not only determined by the resolution of the imaging

optics, but also by the projection of the part of the stacking

fault illuminated by the sheet beam along the scattered beam

direction.

In Fig. 8 (inset) we compare the width of this feature in the

experimental images with that in the simulated images. We see

that the polychromaticity does not contribute significantly to

the width of the feature in the simulations. Previous studies of

the chromatic aberrations in CRLs, using the same computa-

tional approach as we apply here, also find that the chromatic

aberration only adds a small part to the point spread of the

imaging optics (Pedersen et al., 2018).

The experimental image has an FWHM of 1.3 mm, about

0.5 mm wider in the demagnified sample plane coordinates

than that predicted by the simulations. We believe that the

resolution of the experiment is degraded by aberrations in the

CRL lenses.

3.3. Aberrated lenses

So far, we have ignored the effect of the aberrations in the

lenses. In transmission images (Lyatun et al., 2020) and Bragg

images taken without the condenser lens, short-wavelength

aberrations are known to cause strong speckle-like noise in

the final images. The apparent absence of this noise in DFXM

images is surprising at first. However, as previously observed,

this noise is averaged out when the imaged field is only

partially coherent (Falch et al., 2019; Carlsen et al., 2022).

Normally we think of the dynamically scattered X-rays as

highly coherent as the Bragg scattering effectively collimates

the incident radiation, but this argument does not consider the

polychromaticity of the incident radiation.

While CRLs have been shown to be nearly achromatic over

the bandwidth of the monochromated beam (Pedersen et al.,

2018), Bragg scattering is not: a higher-energy component of

the incident beam scatters at a smaller angle and vice versa, as

sketched in Fig. 5(d). Since the incident beam has a large

vertical divergence (compared with both the energy band-

width and the Darwin width) set by the aperture of the

condenser lens, the integration over energies corresponds to

integrating over a small spread of angles of the scattered

beam. This integration averages out the high-frequency parts

of the aberrations in the vertical direction, leaving features

elongated in the vertical direction. A relative energy spread

of 1.0 � 10�4 corresponds to an angular difference of

1.0 � 10�4 rad � tan � which gives 8 mm at the lens plane –

comparable with the average grain size (15 mm) of the O30H-

grade beryllium (Lyatun et al., 2020) used in our CRL.

This effect is demonstrated in Figs. 9(a), 9(b), where an

aberrated lens is constructed by multiplying the wavefront by

an aberration function at the position of the first lens and the

last lens in the CRL. The aberration functions used here are

pure phase objects and are made by randomly placing a

number of circles of random size. The amplitude and number

of circles are chosen to make the simulated and measured

images similar. The partially averaged speckle noise has the

appearance of vertical stripes and is qualitatively similar to

that observed in the real images [Fig. 7(a)]. In a typical

experiment, we do not acquire sufficient data to uniquely

determine the aberrations, but an effective aberration func-

tion can be recovered using Fourier ptychography (Carlsen et

al., 2022). The qualitative similarity between simulated and

measured images confirms that the vertical stripe artifacts

seen in DFXM images of highly perfect crystals can be
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Figure 9
(a) Monochromatic and (b) polychromatic simulation using an aberrated
objective lens. (c) Monochromatic and (d) polychromatic simulation
using an aberrated condenser lens. The scale bar refers to distances on the
detector.

Figure 8
Comparison of the width of the dark-field image of the stacking fault as
seen in Figs. 7(c), 7(d). The x axis refers to distances in the sample plane
coordinates.



explained by high-frequency errors in the objective lens, which

we know to be present.

In Figs. 9(c), 9(d) we investigate the effect of similar aber-

rations, to those used in the objective lens, in the condenser

lens. Once again, averaging over the energy bandwidth

significantly reduces the strength of the noise and results in

vertical stripes. In this case the stripes are unbroken and can

be followed from the top to the bottom of the image, in

contrast to the noise observed in the real images and with an

aberrated objective lens.

4. Conclusion

DFXM is based on well known physics and we can predict the

images it will produce – if we know the structure of the sample.

It is possible to simulate the full FOV of the prototypical

DFXM instrument at ID06-HXM at the ESRF.

Comparison of our simulations and experimental findings

from a near-perfect single-crystal diamond suggests that most

deviations between our simulations and the observed images

can be explained by non-ideal behavior of the lenses. This

suggests that the performance of DFXM instruments is criti-

cally limited by the quality of the objective lens.

In general, we do not have a sufficiently accurate model of

the sample structure to do full simulations of the DFXM

experiment, and the data collected in a typical experiment are

not enough to build a full 3D model of the sample at suffi-

ciently high resolution. Nevertheless, simulations like the ones

shown here should prove useful for evaluating possible

upgrades of the instrumentation and to qualitatively study the

type of contrast observed from different types of defects in

near-perfect single crystals, such as isolated dislocations, twin

boundaries and point defects.

More deformed crystals are difficult to simulate, both

because models of the displacement field in such crystals are

not easily obtainable and because the large strain would

require impractical, small step sizes to ensure proper sampling

of the scattering function. In these samples, dynamical

diffraction effects are not thought to be important and the

speckle-like noise due to lens aberrations should also be less

strong, as the scattering is more diffuse. So a wavefront-based

simulation approach is less appropriate in this type of sample.

It may however be interesting to investigate the transition

from the dynamical patterns from near-perfect crystallites to

kinematical scattering from deformed crystals using our new

approach.
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