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Abstract: Rearranged during transfection (RET) is an oncogenic driver receptor that is overexpressed
in several cancer types, including non-small cell lung cancer. To date, only multiple kinase inhibitors
are widely used to treat RET-positive cancer patients. These inhibitors exhibit high toxicity, less effi-
cacy, and specificity against RET. The development of drug-resistant mutations in RET protein further
deteriorates this situation. Hence, in the present study, we aimed to design novel drug-like com-
pounds using a fragment-based drug designing strategy to overcome these issues. About 18 known
inhibitors from diverse chemical classes were fragmented and bred to form novel compounds against
RET proteins. The inhibitory activity of the resultant 115 hybrid molecules was evaluated using
molecular docking and RF-Score analysis. The binding free energy and chemical reactivity of the
compounds were computed using MM-GBSA and density functional theory analysis, respectively.
The results from our study revealed that the developed hybrid molecules except for LF21 and LF27
showed higher reactivity and stability than Pralsetinib. Ultimately, the process resulted in three
hybrid molecules namely LF1, LF2, and LF88 having potent inhibitory activity against RET proteins.
The scrutinized molecules were then subjected to molecular dynamics simulation for 200 ns and
MM-PBSA analysis to eliminate a false positive design. The results from our analysis hypothesized
that the designed compounds exhibited significant inhibitory activity against multiple RET variants.
Thus, these could be considered as potential leads for further experimental studies.

Keywords: RET protein; docking; RF-Score; molecular dynamics; DFT calculations

1. Introduction

Cancer is a worldwide life-threatening concern that is characterized by uncontrolled
and progressive cellular divisions. It is the largest cause of mortality in the world, with
15 million new cases and 8.2 million deaths per year [1]. Among them, lung cancer is the
most frequently occurring cancer with a high mortality rate of about 21% in men and 15%
in women. The incidence of lung cancer is highly prevalent in Eastern and Western Asia,
parts of Europe, and Northern America. Despite the advancements in primary lung cancer
treatment technology, it still accounts for 1.3 million deaths globally in 2020 [2].

Rearranged during transfection (RET), an independent oncogenic driver belonging to
the tyrosine kinase receptor family, is responsible for renal morphogenesis, the maintenance
of spermatogonial stem cells, and the development of neuroendocrine neural tissues. The
RET receptor consists of an intercellular domain, a transmembrane, and an extracellular
region. The activation of RET protein involves the formation of ternary complexes with glial
cell line-derived neurotrophic factors and its co-receptors, autophosphorylation of tyrosine
kinase domain of RET, and finally resulting in the activation of downstream pathways
that are implied in cell growth, differentiation, and proliferation [3]. Recently, genetic
alterations of RET have been identified in diverse cancer types [4]. Among the specified
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types, medullary thyroid cancer, and non-small cell lung cancer (NSCLC) patients have
been reported to contain a high frequency of RET mutations.

Furthermore, the gatekeeper mutation (V804M and V804L), solvent front (G810A,
G810R, H810S and G810C), and other mutations including S904F, Y806C, Y806N, and
V738A were observed to be the key factors for disease burden in NSCLC [5]. Adding
together, RET fusion is observed in 1–2% of young non-smoking NSCLC individuals
with a high risk of metastasis in the brain. For instance, the RET protein was found to
be overexpressed on fusion with other kinases such as coiled-coil domain-containing-6
(CCDC6) and kinesin family 5B (KIF5B) [6].

Several multiple kinase inhibitors (vandetanib, cabozantinib, RXDX-105, and levan-
tinib) and RET-specific inhibitors (pralsetinib and selpercatinib) with modest inhibitory
activity have been developed for the treatment of RET-positive lung cancer patients. In
spite of the dose-limiting off-target effect and response durability, the solvent front and
gatekeeper mutations cause resistance to the majority of existing inhibitors [7–10]. In
addition, Drusbosky et al. has recently reported that immunotherapy has a limited effect on
patients with RET fusions [6]. Hence, developing novel drug candidates as RET inhibitors
is crucial for better patient care.

Currently, drug development relies mainly on large-scale screening of chemical li-
braries against various biological targets. Among them, high-throughput screening (HTS)
strategies have been found to have significant advancements [11]. For instance, Parate
et al. and her research group investigated natural compounds using pharmacophore-based
virtual screening approach to identify potent RET inhibitors for cancer therapeutics [12].
Similarly, a 3D-QSAR study was carried out by Pathak et al. and his team to establish
the affinity of 1,3,5-triazine derivatives as cancer inhibitors against RET receptors [13].
Although HTS have successful applications in drug discovery, it has some limitations
including a low hit rate and limited coverage of chemical space [11]. Hence, computational
fragment-based drug designing (FBDD) has become a powerful and important technique
for optimizing and discovering novel drug leads.

The complete exploration of the protein’s active site in this strategy results in an
easy binding of fragments than the large molecules that were identified through the HTS
process. Moreover, the fragment-based libraries achieve a higher success rate than the
conventional HTS method, owing to its higher binding affinity towards the protein [14].
Thus, a fragment-based drug design strategy has been popular in recent years to develop
novel and potent inhibitors against the target proteins [15,16]. For instance, a FBDD study
by Ahmad and his research group proposed three hit molecules against SARS-CoV-2
main protease receptor for the treatment of COVID patients. Similarly, five drug-like
candidates were identified using an FBDD technique for treating breast cancer patients
by targeting DNA methyltransferase protein [17]. In light of these findings, we propose
a hierarchical workflow of computational fragment-based drug designing, the binding
free energy calculations, and dynamic simulation approaches for designing molecules
against RET proteins. Moreover, no study has been reported to date to identify drug-
like molecules using a computational fragment-based drug designing strategy against
RET proteins. Therefore, we believe that this fragment-tailoring strategy will provide
highly potent drug-like candidates against RET oncogenic drivers for the treatment of
NSCLC patients.

2. Materials and Methods
2.1. Dataset Preparation

A library of 18 compounds with experimental anti-RET activity ranging between
0.4 nM and 200 nM were manually compiled from the literature [18,19]. The list of com-
pounds, class of compounds, and their corresponding inhibitory activity are reported in
Supplementary Materials Table S1. The existing 18 RET inhibitors were manually compiled
from the literature. The selected molecules cover diverse chemical classes namely ben-
zenoids, diazinanes, indoles, organooxygen, pyrazoles, pyridines, and quinolones. Indeed,
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the diversity of the selected compounds is likely to be useful in order to generate a broad
spectrum of breed molecules [20]. The 3D spatial data file of these compounds was retrieved
from the PubChem library [21]. Subsequently, the LigPrep module of Schrödinger was em-
ployed for refining the ligand library, such as the inclusion of hydrogen bonds, generation
of stereoisomers, and the identification of ionization state. The 3D crystal structure of the
RET protein with 2.5Å resolution (PDB ID: 2IVU) were obtained from Protein Data Bank
mainly due to the existence of phosphorylated wild type RET kinase domain bound with
the existing MKI vandetanib. Note that the A-loop phosphorylated basal state of tyrosine
kinase domain stimulates high catalytic activity by regulating cis-autoinhibition. On the
contrary, the non-phosphorylated state results in interference of the A-loop conformation
with the substrate binding sites. This depicts that a study using phosphorylated RET kinase
domain would provide the results with high precision [22]. Thus, we selected the RET
protein (PDB Code: 2IVU) for our investigation.

The protein preparation wizard was employed to prepare the RET receptor by elimi-
nating impurities and water molecules, including ionization and hydrogen bonds in the
protein structure [23]. Finally, the refined ligand library and the target protein molecule
were optimized using the OPLS_2005 force field [24]. The pralsetinib was considered as a
control for our analysis as it is an only RET-specific inhibitor that is approved by the Food
and Drug Administration (FDA) in the recent time [25,26].

2.2. Fragment Tailoring Strategy

This approach works on the principle that merging distinct fragments will result in a
new molecule with a binding affinity equal to the sum of each fragment’s specific interac-
tions [16]. A fragment tailoring process was performed with the retrieved known inhibitors
of RET using the Schrödinger suite. This process involves the fragmentation of ligand
molecules into smaller pieces and the sequential combining of these into novel chemical
moieties. The fragmentation of ligand molecules was carried out using fragment.py coding
script that was obtained from the Maestro interface. The hybrid molecules were then
generated by identifying the overlapping bonds and swapping either side of the fragments.
The default parameters such as: (i) the maximum atom-atom distance was 1 Å and (ii) the
maximum angle was 15 degrees were considered during breeding process [24]. The overall
hybrid molecule or linked fragment (LF) generation process was carried out using the
‘BREED’ facility provided by the Schrödinger suite.

2.3. Hybrid Molecule Screening upon RET Target

The refined PDB structure of RET was considered directly for the generation of the
receptor grid. In the present study, the scaling factor was fixed as 1.0 and the partial
charge cut off was set to 0.25 to soften the non-polar parts of the protein using the Receptor
Grid Generation module that is available in the Schrödinger suite. The centroid of the
interaction grids was defined by considering the bound ligand molecule. Towards the
end, extra precision docking of all the hybrid molecules was performed using the Glide
module of the Schrödinger suite. The symmetry-corrected RMSD of the docked posed to
its respective input ligand structures were also noted using the “Compute RMSD to input
ligand geometries” option that is available during extra precision docking [27].

2.4. Rescoring Validation of Hybrid Molecules

Random forest (RF) score is a machine learning-based rescoring strategy that is widely
used to validate the ligand and the protein interaction. A folder containing the PDB
structure of protein and the ligands serves as input for the rescoring process. This approach
employs a random forest algorithm to calculate the RF score based on the atomic distance
(less than 12 Å) in the protein-ligand complex. The higher value of the RF score indicates
the stronger binding affinity of a ligand towards the protein and vice versa [28]. In the
current investigation, the RF score of each protein-ligand complex was generated using RF-
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Score-VS 1.0 python script that is available at https://github.com/oddt/rfscorevs (accessed
on 26 January 2022).

2.5. Binding Free Energy Analysis

With the aim of further exploring the interaction of protein-ligand complexes, the
binding free energy and the ligand strain energy were calculated using Prime Molecular
Mechanics—Generalized Born Model and Solvent Accessibility (MM-GBSA) of Schrödinger.
This simulation process employs contributions from rotamer search algorithms, OPLS_2005
force field and VSGB solvent model [29]. The binding free energy was estimated in kcal/mol
using the below equation:

∆Gbind = Ecomplex − ERET − Eligand (1)

where ∆Gbind is the binding free energy, Ecomplex represents the energy of the complex
system, and ERET and Eligand denotes the energy of the protein and unbound ligand,
respectively.

2.6. HOMO—LUMO Theory

Density functional theory (DFT) analysis was performed to assess the electron trans-
port potential and the electronic properties of the lead molecules. The calculations were
performed by using the Jaguar module of Schrödinger. The frontier molecular orbitals in-
cluding the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) of the ligands were calculated to provide extensive information on electron
density clouds. The energy gap was calculated using the estimated HOMO—LUMO values
to determine the anti-cancer reactivity of the compounds towards the RET protein. The
decreased energy gap of lead compounds demonstrates the better anti-cancer property
of the compound and vice-versa [30]. Similarly, the ionization potential (IP) and electron
affinity (EA) of the selected compounds were determined during the analysis. The other
global descriptors hardness (η), softness (S) and chemical potential (χ, −µ) were calculated
using the below equations to determine the reactivity and stability of the compound [31,32]:

Hardness (η) =
IP − EA

2
(2)

Softness (S) =
1
η

(3)

Chemical Potential (χ) = −µ = − IP + EA
2

(4)

2.7. Drug Likeness and Toxicity Analysis

In the present study, the QikProp module of Schrödinger was implemented to assess
the pharmaceutically relevant pharmacokinetic, physiological, and physiochemical prop-
erties of the compound including the number of hydrogen bond donors, hydrogen bond
acceptors, the predicted octanol or water partition coefficient, the predicted aqueous solu-
bility, the solvent-surface accessibility area, and the blood-brain partition coefficient [33].
In addition, the toxicity profile of the compounds was computationally predicted using
ProTox-II software.

2.8. Stability and Flexibility Assessment of Hybrid Molecules

Molecular dynamics (MD) simulations of naïve RET proteins and RET-ligand com-
plexes were performed using GROMACS 2018 tool to evaluate the stability and flexibility of
complexes in a precise bilayer and hydration environment. We used the GROMOS96 43a1
force field on an NVIDIA DGX workstation for this purpose. A PRODRG server was used
to generate the ligand topology files. The prepared protein-ligand complexes were solvated
in a dodecahedron box with a volume of 7.66 nm3. The box was configured with simple

https://github.com/oddt/rfscorevs
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point charge waters and eight chlorine counter ions to neutralize the total system charge.
Subsequently, the energy of the complex system was minimized by removing the weak Van
der Waal linkages using the Steepest Descent algorithm. Simultaneously, the electrostatic
and hydrogen bonds were constrained using the Particle-Mesh Ewald methods and LINCS
algorithm. Initially, the position of the complex was restrained using the constant NVT
(number of particles, volume, and temperature) phase of equilibration with each step of
2 fs. Later, the system was equilibrated using the NPT phase (constant particle, volume,
and temperature) at 300 K with the pressure of 1 bar and lapsing time of 0.1 ps using the
Berendsen temperature coupling method. The final simulation step of apo-protein and
protein-ligand complex was carried for 200 ns [34,35]. The trajectory of the final step was
saved for each 2 fs. The results of the simulation were evaluated using root mean square
deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bond linkages, and the
free energy landscape using GROMACS utilities.

2.9. Compound Reactivity Analysis Using PaccMann and MM-PBSA Analysis

Despite the huge investments that are made for drug development against cancer, it
has been reported that 97% of the drug-like molecules have failed in clinical trials due to
low target efficacy and off-target toxicities. Hence, a prediction of the compounds activity
with high accuracy has become essential. In the current investigation, the sensitivity of
the compounds was evaluated using a multimodal neural network-based tool named
‘PaccMann’. This tool utilizes the key pillar information of the compounds such as SMILES
sequence, prior information on the intracellular interactions, and gene expression profiles
of tumors to predict the sensitivity of compounds against various cancer cell lines with
high accuracy [36].

In essence, the empirical binding free energies between the target RET receptor and
the hybrid molecules was calculated with the aid of equilibrated trajectory information
through molecular mechanics energies that were combined with the Poisson–Boltzmann
and surface area continuum solvation (MM-PBSA) strategy [37]. It is important to note that
MM-PBSA protocols achieved reasonable correlation with experimental affinities at a much
lower computational cost than the other available methods.

2.10. Synergism Analysis of Parent Compounds

In order to analyse the synergistic effect of the parent compounds, the simultaneous
docking of two compounds against the RET protein was performed using AutoDock
4.2.6. The protein was prepared by adding the hydrogen bonds and Kollman charges.
On the other hand, the ligands were prepared by expanding the torsions root and by
assigning Gasteiger charges. The prepared molecules were saved in PDBQT format for
further analysis. The induced-fit docking of the lead and the reference compounds were
performed by setting the grid for the entire macromolecule. Later, the synergistic effect
of the compounds against the RET protein was analyzed using a sequential docking
procedure with a default centre grid box of x centre = 0.251, y centre = 0.587, and z
centre = −1.361, respectively. The binding score of the docked complexes was calculated
using the Lamarckian Genetic algorithm [38].

3. Results and Discussion
3.1. Fragments Tailoring and Docking Analysis

Fragment-based drug designing plays a vital role in the pharmaceutical industry
in the identification of novel drug-like molecules with less molecular weight and high
chemically diversity in nature [39]. Here, 335 fragments were generated from the 18 known
inhibitors of RET for our investigation. These fragments were conjugated using the BREED
module of Schrödinger that yielded 115 hybrid molecules. Further, the generated hybrid
compounds were subjected to extra precision docking with pralsetinib as the reference
molecule. This screening strategy yielded a total of 37 compounds with better binding
affinity than pralsetinib (−7.79 kcal/mol). Subsequently, the symmetry-corrected RMSD of
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the docked poses to its respective input ligand structures was investigated using the Glide
module of Schrödinger. It is evident from the literature that the heavy-atom RMSD of the
docked poses is considered as a docking success if the pose RMSD is less than 2.0 Å from
the input ligand structures [40]. In the present investigation, the RMSD value of the hybrid
molecules ranged between 0.218 Å and 10.779 Å, respectively. About 68 out of 115 hybrid
molecules were found to have an RMSD value that was less than 2.0 Å. It is to be noted
that all the compounds with better binding affinity also showed a satisfactory RMSD value
depicting the successful docking pose of the designed ligand against the RET protein.

3.2. Rescoring with Machine Learning Algorithm

The RF score is a novel machine learning-based strategy that is widely used to re-score
the binding affinity between the protein and the ligand molecule [34]. Although the RF
scoring method is less precise on physiochemical features, it transcended the existing
conventional scoring system to determine the binding affinity [41]. Thus, in the present
study, the RF-scoring system was employed to rescore all the hybrid compounds that were
obtained during the breeding process. The results indicate that 82 out of 115 compounds
have a higher score than pralsetinib (RF score = 5.962). The docking and ML results are
integrated to identify highly effective compounds and eliminate the false positive designs.
Overall, 23 compounds possess both better binding energy and RF score than pralsetinib.
The results are presented in Table 1.

Table 1. The drug-likeliness and binding affinity analysis of the RET-linked fragment complexes
using docking and machine learning strategies.

S. No. Control and
Linked Fragments Stars XP gScore

(kcal/mol)
RMSD

Å RF-Score

1 Pralsetinib 0 −7.79 6.440 5.962
2 LF1 0 −8.2 0.257 6.334
3 LF2 0 −8.885 0.558 6.108
4 LF3 0 −11.039 0.535 6.397
5 LF4 0 −9.505 1.437 5.967
6 LF5 0 −7.817 0.717 5.968
7 LF6 0 −7.947 8.341 5.967
8 LF7 0 −8.134 0.304 6.135
9 LF8 0 −9.198 6.178 6.071

10 LF9 0 −9.19 1.144 5.973
11 LF10 0 −8.638 0.423 6.09
12 LF11 0 −8.25 0.798 5.976
13 LF12 0 −8.375 0.528 6.044
14 LF13 0 −8.257 0.733 5.967
15 LF14 0 −8.638 1.167 5.983
16 LF15 0 −9.439 7.719 5.976
17 LF16 0 −7.972 8.395 6.15
18 LF17 0 −9.577 1.175 5.98
19 LF18 0 −7.797 9.557 6.269
20 LF19 0 −7.985 7.017 6.154
21 LF20 0 −8.621 2.099 5.963
22 LF21 0 −8.828 0.597 5.961
23 LF22 0 −8.3 0.656 5.961
24 LF23 0 −8.17 0.228 5.958
25 LF24 0 −8.695 0.588 5.956
26 LF25 0 −9.611 1.041 5.955
27 LF26 0 −7.852 1.439 5.953
28 LF27 0 −7.913 0.224 5.951
29 LF28 0 −9.133 0.425 5.95
30 LF29 0 −9.835 4.270 5.948
31 LF30 0 −7.777 5.224 6
32 LF31 0 −7.746 0.218 6.2
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Table 1. Cont.

S. No. Control and
Linked Fragments Stars XP gScore

(kcal/mol)
RMSD

Å RF-Score

33 LF32 0 −7.739 2.131 6.141
34 LF33 0 −7.696 5.693 6.116
35 LF34 0 −7.668 1.040 6.045
36 LF35 0 −7.619 0.605 5.983
37 LF36 0 −7.535 1.023 5.978
38 LF37 0 −7.526 0.564 5.983
39 LF38 0 −7.491 4.930 6.139
40 LF39 0 −7.49 0.329 6.085
41 LF40 0 −7.48 8.155 5.952
42 LF41 0 −7.468 1.141 5.973
43 LF42 0 −7.467 0.801 6.284
44 LF43 0 −7.458 0.789 5.965
45 LF44 0 −7.437 1.432 5.971
46 LF45 0 −7.421 3.320 5.955
47 LF46 0 −7.41 0.814 5.997
48 LF47 0 −7.389 1.163 6.102
49 LF48 0 −7.355 0.326 5.955
50 LF49 0 −7.339 2.510 5.976
51 LF50 0 −7.322 0.431 5.974
52 LF51 0 −7.289 6.173 5.97
53 LF52 0 −7.283 0.695 5.966
54 LF53 0 −7.207 3.886 6.215
55 LF54 0 −7.201 1.094 5.962
56 LF55 0 −7.199 1.717 6.123
57 LF56 0 −7.186 4.928 5.971
58 LF57 0 −7.139 1.687 6.114
59 LF58 0 −7.137 0.482 5.963
60 LF59 0 −7.087 0.569 6.087
61 LF60 0 −7.064 5.467 5.963
62 LF61 0 −7.014 0.255 5.963
63 LF62 0 −7.01 5.968 6.086
64 LF63 0 −6.992 0.257 5.957
65 LF64 0 −6.86 4.837 6.093
66 LF65 0 −6.835 4.914 5.974
67 LF66 0 −6.744 0.960 5.958
68 LF67 0 −6.72 0.984 5.97
69 LF68 0 −6.633 5.297 5.952
70 LF69 0 −6.603 0.990 5.985
71 LF70 0 −6.598 1.021 5.971
72 LF71 0 −6.535 1.020 5.99
73 LF72 0 −6.434 6.628 5.959
74 LF73 0 −6.424 6.309 6.117
75 LF74 0 −6.401 3.922 5.967
76 LF75 0 −6.375 0.630 6.011
77 LF76 0 −6.188 1.425 5.962
78 LF77 0 −6.094 0.317 6.184
79 LF78 0 −6.052 2.328 5.982
80 LF79 0 −5.865 3.356 6.172
81 LF80 0 −5.69 4.500 5.971
82 LF81 0 −5.583 3.759 6.036
83 LF82 0 −5.511 6.635 6.133
84 LF83 0 −5.344 2.498 5.95
85 LF84 0 −4.901 4.213 5.957
86 LF85 0 −4.717 2.020 6.083
87 LF86 0 −4.199 2.131 6.099
88 LF87 0 −3.846 0.665 5.964
89 LF88 1 −8.421 0.912 6.193
90 LF89 1 −8.639 0.666 6.01
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Table 1. Cont.

S. No. Control and
Linked Fragments Stars XP gScore

(kcal/mol)
RMSD

Å RF-Score

91 LF90 1 −7.861 1.884 6.283
92 LF91 1 −9.161 9.304 5.957
93 LF92 1 −7.602 0.326 6.026
94 LF93 1 −6.7 7.458 6.044
95 LF94 1 −6.28 0.958 5.961
96 LF95 1 −6.021 3.630 7.361
97 LF96 1 −5.993 0.593 6.992
98 LF97 1 −5.952 10.779 5.962
99 LF98 1 −5.479 6.19 5.978
100 LF99 2 −7.692 6.267 5.984
101 LF100 2 −7.699 6.585 6.157
102 LF101 2 −8.121 0.669 6.045
103 LF102 2 −9.068 1.397 6.027
104 LF103 2 −8.167 0.789 5.952
105 LF104 2 −5.543 4.837 5.964
106 LF105 4 −6.998 3.025 6.035
107 LF106 5 −6.941 2.617 6.078
108 LF107 5 −3.98 2.962 5.957
109 LF108 5 −6.588 5.214 5.977
110 LF109 6 −4.871 1.902 5.971
111 LF110 6 −5.554 7.447 5.957
112 LF111 7 −6.089 0.562 5.96
113 LF112 8 −6.029 0.938 5.962
114 LF113 8 −5.723 0.491 6.178
115 LF114 8 −8.13 1.367 5.959
116 LF115 8 −6.545 1.339 5.96

3.3. Binding Free Energy Calculations

The relative binding affinity of the ligands towards the RET receptor was calcu-
lated using the Prime module of Schrödinger. The overall binding free energy of lig-
ands varied between −78.895 kcal/mol and −30.081 kcal/mol (Table 2). Eventually, the
only five compounds showed a significant ∆Gbind value that was greater than pralsetinib
(−63.348 kcal/mol). Among the contribution of different energy terms, the Van der Waals
force of all the compounds was found to have a major contribution and facilitated the
strong binding towards the RET protein. The electrostatic potential exhibited the second
highest contribution for binding affinity; however, high solvation energy significantly
nullified the effect of the electrostatic potential to ∆Gbind. The lower value of covalent
interaction in all five compounds denotes the high thermostability characteristics of the
molecules. Particularly, it indicates the stabilized association with the RET protein to a
larger extent. In addition, the ligand strain energy of the compounds was evaluated to
assess the deformation of the ligands during interaction [42]. It is evident from Table 2 that
the top five compounds undergo less deformation than the reference molecule during the
interaction with the RET receptor. Although LF3 showed the highest docking score, the
decrease in binding free energy during MM-GBSA analysis is due to increased ligand strain
energy at the time of binding. Thus, the five hybrid molecules namely LF1, LF2, LF21,
LF27, and LF88 showed satisfactory energy contributions and less ligand strain during the
interaction with the RET protein, and so were screened for further analysis.
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Table 2. Binding free energy analysis of linked fragments using Prime MM-GBSA approach.

Control and
Linked

Fragments

dG Bind
(kcal/mol)

Van der Waal’s
Energy

(kcal/mol)

Ligand Strain
Energy

(kcal/mol)

Electrostatic
Potential

(kcal/mol)

Covalent
Interaction
(kcal/mol)

Lipophilicity
(kcal/mol)

Solvation
Energy

(kcal/mol)

Pralsetinib −63.348 −58.387 6.20432 −12.472 −0.4283 −19.969 37.3355
LF1 −78.875 −55.285 5.209 −33.627 1.512 −21.143 32.186

LF27 −73.11 −60.237 2.678 −21.049 2.615 −25.583 32.147
LF2 −70.752 −47.964 3.018 −24.213 1.891 −18.239 20.196

LF21 −63.654 −54.224 2.992 −19.372 1.127 −24.461 34.469
LF88 −63.521 −46.248 5.237 −20.513 3.478 −24.643 26.701
LF29 −62.965 −45.4 2.562 −25.554 2.113 −22.992 30.221
LF3 −62.895 −52.664 6.212 −16.773 −0.312 −19.834 27.54
LF4 −60.017 −39.524 2.804 −21.897 −0.561 −21.251 25.189
LF5 −57.679 −49.011 5.349 −35.466 2.096 −19.2 45.57

LF89 −55.77 −44.968 6.72 −19.658 5.17 −18.602 23.929
LF6 −55.462 −49.877 8.647 −29.366 4.238 −16.002 38.428

LF25 −55.094 −50.213 8.401 −10.118 2.115 −19.658 24.019
LF91 −54.683 −42.063 2.842 −14.307 1.961 −17.836 19.09
LF23 −53.86 −44.928 4.357 −13.386 1.727 −20.908 25.182
LF24 −52.802 −31.177 3.614 −23.708 0.529 −16.921 20.646
LF7 −52.465 −51.814 4.835 −35.392 3.19 −15.905 49.912

LF22 −51.478 −43.117 3.707 −16.363 1.272 −17.922 25.454
LF8 −51.337 −44.893 5.922 −14.472 5.267 −15.919 20.795
LF9 −50.681 −37.001 8.023 −22.027 6.327 −16.065 20.883

LF10 −50.255 −43.526 4.463 −13.965 4.363 −14.628 19.622
LF101 −49.18 −41.558 4.021 −13.997 2.135 −14.383 19.527
LF102 −48.459 −33.805 4.821 −18.293 3.508 −16.351 18.643
LF11 −47.678 −43.294 4.058 −10.555 2.239 −17.1 22.252
LF103 −47.375 −50.103 8.598 −28.738 3.098 −17.355 48.194
LF12 −47.014 −29.869 1.574 −15.849 1.325 −18.546 17.847
LF20 −46.6 −32.975 1.8 −12.629 1.051 −20.039 18.639
LF28 −46.45 −36.202 2.732 −16.141 2.933 −16.087 20.6
LF114 −46.195 −42.487 7.755 −12.376 4.829 −20.4 25.46
LF90 −44.869 −37.752 2.023 −11.832 1.761 −13.851 18.063
LF13 −44.188 −34.743 1.058 −10.255 0.955 −15.561 16.05
LF14 −43.03 −27.483 1.191 −16.22 0.989 −17.025 18.572
LF15 −41.74 −42.888 15.734 −25.959 9.447 −18.956 38.089
LF16 −40.204 −40.209 6.393 −27.114 4.77 −9.159 33.502
LF17 −39.071 −42.268 22.468 −27.647 12.815 −25.637 45.318
LF26 −38.404 −41.666 14.545 −27.751 8.215 −17.893 43.315
LF18 −31.506 −35.323 16.143 −0.157 0.576 −16.869 20.436
LF19 −30.081 −27.423 4.861 −21.575 5.222 −9.01 24.761

3.4. Frontier Molecular Orbital Analysis

Estimating the energy gap between the frontier molecule orbitals i.e., HOMO and
LUMO plays an important role in analyzing the chemical reactivity of the compounds.
An EHOMO represents the ionization potential as the molecule easily loses its electron
at its energized state, whereas ELUMO represents the electron affinity as the molecule
accepts the electron. The EHOMO and ELUMO of the reference and hybrid molecules LF1,
LF2, LF21, LF27, and LF88 were calculated and are presented in Figure 1. The positive
and negative electron density in the HOMO-LUMO plot is represented in red and green,
respectively. It is observed that LF1, LF2, and LF88 have less energy gap than LF21 and
LF27, depicting the highly favorable potential reactions against RET. These findings imply
that the hybrid molecules LF1, LF2, and LF88 will exhibit higher chemical reactivity. The
literature shows that the higher HOMO energy than LUMO of a compound demonstrates
the ability to donate electrons to the partner receptor binding site. Additionally, it depicts
the favorability of forming a hydrogen bond between the ligand and the protein [43].
Interestingly, the results suggests that the HOMO of all selected ligands was higher than
the LUMO, depicting the ability of the ligands to donate electrons and also that they had
favorable hydrogen bond formation with the RET binding site residues.
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Figure 1. Chemical reactivity analysis of the linked fragments using density functional theory
analysis: (a) Pralsetinib, (b) LF1, (c) LF2, (d) LF21, (e) LF27, and (f) LF88.

Consequently, the ionization potential, electron affinity, hardness, softness, and elec-
tronegativity of the reference and the selected molecules were calculated to determine the
chemical reactivity and stability of the compounds. It is evident from our results (Table S2)
that the ionization potential of all the compounds is higher than the electron affinity, indi-
cating the better electron donating capability of the hybrid molecules. It is evident from the
results that the developed hybrid molecules except for LF21 and LF27 were highly reactive
with a high hardness (~4.0) and low softness (~2.0). The lower chemical potential of LF1
(3.97), LF2 (4.88), and LF88 (−4.41) demonstrates the unwillingness for dissociating into
its elements and its stability. On the other hand, a higher negative chemical potential of
LF21 (2.95) and LF27 (3.437) shows the lower stability than the other compounds. The
preceding results depict that the investigated molecules LF1, LF2, and LF88 are chemically
hard molecules with high electron donating capability and kinetic stability.
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3.5. Interaction and ADMET Analysis

The interaction pattern of the hybrid molecules to the binding pocket of RET is
represented in Figure 2 and Table S3. Additionally, the 3D image of the docked RET-ligand
complexes is represented in Figure S1. The ligand interaction diagram of pralsetinib clearly
shows the formation of two hydrogen bonds between the ALA807 residue of the RET and
the carboxamide group. In addition, one more hydrogen bond was found between the
pyridine ring of pralsetinib and SER811 of RET. The literature evidence also highlights
the contribution of residues in the binding pocket of RET [44]. On analyzing the binding
pattern of LF1, one hydrogen bond was found between the hydroxy group of LF1 and
ALA807 residue of the protein. In the case of LF2, a two hydrogen bond formation was
observed between ALA807 and NH/O of the azaarene group. Likewise, a two hydrogen
bond formation was observed between N/NH of the azaarene functional group of LF88
and ALA807. In addition, a one hydrogen bond formation was found between the NH
group of LF88 and the key hydrophobic residue ASN879 of RET. These results are evident
that the designed fragments able to replicate the binding pattern to that of pralsetinib. In
addition, the carboxamide and azaarene functional groups that were identified in the hit
molecules were reported recently to have anticancer activity [45,46].
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Figure 2. The interaction pattern of the reference molecule (a) Pralsetinib and hybrid molecules
(b) LF1, (c) LF2, and (d) LF88 with the RET protein.

The ADMET analysis of the compounds was performed using the QikProp module of
Schrödinger and ProTox-II software to prevent the elimination of molecules during clinical
trials. The results in Table 3 indicate the satisfactory pharmacodynamic, pharmacokinetic,
and toxicity values for all the three hit hybrid compounds. Specifically, the important
central nervous system response that was stimulated by the hit compounds was almost
similar to pralsetinib. Undeniably, the human oral adsorption of LF1 and LF2 was higher
than pralsetinib, indicating the higher efficacy of the molecules that can be easily attained
via oral administration. Moreover, all the lead compounds belonging to class 5 toxicity
with LD50 ranged from 2000 to 5000. For instance, the LD50 of LF1, LF2, and LF88 was
found to be 4000 mg/kg, 2500 mg/kg, and 3500 mg/kg, respectively, which is less toxic
than pralsetinib as it showed an LD50 value of 800 mg/kg. The higher the value of LD50,
the less harmful the compounds will be in humans [47]. Thus, all the designed compounds
were less harmful to humans than pralsetinib.

Table 3. The ADME and toxicity analysis of the lead linked fragments using the QikProp module
and ProTox-II server.

Control and
Linked

Fragments

CNS HOA Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity Toxicity
Class

Pralsetinib −2 2 Active Inactive Active Inactive Inactive Class 4
LF1 −2 3 Active Inactive Inactive Inactive Inactive Class 5
LF2 −2 3 Active Active Inactive Active Inactive Class 5
LF88 −1 1 Inactive Active Inactive Inactive Inactive Class 5

3.6. Molecular Dynamics Simulation
3.6.1. Stability Analysis of Complex System

The molecular dynamic simulations for the RET apoprotein and the protein-ligand
complex was analysed for 200 ns using the GROMACS 2018 tool to understand the stability,
structural details, and conformational behaviour of the protein-ligand complexes. RMSD
plots are used to analysis the extent of deviation of atoms in this study. It is evident
from Figure 3 that an increased deviation was observed until 50 ns on the binding of
compounds, including pralsetinib with the RET protein. Consequently, all the hybrid
molecules maintained equilibrium between 50 ns and 150 ns except for pralsetinib, which
exhibited an increased deviation until 100 ns. Towards the end of 200 ns of simulation, a
minimal RMSD value of 0.370 nm, 0.361 nm, and 0.331 nm was observed among the RET-
LF1, RET-LF2, and RET-LF88 complexes, respectively, smaller than apoprotein (0.414 nm)
and the RET-pralsetinib complex (0.385 nm). The results are well correlated with our initial
analysis of docking and binding free energy.
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1 

 

 

Figure 3. Time dependent MD simulation of apoprotein and protein-hybrid molecule complexes:
(a) Pralsetinib, (b) L1, (c) LF2, and (d) LF88.

The lower RMSD value of the designed compounds than the apoprotein and RET-
pralsetinib complex suggests the stable binding of ligands (LF1, LF2, and LF88) than
pralsetinib in the binding pocket of the RET receptor. The literature evidence highlights
that a RMSD value of less than 0.4 nm is certainly needed for the ligand to stay within
the binding pocket of the protein [48]. It is worth mentioning that the RMSD values of
the designed compounds ranged from 0.3 nm to 0.4 nm. Thus, we hypothesize that the
developed three hybrid molecules could serve as an active inhibitor against RET.

3.6.2. Flexibility Analysis of Complex System

The RMSF plots analyse the mobility and fluctuation of residues within the RET-ligand
complexes. The trajectories are shown in Figure 4. It is evident from the figure that a similar
pattern of fluctuation was observed among all the RET-ligand complex systems. A minimal
deviation of less than 0.05 nm was observed for the crucial residues, such as ARG770 and
GLY810 of the RET protein during the binding of hybrid molecules. It is to be noted that
the stability of the RET-ligand complex is due to the formation of hydrogen bonds between
these residues and the ligands. Prominently, the important residue ALA807, that is also
found within the conserved interaction region, showed minimal fluctuation of ~0.02 nm.
On the other hand, the residues PRO992–LYS994 exhibited high fluctuation of 0.1 nm in
all the protein-ligand complex systems. In the case of LF2, a high fluctuation of ~0.2 nm
was observed, even at GLY798 residue during RMSF analysis. This evidence highlights the
identified residues PRO992–LYS994 and GLY798 as unfavorable regions for the interaction
of ligands with RET. Overall the RMSF value of the aMD simulation differentiates the
terminal of the complexes as an organized region or a loosely structured region. A lower
RMSF value indicates an organized end terminal, whereas a higher RMSF value denotes a
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loosely structured terminal end of the complex system [49]. On analyzing the fluctuation
data of the apoprotein and the complex systems RET-pralsetinib, RET-LF1, LF2, and LF88,
values of 0.0696 nm, 0.0690 nm, 0.0799 nm, 0.1103 nm, and 0.0539 nm, respectively, were
observed. The results significantly shows that all the designed ligands contain organized
terminal ends. This facilitates the convenient positioning of the ligands within the binding
pocket of RET during the interaction than pralsetinib.

Molecules 2022, 27, x FOR PEER REVIEW 15 of 23 
 

 

The lower RMSD value of the designed compounds than the apoprotein and RET-

pralsetinib complex suggests the stable binding of ligands (LF1, LF2, and LF88) than 

pralsetinib in the binding pocket of the RET receptor. The literature evidence highlights 

that a RMSD value of less than 0.4 nm is certainly needed for the ligand to stay within the 

binding pocket of the protein [48]. It is worth mentioning that the RMSD values of the 

designed compounds ranged from 0.3 nm to 0.4 nm. Thus, we hypothesize that the devel-

oped three hybrid molecules could serve as an active inhibitor against RET. 

3.6.2. Flexibility Analysis of Complex System 

The RMSF plots analyse the mobility and fluctuation of residues within the RET-lig-

and complexes. The trajectories are shown in Figure 4. It is evident from the figure that a 

similar pattern of fluctuation was observed among all the RET-ligand complex systems. 

A minimal deviation of less than 0.05 nm was observed for the crucial residues, such as 

ARG770 and GLY810 of the RET protein during the binding of hybrid molecules. It is to 

be noted that the stability of the RET-ligand complex is due to the formation of hydrogen 

bonds between these residues and the ligands. Prominently, the important residue 

ALA807, that is also found within the conserved interaction region, showed minimal fluc-

tuation of ~0.02 nm. On the other hand, the residues PRO992–LYS994 exhibited high fluc-

tuation of 0.1 nm in all the protein-ligand complex systems. In the case of LF2, a high 

fluctuation of ~0.2 nm was observed, even at GLY798 residue during RMSF analysis. This 

evidence highlights the identified residues PRO992–LYS994 and GLY798 as unfavorable 

regions for the interaction of ligands with RET. Overall the RMSF value of the aMD sim-

ulation differentiates the terminal of the complexes as an organized region or a loosely 

structured region. A lower RMSF value indicates an organized end terminal, whereas a 

higher RMSF value denotes a loosely structured terminal end of the complex system [49]. 

On analyzing the fluctuation data of the apoprotein and the complex systems RET-pralset-

inib, RET-LF1, LF2, and LF88, values of 0.0696 nm, 0.0690 nm, 0.0799 nm, 0.1103 nm, and 

0.0539 nm, respectively, were observed. The results significantly shows that all the de-

signed ligands contain organized terminal ends. This facilitates the convenient position-

ing of the ligands within the binding pocket of RET during the interaction than pralsetinib. 

 

Figure 4. Fluctuation analysis of the apoprotein and complex systems during simulation process. 

3.6.3. Hydrogen Bond Interaction Analysis 

In general, the stability of the complex system depends on the type of transient inter-

actions including Van der Waals force, hydrogen bond interaction, electrostatic interac-

tion, and many other forces. Among them, the formation of a hydrogen bond between the 

Figure 4. Fluctuation analysis of the apoprotein and complex systems during simulation process.

3.6.3. Hydrogen Bond Interaction Analysis

In general, the stability of the complex system depends on the type of transient inter-
actions including Van der Waals force, hydrogen bond interaction, electrostatic interaction,
and many other forces. Among them, the formation of a hydrogen bond between the pro-
tein and the ligand is considered as the most important transient force that is responsible
for the stability of the protein-ligand complex system [28]. Thus, the number of hydrogen
bonds in each protein-ligand interaction was estimated using the trajectory files of the
MD simulation. We can observe from Figure 5 that RET-pralsetinib, RET-LF1, RET-LF2,
and RET-LF88 complexes were found to exhibit 0–4, 0–4, 0–7, and 0–3 hydrogen bond
interactions, respectively, during the simulation. These results highlight the stable binding
of the hybrid molecules to RET than pralsetinib.

3.6.4. Free Energy Landscape

The conformational changes of the protein-ligand complex were further evaluated
using the GROAMCS tool gmx_sham. Gibbs free energy measures the exchange of heat
in a closed protein-ligand system [50]. During this process, the molecular fluctuation and
the energy minima conformation of the protein-ligand complex was estimated. Initially,
the gmx_covar tool was implemented to calculate the covariance matrix containing the
eigenvalues. Later the matrix was diagonalized to produce eigenvectors. At the end,
the two principal components, PC1 and PC2, of the ligands, as represented in Figure 6,
were obtained using the gmx_anaeig tool [51]. The color gradient from blue to yellow
represents the energy minima favoured to the unfavored conformation of the complex.
The hybrid compounds LF2 and LF88 exhibited one deep well energy basin that was
similar to pralsetinib. On the other hand, two deep energy basins were observed in
the case of LF1. The Gibbs free energy of LF1 and LF2 was found to be 15.7 kJ/mol
and 14.8 kJ/mol, respectively, which were almost equivalent to the Gibbs free energy of
pralsetinib. Nevertheless, LF88 exhibited a slightly higher Gibbs free energy of 17.5 kJ/mol
during the interaction. From Figure 6, it is apparent that the energy basins were distinct,
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clear, and broad in all three protein-hybrid complexes. Importantly, the results are similar to
the Gibbs free energy of pralsetinib, illustrating the stable conformation of the complexes.
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3.7. In Silico Compound Activity Analysis

The literature evidence highlights that the MM-PBSA calculation and deep learning-
based prediction systems have dramatically improved the ability to simulate complex
processes computationally. The MM-PBSA protocols have achieved reasonable correlation
with experimental affinities at a much lower computational cost than the other methods [52].
Slynko et al. observed a correlation coefficient of 0.78 between the experimental pIC50 and
the computational MM-PBSA binding affinities using a PRK1 inhibitors data set [53]. On
the other hand, the deep learning model, PaccMann algorithm, is an effective validation
toolbox in the drug-repurposing approach which displayed the R2 value of 0.86 and RMSE
value of 0.89. These coefficients highlight the strong correlations between the resultant data
and experimentally-determined results [54].

In the current investigation, the compounds activity was examined against the LC-
2/ad cell line using the PaccMann algorithm. The results are reported in Table S4. It
is evident from the table that hit compound LF2 and LF88 exhibited better inhibitory
activity to that of the reference molecule, pralsetinib, while LF1 showed comparatively
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less activity in our analysis. Altogether, the compounds activity was further validated
using MM-PBSA analysis and the results are shown in Table 4. All the three hybrid
molecules exhibited less binding energy with more stable conformation than pralsetinib.
The overall binding free energy of RET-pralsetinib, RET-LF1, RET-LF2, and RET-LF88 were
found to be −9.445 ± 65.091 kJ/mol, −15 ± 22.651 kJ/mol, −13.158 ± 16.317 kJ/mol, and
−29.627 ± 27.501 kJ/mol, respectively. The overall binding energy included contributions
of electrostatic energy, Van der Waals energy, SASA energy, and polar solvation energy.
Van der Waals energy was found to be the major contributor of total binding energy
among all the RET-ligand complexes. This observation correlates well with our MM-GBSA
analysis. From the view of this evidence, we anticipate that this work will provide a
meaningful perspective for experimental biologists and support more progress in this
cancer therapeutics field.

Table 4. MM-PBSA binding free energy calculations of RET-pralsetinib and RET-hybrid molecules
complexes.

S. No. Energy Terms (kJ/mol) RET-Pralsetinib RET-LF1 RET-LF2 RET-LF88

1 Binding Energy −9.445 ± 65.091 −15 ± 22.651 −13.158 ± 16.317 −29.627 ± 27.501
2 Van der Waal’s Energy −23.022 ± 53.334 −10.678 ± 11.115 −8.669 ± 0.329 −24.053 ± 31.102
3 Electrostatic Energy −0.074 ± 3.936 −4.928 ± 25.728 −7.359 ± 2.903 −5.523 ± 13.183
4 Polar Solvation Energy 15.905 ± 55.514 3.008 ± 0.268 6.024 ± 1.240 4.021 ± 11.638
5 SASA Energy −2.254 ± 6.035 −2.402 ± 0.107 −3.154 ± 0.124 −4.072 ± 8.184

3.8. Synergistic Effect Analysis

The parental compounds of all the three hybrid molecules were identified to evaluate
the synergistic effect against the RET receptor. Sequential docking was performed for the
parental compounds of all the hybrid molecules using AutoDock 2.5.6. The binding affinity
was calculated for the parental drugs: (i) LOXO-292 and Luminespib, (ii) Dovitinib and
Luminespib, and (iii) Pralsetinib and Luminespib. It is worth noting that the fragment of
luminespib drug is present in all the three-hybrid molecules. Moreover, luminespib is an
FDA-approved heat shock protein-90 inhibitor with antineoplastic activity [55]. Hence, the
synergistic effect analysis of these parental compounds will provide valuable insight in
developing a novel RET inhibitor. Molecular docking of pralsetinib individually showed
a binding energy of −3.39 kcal/mol. However, a substantial improvement of the bind-
ing energy of −5.38 kcal/mol, −4.06 kcal/mol, and −3.84 kcal/mol, respectively, were
observed on the binding of two drugs simultaneously with RET (Table 5). The binding
mode of the docked ligand molecules with RET are shown in Figure S2. It is evident from
our results that the reactivity of combining the parental drugs is significantly greater than
pralsetinib. Hence, we are certain that the fragments that were generated using these
parental compounds might exhibit better efficacy in experimental analysis.

Table 5. Synergistic analysis of lead compounds against RET protein using AutoDock.

S. No. Compound 1 Compound 2 Docking Score (kcal/mol)

1 Pralsetinib Not applicable −3.39
2 Loxo-292 NVP-AUY922 −5.38
3 Dovitinib NVP-AUY922 −4.06
4 Pralsetinib NVP-AUY922 −3.84

3.9. Evaluation of Hybrid Compounds against Mutant RET

Drug resistance that is due to point mutations is the major hindrance to developing
novel compounds against RET in the drug discovery process. Specifically, the emergence
of solvent front mutations and gatekeeper mutations including at the position G810, M918,
V804, and Y806 prevents the drug from accessing the binding pocket of RET [56,57]. Here,
we performed docking studies against all the mutant RET structures to explore the hybrid
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molecule activity. The binding affinity of compounds against the mutant RET is represented
in Table 6. About 11 distinct RET mutant structures consisting of four solvent front mutation,
four gatekeeper mutations, and three other mutations were generated using a homology
modelling process. Among the developed hybrid molecules, LF2 and LF88 had overcome
seven-point mutations including two solvent front mutations (G810C and G810R); three
gatekeeper mutations (V804L, V804M, and Y806C/N); and two other mutations (M918T
and V738A) with higher binding affinity. In the case of LF1 and pralsetinib, LF1 had
overcome six-point mutations against RET. On the contrary, pralsetinib showed inhibitory
activity against three of the investigated mutants of the RET protein. These data depict the
potency of hybrid molecules to overcome drug resistance in RET-positive NSCLC patients.

Table 6. Mutational analysis of the linked fragments using molecular docking analysis.

S. No Native and Mutant
RET Proteins

Glide XP Gscore (kcal/mol)
Pralsetinib LF1 LF2 LF88

1 Native −7.79 −8.2 −8.885 −8.421
2 G810C −3.69 −4.035 −4.404 −3.655
3 G810R −3.356 −5.741 −3.845 −4.842
4 G810S −6.69 −4.403 −4.404 −3.655
5 G810V −5.684 −3.97 −4.547 −4.86
6 M918T −4.85 −6.736 −8.235 −7.647
7 V738A −4.555 −5.715 −6.457 −5.282
8 V804E −6.682 −4.114 −4.533 −5.61
9 V804L −8.067 −5.186 −8.445 −8.412

10 V804M −7.625 −5.46 −8.337 −7.754
11 Y806C −5.764 −6.121 −5.572 −6.02
12 Y806N −4.810 −6.590 −5.685 −6.297

4. Limitations and Future Prospective

The bottleneck among RET inhibitors is acquired drug resistance, which results in
decreased therapeutic effectiveness in NSCLC patients. Hence, we tested the efficacy of
hybrid compounds against 11 distinct RET mutations. Despite the fact that the developed
linked fragments have a substantial effect against the solvent front and gatekeeper muta-
tions, experimental confirmation of the hybrid molecule using mutant cell lines is required
to verify these findings. Moreover, the toxicity investigations of these molecules, either
using an in vivo micronucleus assay or an in vitro genotoxicity assay, are also promising in
future directions.

5. Conclusions

A fragment-based drug-designing strategy was implemented in the present study to
develop the novel inhibitory compounds against the RET protein. The hybrid molecules
were probed for their binding affinity and drug-likeliness property using molecular docking
with native and mutant RET kinase domain. About 33 hybrid compounds exhibited a better
binding affinity than pralsetinib. Further, the docking process was validated using two
different methods such as RF-Score and Prime MM-GBSA, resulting in five novel hybrid
compounds with a better binding free energy than the reference molecule. DFT calculations
yielded three linked fragments LF1, LF2, and LF88 with better chemical reactivity with
RET. The study also highlights the chemical reactivity, electron donating capability, and
the stability of the hybrid molecules. The molecular dynamic simulation of these lead
molecules portrays the existence of a more stable conformation in the binding pocket of RET
protein than pralsetinib. The resultant compounds also exhibited a satisfactory binding
energy profile against multiple RET variants. Finally, the synergistic effect of the parent
compounds together with MMPBSA and PaccMann analysis provides better clues of the
linked fragments activity against the RET protein. Based on these findings, we hypothesize
that the administration of luminespib either with LOXO-292 or with pralsetinib or dovitinib
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may provide a better cure against the different RET variants. Indeed, our research findings
will aid in the development of new molecules with commercial value in the near future.

Supplementary Materials: The following are available online, Table S1: List of the known RET
inhibitors with its inhibitory activity. Table S2: Calculated global descriptors of hybrid molecules
using LACV3P++** energy level. Table S3: Hydrogen bond interaction involved between the ligand
molecules and the receptor. Table S4: In silico sensitivity analysis of control and hybrid molecules
against LC-2/ad cell line. Figure S1: 3D visualization of bound protein ligand complexes: (a) RET-
pralsetinib, (b) RET-LF1, (c) RET-LF2 and (d) RET-LF88 complex. Figure S2: The synergistic docking
of parental compounds where C1, C2, C3, and C4 denotes Luminespib, Pralsetinib, Dovitinib, and
LOXO-292, respectively. The white circle indicates the binding position of compound 1 and the blue
circle represents the respective binding mode of the 2nd compound.
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