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Abstract: Intervertebral disc degeneration is a chronic degenerative disease caused by the interaction of genetic and environmental 
factors, mainly manifested as lower back pain. At present, the diagnosis of intervertebral disc degeneration mainly relies on imaging. 
However, early intervertebral disc degeneration is usually insidious, and there is currently a lack of relevant clinical biomarkers that 
can reliably reflect early disease progression. Pyroptosis is a regulatory form of cell death triggered by the activation of inflammatory 
bodies and caspase, which can induce the formation of plasma membrane pores and cell swelling or lysis. Previous studies have shown 
that during the progression of intervertebral disc degeneration, sustained activation of inflammasomes leads to nuclear cell pyroptosis, 
which can occur in the early stages of intervertebral disc degeneration. Moreover, intervertebral disc nucleus pulposus cells adapt to 
the external environment through autophagy and maintain cellular homeostasis and studying the mechanism of autophagy in IDD and 
intervening in its pathological and physiological processes can provide new ideas for the clinical treatment of IDD. This review 
analyzes the effects of pyroptosis and autophagy on IDD by reviewing relevant literature in recent years, in order to explore the 
relationship between pyroptosis, autophagy and IDD. 
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Introduction
Intervertebral disc degeneration (IVDD) is a main factor contributing to the chronic lower back pain (LBP). During 
IVDD, aberrant apoptosis, senescence and pyroptosis of disc cells, degradation of extracellular matrix (ECM), and 
infiltration of immune cells are the main molecular variants. Changes at the tissue level usually do not occur until the late 
stages of IVDD. Ectopic growth of nerves within the annulus fibrosus (AF) and nucleus pulposus (NP) tissues is 
considered as the main cause of IVDD.

Overview of IVDD
Disc degeneration is a major risk factor for low back pain. IVDD usually has no obvious symptoms.1 However, as the 
disease progresses, there will be disc herniation, lumbar spondylolisthesis and even spinal stenosis, which makes IVDD 
and lead to chronic disability.2 In addition, IVDD can present with neurological symptoms, including neuralgia, 
numbness, muscle weakness, and even paralysis.3 To date, most VIDDs have been treated with conservative treatments, 
such as bed rest, nonsteroidal anti-inflammatory drugs and analgesics, and surgical interventions such as lumbar 
discectomy and interbody fusion.4,5 These approaches focus on temporary relief of symptoms rather than targeting 
pathogenesis, so the progression of IVDD cannot be reversed. Hence, developing biotherapeutics is critical for the early 
recovery of IVDD.
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Physiological Structure of IVDD
The intervertebral disc consists of the NP (nucleus pulposus) and the peripheral AF (annulus fibrosis) act as a buffer against 
pressure.6,7 NP is a highly hydrated gelatinous tissue composed of water, proteoglycans, and collagen, and it also contains 
large amounts of elastin, fibrin and laminin.8 Located around the nucleus pulposus, the annulus fibrosus is a circular structure 
composed of fibrous tissue rich in type I collagen.9 The CEP (cartilaginous endplate) consists of a layer of hyaline cartilage, 
which plays an important role in nutrient diffusion and metabolic waste expulsion of the intervertebral disc.9 (Figure 1).

Pathophysiology of IVDD
The nutrients required for NP (including oxygen, glucose, matrix generated substrates, amino acids and sulfate) are the 
roots in the permeation of vertebral capillaries through the CEP. The energy metabolism of NP is mainly performed 
through glycolysis, so glucose is necessary for the survival of the disc cells.10 However, in response to smoking, 
decreased blood supply, subchondral osteosclerosis, nutrients are reduced in NP, manifested by high lactate, low oxygen 
levels, and PH value indicated acidic. On account of the low natural cell density of NP and AF, it is believed that an 
enough nutrient supply is needful to maintain cellular activities. Cells in the intervertebral disc function gradually 
changes at high lactate levels, low oxygen and acidic pH, resulting in excessive apoptosis.11 The oxygen pressure 
subsequently decreases below 5%, which will greatly inhibit matrix synthesis.12 Meanwhile, under acidic pH environ-
ment, the matrix synthesis was suppressed and the matrix fracture rate was enhanced.

Intervertebral discs can undergo aging and degenerative degeneration over lifetime of a person.13 IVDD occurs as 
early as age 11, and develops with age.14,15 Slight microscopic degenerative changes, including aging and proliferation of 
NP cells, slight crack formation, changes in cell density, and degeneration of the CEP matrix were observed by 2 years. 
Latterly, the CEP undergoes cracking and thinning eventually leading to disc herniation and even spinal canal 
stenosis.16 Meanwhile, different genetic or environmental factor can damage NP, AF, or EP, leading to the development 
of IVDD.17 IVDD is characterized by abnormal extracellular matrix (ECM) metabolism, expedited cartilage and bone 
remodeling, shaped tissue fibrosis, resulting in the release of proinflammatory cytokines.18 Smoking, accidental trauma, 
tissue infection, genetic factors, and metabolism related diseases also further accelerate IVDD19–25 (Figure 2).

Autophagy Biology
In all cells, there are usually two ways to regulate energy supply. One approach is to obtain extracellular nutrients 
regulated by growth factor signaling pathways.26 Extracellular hormones stimulate this system to fortify nutrient uptake, 
thereby offering the cell with oxidizable substrates to support adenosine triphosphate production and biosynthesis via 

Figure 1 The Physiological structure of IVDD. The cell density of gel shaped nucleus pulposus tissue is low, and the extracellular matrix mainly includes type II collagen and 
proteoglycan. Protein polysaccharides (mainly aggregated proteoglycans and hyaluronic acid) can maintain intervertebral disc moisture, maintain disc height, and buffer axial 
loads on the spine. The fibrous ring is the fibrous tissue surrounding the nucleus pulposus, consisting of two layers: 1) the inner fibrous ring, and 2) the outer fibrous 
ring. The outer fibrous ring plays an important role in maintaining the integrity of intervertebral discs. The cartilage endplate contains abundant type II collagen and 
chondrocytes, which attach the intervertebral disc to the vertebral body and provide nutrients for the intervertebral disc. Blood vessels and nerves are only distributed in 
the outer fibrous ring of the intervertebral disc in healthy adults. Nutrients passively diffuse to the deep nucleus pulposus. The nerves in the scar in the degenerative 
intervertebral disc are the main cause of discogenic pain.
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anabolism. In the presence of attenuated growth factor signaling, autophagy at this stage can provide amino acids 
required for static cellular biosynthesis as well as cytoplasmic ATP.

Maintaining the integrity of organelles can help the cells adapt to various environmental changes.27 Autophagy can 
remove dysfunctional and excess organelles including peroxisomes, mitochondria, nucleus, lysosomes, and ribosomes to 
maintain cell survival. Autophagosomes can provide nutrients to the cell during the removal of these organelles. Lipid 
degradation in autophagosomes/lysosomes supplies fatty acids for mitochondrion oxidation, which generates acetyl-CoA. 
Amino acids are substrates not only for the synthesis of new proteins, but also for mitochondrial oxidation in the 
tricarboxylic acid (TCA) cycle. Alanine and glutamate can generate ATP through the TCA to provide energy for the cell.

Normally, autophagy is related to apoptosis as well as the mechanism of cell death.28,29 There is a complex cross- 
regulation between autophagy and apoptosis, involving a variety of common regulatory factors and signal transduction 
pathways.30 The initiation of autophagy protects cells from apoptosis in IVDD, highlighting its major cytoprotective 
role.31 With no other types of cell death, independent autophagy induced cell death, called autophagy cell death.32 

Apoptosis was most commonly observed at some time after autophagy was upregulated, in this case, autophagy death 
may play a role in protecting and restoring tissue balance by clearing out cells with irreversible damage.

Expression and Mechanism of Autophagy in IVDD
Autophagy is regulated by many factors, including the serine/threonine protein kinase ULK1 complex, beclin1 complex, 
positive regulation of AMPK and PINK1/Parkin, and negative regulation of mTOR targets. Genes involved in autophagy 
(Beclin-1, Atg8, Atg12, Cathepsin B, Presenilin 1, and p62) were prominently upregulated in degenerative disc tissue 
compared with healthy disc tissue.33 Meanwhile, more autophagic vacuoles and upregulation of LC3-II as well as 
lysosomal associated membrane glycoprotein 2 (LAMP-2A) were also found in disc tissues with the age of rats.34 In 
addition, numerous studies have found increased expression and phosphorylation levels of mTOR, p70/S6K, and Akt.35

mTOR Signaling
Recently, in a review of IVDD, Yurube et al described the mechanism by which the mTOR pathway regulates 
autophagy.3 mTOR is a member of the phosphatidylinositol 3-kinase family. In mammals, m can form two complexes 
with other proteins, mTORC1 or mTORC2. mTORC1 is mainly a complex sensitive to rapamycin, and mTORC2 is vice 
versa. mTORC2 is involved in the assembly of mTORC2 complexes that are resistant to rapamycin. Ito et al verified that 
the interference with targeted RNA against mTORC1 and mTORC2 could obviously enhance the autophagy process in 
NP cells.36 PI3Ksare lipid kinases that can convert phosphatidylinositol to 3,4,5-trisphosphate (PIP3). Afterwards, The 
combined interaction of PIP3 and Akt can fully activate Akt and promote the activation of mTORC1, leading to the 
inhibition of autophagy.37 Moreover, morpholino M could activate autophagy in NP cells, which further reversed LPS- 
induced IL-1β, TNF-α and IL-6 Morpholino M can reduce the activity of PI3K/Akt/mTOR by down-regulating the ratio 
of pPI3K/PI3K, p-Akt/Akt and p-mTOR/mTOR, which leads to the reduction of PI3K/Akt/ mTOR activity and induces 
autophagy in NP cells.38

Figure 2 Risk factors for IVDD. Smoking, aging, genetics and mechanics related diseases also further accelerate IVDD.
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PINK1/Parkin Signaling
PINK1 encodes a 581 amino acid residues PINK1 protein. The mature PINK1 protein has kinase activity and is cleaved 
from its precursor protein through the cytoplasm to the mitochondria. PINK1 is located in mitochondria and interacts 
with Parkin to maintain the integrity of mitochondrial structure and function, which is the main regulatory pathway of 
mitophagy.39 Down-regulation of PINK1 in NP cells could obviously inhibit mitochondrial phagocytosis and accelerate 
oxidative stress-induced apoptosis of NP cells.40 Zhang et al found that salicylic acid can promote Parkin expression 
in vivo and in vitro, and upregulation of Parkin can promote mitophagy and further inhibit TNF- α caused apoptosis of 
nucleus pulposus cells and ROS production.41 In parallel, Parkin-mediated mitophagy was verified to be essential in the 
elimination of mitochondrial dysfunction and apoptosis in NP cells.42 The current study identified a total of 12 
immunoglobulins involved in the regulation of autophagy process in age-related diseases.43

AMPK Signaling
AMP-activated protein kinases are sensors that stabilize the body’s energy and can link cellular metabolic stress to 
energy homeostasis by controlling several homeostatic mechanisms such as autophagy and protein degradation.44 

AMPK/mTOR signaling pathway can regulate autophagy activation. AMPK directly activates ULK1 via phosphorylation 
of Ser317 to promote autophagy.45 Active mTORC1 prevents ULK1 activation and inhibits autophagy by phosphorylat-
ing a specific ULK1 site (Ser757) and disrupting the interaction between ULK1 and AMPK.46 Activation of the AMPK/ 
mTOR pathway in vitro is associated with intercellular Ca2+ levels and inhibits apoptosis of human notochord cells by 
inducing autophagy. Using Ca2+ inhibitors, AMPK/mTOR pathway activation induced reduced autophagy and p62/ 
SQSTM1 deposition, leading to accelerated apoptosis of human notochord cells.47 In a separate experiment, researchers 
verified that curcumin activates the AMPK/mTOR/ULK1 pathway and leads to autophagy activation and autophagic flux 
increase., removing TBHP - induced apoptosis, ECM degradation, and senescence.48 Nevertheless, other scholars 
confirmed that activation of the AMPK/mTOR pathway can facilitate autophagy and accelerate apoptosis, and ECM 
breakdown in human NP cells.49

Autophagy Plays a Protective Role in IVDD
Protective Role of Autophagy in IVDD
Autophagy plays a twofold role in IVDD, activation of autophagy is a protective effect for IVDD.50 Autophagy can be 
rapidly activated in response to oxidative stress, starvation, inflammation, and hypoxia. After intervention with sirolimus 
(an mTORC1 inhibitor), the levels of P70/S6K kinases were distinctly decreased. However, Akt phosphorylation and 
LC3-II expression were upregulated, which promoted autophagy.23 Melatonin synthesis in the pineal gland is mainly 
regulated by the suprachiasmatic nucleus (SCN) of the hypothalamus. A positive correlation between serum melatonin 
concentration and IVDD in patients was demonstrated in clinical studies.51 Experiments have suggested that removal of 
the pineal gland in chickens will induce the disease of IVDD.52 Melatonin could increase sSirt1 expression and activity, 
promote autophagy in inner plate chondrocytes. The protective effects of melatonin on apoptosis and calcification of 
lamellar chondrocytes were abolished by autophagy inhibitor 3-methyladenine (3-MA).53 In addition, activation of the 
autophagy pathway can attenuate oxidative stress-induced mitochondrial dysfunction and inhibit apoptosis and senes-
cence in NP cells. In addition, it regulates the expression of type II collagen, proteoglycans and matrix metalloproteinases 
in the intervertebral disc to maintain a stable level of extracellular matrix.54

Autophagy Promotes IVDD
Excessive activation of autophagy can promote excessive degradation and self-digestion of important cellular 
components.55 Researches verified that activation of autophagy facilitated apoptosis and senility in NP cells. Applying 
1 MPa of the autophagy inhibitor 3-MA to mouse NP cells significantly increased the death of NP cells compared with 
NC group, and the promotion death effect of 3-mA was clearly reduced.56 This research suggests that appropriate 
autophagy is beneficial for the survival of NP cells, but when the stimulus accumulates to a certain limit, the significantly 
increased autophagic flow may accelerate the apoptosis of NP cells.
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Basal cell autophagy may avoid or delay the progression of intervertebral disc herniation by reducing or inhibiting 
cell apoptosis, ECM degradation, osteogenic differentiation and inflammatory response. The increase of autophagy flow 
can promote the apoptosis and senescence of intervertebral disc cells, thereby accelerating the development of IVDD.57

Scorch Death and IVDD
Pyrogenic Cell Biology
Pyroptosis is an inflammatory programmed cell death mode found in macrophages in recent years that depends on the 
activation of caspase-1. In addition to causing a large number of immune cells to decrease, pyroptosis can also trigger 
excessive inflammatory response of the body, cause tissue and organ damage and even lead to death.58,59

Study of Focal Death in IVDD
Mechanism of Pyroptosis in the Progression of IVDD
The inflammatory response is mediated by the formation of the inflammatory body complex, which is a cell membrane 
heptamer consisted of nucleotide binding domains and leucine-rich repeat (NLR) pattern recognition receptors. NLR or 
NLR3 is a redox-sensitive cell membrane sensor that causes docking and activation of procaspase-1, which clefts proIl- 
1β into its mature form IL-1β at 17kDa. Latest research have speculated that both chronic inflammation and innervation 
are key factors in disc degeneration.60 In contrast to apoptosis, focal death during intervertebral disc degeneration has not 
been well studied.

In general, exogenous deleterious stimuli activate innate immune-dependent PRRS, which in turn activate various 
inflammatory bodies, including NLRP3, producing caspase-1 and gasdermin D (GSDMD), which ultimately mediate 
programmed death.61 Bai et al verified that hydrogen peroxide could increase the ROS level in human NP cells leading to 
increased pyroptosis. Compared with the control group, the expressions of NLRP3, cleaved IL-1, and PYCARD in the 
hydrogen peroxide treatment group reached the maximum at 3 h.62 Transfection of NLRP3-shrna and PYCARD-shRN 
reduced the thermal damage of NP cells. Zhang et al showed that pyroptosis in NP cells is mediated by LPS-induced 
upregulation of NLRP3, caspase-1, and GSDMD.63 The expression of NLRP3, caspase-1 and GSDMD was down- 
regulated after the intervention of MSCs-derived exosomes, and miR-410 could significantly down-regulate their 
expression, thereby inhibiting pyroptosis. We also found that P. acnes activated NLRP3 inflammasome through TXNIP- 
NLRP3 pathway, which promoted pyroptosis of NP cells and ultimately led to IVDD.64

IL-1β secretion is associated with pyroptosis and the NLRP3 inflammatory factor triggers the coking process.65 In 
addition, pyroptosis was found to be related to proinflammatory processes of intervertebral disc degeneration mediated 
by Propionibacterium acnes. The expression of NLRP3, IL-1β and GSDMD in NPC was up-regulated after co-culture 
with Propionibacterium acnes.64

The canonical inflammasome activation pathway needs to include the initiating event of the binding of proinflamma-
tory cytokines to their receptors, such as by triggering pattern recognition receptors (PRRS).66,67 In response to PAMPs 
or DAMPs, the inflammasome complex assembles leading to caspase 1 activation, IL-1β cleavage and pyroptosis. In 
addition, ROS also control pyroptosis of NPCs via the NLRP3/PYCARD pathway and are negatively regulated by 
promoting autophagy and the transcription factor erythrocytic 2-like 2 (NFE2L2).62

Pyroptosis Promotes IVDD
Focal death of resident intervertebral disc cells promotes the progression of IVDD.64 Inflammatory cytokines or ROS 
accumulate in senescent or degenerated intervertebral disc cells, thereby activating the NLRP3 inflammasome and 
caspase-1. Activated caspase-1 in the case of cleavage of GSDMD and release of the GSDMD-N fragment leads to 
membrane pore formation and cell death.68 Knockout of GSDMD can inhibit the inflammatory response, thereby 
protecting the organ damage caused by the stimulation.69 It was also shown that delivery of NLRP3 inflammasome 
inhibitor to degenerated rat intervertebral discs can effectively delay the progression of IDD.70 In addition, caspase-1 
inhibitors reduced GSDMD expression and ameliorated disc degeneration in vivo.71
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Strategies Targeting Autophagy and Pyroptosis in IVDD
Autophagy and Pyroptosis in IVDD
Some studies have shown that autophagy inhibits inflammasome activation and reduces the secretion of inflammatory 
cytokines.72,73 Previous researches have confirmed that activation of autophagy protects NP cells from stress-induced cell 
death, whereas inhibition of autophagy has the opposite effect.74 Autophagy has been reported to be activated during 
ROS-induced pyroptosis of NP cells, with negative regulatory and self-protective effects.62 The effect of increased ROS 
levels on pyroptosis may vary depending on the difference in autophagy levels in the inability cell lines. A study 
assessing the relationship between oxidative stress and pyroptosis in NP cells showed that ROS induced pyroptosis in NP 
cells via the NLRP3/PYCARD inflammasome and formed a negative regulatory relationship with NFE2L2 by activating 
autophagy.

Currently, some studies have shown that autophagy can inhibit the activation of inflammasome, and indicate the 
protective effect of autophagy on pyroptosis.75 Bai et al showed that autophagy was activated in the process of pyroptosis 
induced by ROS, and inhibition of autophagy could aggravate pyroptosis.62 Since autophagy enzymatically hydrolyses its 
contents, its activation could remove some pyrogen inducers or remove damaged organelles to re-establish cellular 
balance.75–77 Similarly, increased autophagy markers led to pyroptosis, which was associated with terminal activation of 
autophagy and lysosomal instability, while autophagy inhibitors reduced pyroptosis. Since autophagy is a dynamic 
activity at different stages, the relationship between autophagy and pyroptosis is still controversial.

In fact, activation of inflammasomes, including NLRP3, plays an important role in pyroptosis.78 It has been shown 
that activation of autophagy down-regulates NLRP3 expression and cleaved caspase-1 production.79,80 Houtman et al 
verified colocalization between NLRP3 and LC3-labeled structures, suggesting a selective degradation mechanism of 
NLRP3.81 In addition, mTOR signaling pathway is involved in autophagy activation. Autophagy intervention may 
regulate NLGRP3 activation by regulating mTOR and NLGRP3 binding.79 Perforation of the plasma membrane is a sign 
of pyroptosis. Plasma membrane perforation leads to the leakage of cell contents and the release of inflammatory 
cytokines.82 Lysosomes can act as a membrane repair mechanism under autophagy activation.83,84 With the activation of 
small GTP-enzymes, lysosomes fuse with the plasma membrane and release degradation products via extravasation 
pathways that may repair thermalized perforations and promote cell survival.85

Impaired autophagy accelerates PS-induced pyroptosis of NP cells.86 VX-765, an inhibitor delivering caspase-1, 
inhibits inflammatory body activation and pyrogenesis, hence improving the progression of intervertebral disc degenera-
tion in vivo. These studies indicate the deleterious role of pyroptosis in intervertebral disc degeneration and the protective 
role of autophagy in pyroptosis of NP cells.

Treatment of IVDD with Traditional Chinese Medicine
The treatment of LIDH, especially the treatment of traditional Chinese medicine is very important and necessary. At 
present, although a large number of conservative treatments are available, LIDH patients are still well treated. In 
addition, there are certain national characteristics in the conservative treatment of LIDH in different countries, but it is 
still difficult to widely apply these methods. How to select a conservative treatment method with less side effects and low 
cost has become a common concern for doctors and patients with LIDH. Among the non-surgical treatment methods, 
some TCM therapies such as acupuncture, massage, and Chinese herbal medicine are especially favored by patients with 
LIDH. Chinese medicine has developed its own unique theory, diagnosis and treatment system in Asian countries, 
especially China, after thousands of years of development. In the past few decades, these TCM therapies have been 
increasingly used worldwide and are known for their important role in the prevention and treatment of various diseases 
including LIDH.87

Under various adverse stimuli, NP cells enhance their ability to clear damaged tissues through autophagy, suggesting 
that autophagy plays a key role in protecting the survival of NP cells and delaying the course of IVDD. Studies have 
shown that traditional Chinese medicine YQHXR can promote the absorption of ruptured lumbar disc herniation to 
a certain extent.88 Dai Feng et al studied the protective effect of Yiqi Huoxue recipe on IVDD by promoting autophagy, 
which provided a reference for the clinical treatment of IVDD with Yiqi Huoxue recipe. Fu et al found that lumbar spine 
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instability (LSI) in mice caused histological changes of intervertebral disc degeneration, interrupted stroma metabolism, 
activated Wnt signaling in VD tissues, promoted apoptosis of IVD cells, sensory nerve invasion into the annulus fibrosus, 
and induced focal death.89 Maltol can improve IVDD by inhibiting the PI3K/AKT/NF-κB pathway and regulating 
NLRP3 inflammasome-mediated focal disc death.90

IVDD is a complex pathological process, which is affected by nutritional factors, mechanical factors and body 
metabolism. The specific mechanisms in the disease process of IVDD have not been fully elucidated. Autophagy and 
pyroptosis play a key role in the occurrence and development of IVDD. In recent years, the experimental research on the 
mechanism of delaying IDD through the signaling pathway of traditional Chinese medicine has become more and more 
in-depth. Moreover, the balance of autophagy in intervertebral disc cells and the effect of autophagy on pyrocytosis will 
not only expand the knowledge of molecular pathogenesis of IVDD, but also provide new ideas for the treatment and 
prevention of intervertebral disc degeneration and the exploration of the therapeutic value of traditional Chinese 
medicine.

Conclusions
The traditional treatment methods of IDD can no longer meet the patient’s expectations for prognosis and their needs for 
quality of life. In recent years, autophagy has attracted widespread attention and in-depth exploration as a research 
hotspot. At present, most studies are still in the in vitro trial stage, and their exact clinical effects still need to be verified. 
How to regulate the levels of pyrocytosis and autophagy of intervertebral disc cells to the optimal level to minimize cell 
apoptosis is a major challenge in clinical application. However, it can be foreseen that therapies targeting pyrocytosis and 
autophagy related pathways will provide more options for the clinical treatment of IDD.
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