
RESEARCH ARTICLE

Nonlinear dynamics based machine learning:

Utilizing dynamics-based flexibility of

nonlinear circuits to implement different

functions

Behnam KiaID
1, Allen Mendes1, Akshay Parnami1, Robin George1, Kenneth Mobley2,

William L. DittoID
1*

1 Nonlinear Artificial Intelligence Laboratory, Department of Physics, North Carolina State University,

Raleigh, North Carolina, United States of America, 2 First Pass Engineering, Castle Rock, Colorado, United

States of America

* wditto@ncsu.edu

Abstract

The core element of machine learning is a flexible, universal function approximator that can

be trained and fit into the data. One of the main challenges in modern machine learning is to

understand the role of nonlinearity and complexity in these universal function approxima-

tors. In this research, we focus on nonlinear complex systems, and show their capability in

representation and learning of different functions. Complex nonlinear dynamics and chaos

naturally yield an almost infinite diversity of dynamical behaviors and functions. Physical,

biological and engineered systems can utilize this diversity to implement adaptive, robust

behaviors and operations. A nonlinear dynamical system can be considered as an embodi-

ment of a collection of different possible behaviors or functions, from which different behav-

iors or functions can be chosen as a response to different conditions or problems. This

process of selection can be manual in the sense that one can manually pick and choose the

right function through directly setting parameters. Alternatively, we can automate the pro-

cess and allow the system itself learn how to do it. This creates an approach to machine

learning, wherein the nonlinear dynamics represents and embodies different possible func-

tions, and it learns through training how to pick the right function from this function space.

We report on how we utilized nonlinear dynamics and chaos to design and fabricate nonlin-

ear dynamics based, morphable hardware in silicon as a physical embodiment for different

possible functions. We demonstrate how this flexible, morphable hardware learns through

learning and searching algorithms such as genetic algorithm to implement different desired

functions. In this approach, we combine two powerful natural and biological phenomenon,

Darwinian evolution and nonlinear dynamics and chaos, as a dynamics-oriented approach

to designing intelligent, adaptive systems with applications. Nonlinear dynamics embodies

different functions at the hardware level, while an evolutionary method is utilized in order to

find the parameters to implement the right function.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kia B, Mendes A, Parnami A, George R,

Mobley K, Ditto WL (2020) Nonlinear dynamics

based machine learning: Utilizing dynamics-based

flexibility of nonlinear circuits to implement

different functions. PLoS ONE 15(3): e0228534.

https://doi.org/10.1371/journal.pone.0228534

Editor: Andrew Adamatzky, University of the West

of England, UNITED KINGDOM

Received: February 21, 2019

Accepted: January 17, 2020

Published: March 3, 2020

Copyright: © 2020 Kia et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All data may be found

in the paper itself.

Funding: This research was supported by an ONR

Grant N00014-16-1-3056 to WD. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript. The funder (First Pass Engineering)

provided support in the form of salaries for authors

[K.M.], but did not have any additional role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. The

http://orcid.org/0000-0003-2547-2963
http://orcid.org/0000-0002-7416-8012
https://doi.org/10.1371/journal.pone.0228534
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228534&domain=pdf&date_stamp=2020-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228534&domain=pdf&date_stamp=2020-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228534&domain=pdf&date_stamp=2020-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228534&domain=pdf&date_stamp=2020-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228534&domain=pdf&date_stamp=2020-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0228534&domain=pdf&date_stamp=2020-03-03
https://doi.org/10.1371/journal.pone.0228534
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Introduction

The human brain is the most complex, sophisticated system yet known to us, and nonlinear

dynamics play a crucial role in the brain and in the way the brain operates, processes informa-

tion, and learns [1,2,3]. To engineer any system that emulates, simulates, or imitates the brain’s

functionality, there usually must be some form of nonlinearity built into the system. For exam-

ple, a nonlinear dynamics-based cognitive prosthesis was designed to restore long-term mem-

ory [4]. In another example a nonlinear activation function is a fundamental element used by

multilayer neural networks and deep learning [5] to obtain a universal function approximator

[6]. In neuromorphic engineering, where the goal is to design and fabricate a brain-like system

on silicon, neurons are highly nonlinear elements [7].

The main premise and advantage of nonlinear dynamics is that a simple nonlinear system

is fully capable of exhibiting diverse, complex behaviors. Living systems by utilizing nonlinear

dynamics can exhibit diverse and complex behaviors [8]. These systems can explore many dif-

ferent behaviors or reactions that their nonlinearity provides to them and adaptively select the

ones that best meet their needs and conditions. Langton investigated this subject in context of

computation in his seminar paper titled “Computation at the edge of chaos: Phase transitions

and emergent computation [9],” and many others followed his footsteps [10].

There is a basic and fundamental connection between nonlinear dynamics and computa-

tion, intelligence, and learning. We are exploring such a connection through the design and

fabrication of a nonlinear dynamics based morphable silicon circuitry. Our main approach

towards achieving computation and learning is that 1) nonlinear dynamics provides diversity

in terms of different types of functions the system can implement (through containing many

different dynamical patterns) and morphability (through controls) which creates a suitable

mechanism for plasticity and learning in which we can pick and choose different functions

from the available set of functions. 2) Our system is fundamentally implemented at the hard-

ware level as opposed to fundamentally software-based learning methods. In nature there is no

software, it is the physical organism itself that shows learning and intelligence, and the intelli-

gence is intertwined with the dynamics and physics of the organism. These two hypotheses

combined propose that we need a nonlinear dynamics-based hardware that provides flexibility

and plasticity at the hardware level as a platform for learning and intelligence.

It is important to note that neuromorphic engineering follows a similar path in the sense

that its focus is to design and fabricate neurons and neural networks in silicon with the hope

that the fabricated nonlinear hardware will exhibit brain-like behavior and intelligence. How-

ever, the difference between our approach and neuromorphic engineering is that neuro-

morphic engineering stays faithful to the dynamics of neurons and tries to replicate their

behavior, whereas we pick and choose the right type and amount of nonlinearity (and chaos)

and utilize it for everyday applications.

There are also multiple other reported dynamics-based approaches to machine learning

and artificial intelligence. One approach is called reservoir computing [11], where complex

dynamics provides universality–the capability of a system to implement any other function

from a specific class. Our approach is similar to such dynamics-based approaches to designing

a universal function approximator but with the addition that we have instantiated the complex

dynamics through the design and fabrication of nonlinear circuits.

Recently, we designed and fabricated an integrated circuit for a nonlinear dynamics-based

morphable logic block in which the complex nonlinear dynamics of a transistor circuit is uti-

lized to implement reprogrammability and morphability [12]. The very same circuit was capa-

ble of implementing all different two-input, one-output digital functions due to the flexibility

contributed by its inherent nonlinearity. The fabricated nonlinear circuit could be instantly

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 2 / 17

specific roles of these authors are articulated in the

‘author contributions’ section.

Competing interests: The funder (First Pass

Engineering) provided support in the form of

salaries for authors [K.M.], but did not have any

additional role in the study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. This does not alter our adherence

to PLOS ONE policies on sharing data and

materials.

https://doi.org/10.1371/journal.pone.0228534


reprogrammed by providing different digital control inputs in order to implement different

digital functions. These programing inputs changed the bifurcation parameters of the nonlin-

ear circuit, or perturbed the initial condition of the nonlinear circuit, and therefore changed

the behavior of the circuit in a controlled manner and the function that it implements [12].

A full description of this chaos-based approach to computing has been previously reported

[12,13]. However, the main idea is briefly reviewed here. A dynamical system maps its initial

state to future states, so one can observe and consider it as a function that maps inputs (the ini-

tial state) to the outputs (the final state). In this context, the inherent dynamics performs the

inputs-outputs mapping, meaning that the functions are dynamically implemented. Therefore,

we call it dynamics-based computing. A nonlinear dynamical system, such as a nonlinear cir-

cuit, has a complex, flexible dynamics, containing many different behaviors and as a result it

can be morphed to implement many different functions. In a nonlinear dynamical system,

there are parameters called bifurcation parameters that change the qualitative behavior of the

circuit. By changing these parameters, one can alter the dynamics of the circuit, and therefore

the type of functions that it can implement. Furthermore, when a nonlinear system is in a cha-

otic regime, it is very sensitive to its initial state or initial conditions. A change to its initial

state can change the future state, and as a result, the type of function that it builds. The number

of such different functions that a nonlinear, complex system can implement exponentially

increases by the evolution time [14]. In a discrete-time dynamical system, evolution time is the

number of iterations that the dynamical system takes before producing the output, whereas in

a continuous-time dynamical system the evolution time is the time interval during which the

system evolves from the initial condition and produces the outputs. This observation is com-

patible with the basic dynamics of nonlinear complex systems, where nearby orbits diverge

and behave very differently as they evolve over time. In a perfect world, where there is no noise

or other limiting factors, the number of such distinct functions that a nonlinear complex sys-

tem can implement exponentially and boundlessly increases. But in a real, practical world,

and in the presence of noise and other nonidealities, just a limited set of such functions can be

robustly obtained. Here we are focusing on implementing an array of logic blocks that each

block is capable of implementing different possible two-input, one-output digital functions.

Each nonlinear dynamics-based morphable (NLDBM) logic block in our design receives 4

binary control inputs. Two control inputs set the bifurcation value of the NLDBM logic block,

and the other two perturb the initial state of the circuit. A pictorial block diagram of the logic

block is shown in Fig 1. A two-bit control input, Cp, along with the data inputs I, set the initial

Fig 1. Block diagram for a NLDBM logic block.

https://doi.org/10.1371/journal.pone.0228534.g001

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0228534.g001
https://doi.org/10.1371/journal.pone.0228534


state of the nonlinear circuit. The circuit then evolves under its nonlinear dynamics. This non-

linear dynamics can be altered with two-bit bifurcation parameter, Cλ. By using these control

inputs, one can manually or adaptively morph the NLDBM logic block to implement different

two-input, one-output functions [13].

In this paper we report our newest fabricated nonlinear dynamics-based morphable

(NLDBM) hardware, comprised of a series of NLDBM logic blocks and show how it’s inherent

circuit-level and dynamics-based morphability can provide us with a novel platform to imple-

ment representation and learning in the form of morphable hardware and evolution.

In our NLDBM hardware the control inputs (whose values are the parameters we need to

learn) and the outputs are both discrete-valued, for training we use evolutionary computation

such as genetics algorithm, which is easier to implement for such a discrete optimization

problem.

Evolvable hardware is not a new concept. Usually evolvable hardware is implemented on a

reprogrammable computing system, such as Field Programmable Gate Arrays, FPGAs [15],

Field-Programmable Transistor Arrays, FPTAs [16] and field programmable analog arrays,

FPAAs [17]. The intrinsic programmability and flexibility within these platforms, combined

with an evolutionary computation algorithm to adjust and program the flexibility, results in an

evolvable hardware that can adaptively evolve to implement a given task or adjust itself to the

environment. The aim of this paper is not to introduce the concept of evolvable hardware,

since evolvable hardware has been known for many years. Neither is the aim of this specific

paper to solve difficult application examples that others have failed to solve. Our aim in this

paper is to combine 1) NLDBM hardware and the inherent dynamics-based flexibility and

universality that comes with it, with 2) biologically inspired evolution and learning, in order to

obtain an intelligent, evolvable hardware and demonstrate it as a novel platform to be consid-

ered for implementing learning systems. We should note that the application examples that we

present in this article are relatively simpler compared to other published evolvable hardware

applications. The reason is that we designed and fabricated our own NLDBM hardware plat-

form along with our own interface circuit, and the software. By contrast, in other conventional

evolvable hardware implementations, off the shelf, commercial-grade digital reconfigurable

hardware and its accompanying CAD tools that were already perfected by their manufacturers

were utilized. Because of our more basic hardware/software platform, we were limited to sim-

pler examples that we could implement on our platform as a proof of concept. However, these

simple, but nontrivial examples demonstrate the main concepts of our approach and its

potentials.

The main difference between conventional evolvable hardware and the dynamics-based

evolvable hardware reported in this paper is that in our approach different functions coexist

within the same hardware, whereas in conventional FPGAs different functions need to be

loaded into the hardware. More specifically, in a NLDBM logic block, the complex dynamics

of the circuit embodies different types of functions, and therefore one can dynamically and

instantly pick and choose different functions by providing different sets of inputs. In sharp

contrast, in conventional look-up-table based FPGAs, different functions need to be loaded to

the system. This reprogramming usually requires halting the system and loading the new pro-

graming data into the look-up-tables. Learning process includes trying different sets of the

control inputs, observing the outputs, and adjusting the control inputs accordingly and iterat-

ing this process until the system behavior converges to an optimal solution. As a result, when

the machine learns by trying and experimenting, it is very important to the system to be able

to switch from one function to another quickly. Previously we have discussed how a simple cir-

cuit contains exponentially many different functions and how easy it is switch from one func-

tion to another [12,14].

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 4 / 17

https://doi.org/10.1371/journal.pone.0228534


There are similarities and differences between our work and neural networks. Both systems

are programmable (trainable) function approximators. Please see [18,14] for discussions on

nonlinear dynamics as flexible, programmable function approximator. Both of them receive

inputs, undergo some nonlinear transformation, and an output is produced from the final

state. But they are different in the sense that there are no synoptic weights in our approach in

order to program the system, instead we use dynamical parameters in order to alter the system

and the function it implements. The focus in our approach is mostly on the nonlinear dynamics

of the system and how it can implement different functions. But in conventional neural net-

works although nonlinearities exist in the form of nonlinear activation function, such nonline-

arities and their effects on the computation is not necessarily the primary point of interest.

Nonlinear dynamics-based morphable hardware

In this section we report our newest, latest fabricated hardware that we use as a platform for

learning. We fabricated a NLDBM hardware that consists of a column of NLDBM logic blocks

that can be instantly reprogrammed to implement different operations and functions. The out-

puts of this column of NLDBM logic blocks are fed back to the input lines of the same column,

thereby enabling a single column to implement digital circuits that would otherwise require

multi-column designs. The NLDBM hardware has the following architecture, shown in Fig 2.

The designed layout for this architecture is presented in Fig 3.

The architecture of the new NLDBM hardware is composed of four two-input, one-output

NLDBM logic blocks arranged in a column. These individual NLDBM logic blocks are the

same morphable logic block that we introduced before [12], but now we have fabricated four

of them in a column. Each NLDBM logic block is instantly reconfigurable. The main feature of

Fig 2 architecture is that it preserves the instant reconfigurability of each NLDBM logic block,

and transforms it to instant reconfigurability of the whole system, where the architecture can

be instantly reprogrammed to implement higher-level functions.

These four NLDBM logic blocks in the column can receive new inputs from the input pins

of the chip, or the outputs from the previous computation can be fed-back to the blocks again.

There are multiplexers that can be programmed to select different inputs to each input line of

each NLDBM logic block. Both the NLDBM logic blocks and the multiplexers are

programmable.

By changing the programing inputs, one can program the hardware to implement different

functions and behaviors. By letting the hardware itself evolve and learn how to morph and

adjust its inherent flexibility, the architecture shown in Fig 2 becomes an evolvable, adaptive

hardware platform that can be trained to implement different operations with no need for

direct programing. The complexity of the operations the hardware can implement depends on

the number of times the outputs of the hardware are fed back and used as the new inputs. Each

process of feeding back the outputs to the inputs is effectively equivalent to adding a new col-

umn of logic when this hardware’s operation is unrolled over time. In this article we do not

discuss the number of functions or the level of complexity of such functions that the hardware

can implement. However, we bring the attention of the readers to the results of [19], where it

was shown that the power of a logical circuit in implementing different functions exponentially

increases by adding new columns to the circuit. In this article, we mostly focus on implement-

ing exemplary functions in order to demonstrate how the hardware can be trained to imple-

ment different functions.

The NLDBM hardware was designed using Cadence software suite, and we used the 0.6μm,

5-V On-Semi C5 process to design the circuits, and the MOSIS service to fabricate it. The fab-

ricated chip was placed in a 40-pin package. This specific chip packaging came with 40 pins,

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0228534


which put a limit on the number of data inputs, control inputs to program, and verification

test pins, that we could have and access. As a result, we had to make some compromises. For

example, instead of having separate bifurcation parameter inputs for different NLDBM logic

block in the column, all four of them share the same control inputs. This has a limiting effect

on the flexibility of the hardware but in the future, this can be overcome with more sophisti-

cated designs as needed.

Training the hardware

In the previous section we introduced our new NLDBM hardware, where the nonlinearity

gives us flexibility and therefore a function space to choose from. In this section we focus on

Fig 2. The architecture of the new NLDBM hardware.

https://doi.org/10.1371/journal.pone.0228534.g002

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 6 / 17

https://doi.org/10.1371/journal.pone.0228534.g002
https://doi.org/10.1371/journal.pone.0228534


training such morphable hardware, in which the NLDBM hardware learns to implement a

desired function. The key performance measures used in this research in order to assess the

results are the reliability, consistency, and repeatability of experimental observations from the

fabricated hardware. More specifically, when we train the hardware (or a model of the hard-

ware) to implement a given function, and we obtain a set of control values that program the

hardware to implement the function, we apply these control values repeatedly and observe the

output of the hardware to ensure that the hardware implements the function consistently. We

repeated this process tens of time, and during different hours of the day. The results that we

report in this paper are checked to be repeatable, and robust to noise and room temperature

variations. It is also worth to note that there is an inherent robustness built into the results

obtained from evolutionary methods. If a set of chromosomes, here control values, do not

result in robust behavior of the circuit, the population is not going to converge to said control

values. Therefore, the population will keep evolving until it converges to a set of control values

that results in consistent, reliable behavior across different members of the population.

Machine learning has been a very successful approach to artificial intelligence, in which the

machine–here the NLDBM hardware–learns through examples how to implement a given

task. In supervised machine learning, we have access to labeled training data. Labeled training

data is a set of input, output 2-tuples. This training data tells the machine what outputs we

expect it to produce for different given input data. The learner, which can be a neural network,

NLDBM hardware, etc., is a parametric universal function approximator that for different

parameter values implements different functions. In a neural network, the parameters are the

weights and bias values, and in our NLDBM hardware the parameters are the control input

values to program the NLDBM logic blocks and to connect them together through the multi-

plexers. Now the question of learning is reduced to which parameter values shall we use in
order to implement a desired function. This is the place that the training data becomes handy.

We are looking for a function that can fit the training data–maps the inputs to the outputs. To

do so, we usually define a loss function that measures and quantifies discrepancy between the

expected outputs and what the learner, here the NLDBM hardware, produces. Therefore, the

problem in hand can be morphed to an optimization problem, in which we search for parame-

ters that minimizes this cost function. Finding optimal parameters for highly nonlinear learn-

ers such as multilayer neural networks is a non-convex optimization problem, and in terms of

computational complexity, it is a hard problem and there is no algorithm that can perform this

task in polynomial time [20]. However, there are heuristic methods such as stochastic gradient

descent methods or genetics algorithms that can help us to find near optimal parameters that

result in satisfactory performance for these learners.

Fig 3. The designed layout. 4 NLDBM logic blocks and 8 multiplexers are labeled.

https://doi.org/10.1371/journal.pone.0228534.g003

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 7 / 17

https://doi.org/10.1371/journal.pone.0228534.g003
https://doi.org/10.1371/journal.pone.0228534


There are two important notes related to machine learning in general and our work

reported in this article in particular. First, statistical learning is more than just an optimization

problem. In statistical learning, we need to make sure that the learner can generalize beyond

the examples in the training set, and can perform well on new, unseen data as well [21]. In this

article, we are training the NLDBM hardware to implement functions that have a small set of

inputs. Therefore, during training, we can give the entire input space of the problem to the

learner and train it on it. As a result, generalization is not an issue for this specific type of prob-

lems because the learner observes and trains on the entire input space. But for any other prob-

lem that the hardware is trained on a sample set of the input space (not the entire input space),

generalization needs to be addressed properly. The second note is more of a philosophical

nature. It is a common knowledge that highly nonlinear learners such as multilayer neural net-

works are extremely powerful in modeling and representation, but they are hard to train [19].

As a result, for many years machine learning practitioners preferred simpler learners, in which

training is a convex optimization problem, and therefore tractable to solve. But this simplicity

of training came with a catch; simpler learners are much less capable than deep multilayer net-

works in representation and learning. The current revolution of deep learning started when

researchers found a path to train very capable, but hard-to-train nonlinear multilayer neural

network [22]. The point is that working with highly nonlinear learners is challenging, but

extremely rewarding at the same time. As a result, nonlinearity should not repel us from study-

ing such new models, but it should be a driving force to study more complex nonlinear sys-

tems. This has been our motivation to study and investigate NLDBM hardware for performing

different computation and learning tasks.

As discussed in the introduction, training the NLDBM hardware is a discrete optimization

problem, and methods such as genetics algorithm are easier to develop and apply for such

problems. We follow two separate approaches described below toward implementing this

evolvable NLDBM hardware.

1. Model-based learning. In this approach we use a model of NLDBM hardware, and let this

model evolve and learn how to implement or solve a given function or problem.

2. Direct training of the fabricated chip. In this approach, there is no modeling involved;

instead the actual fabricated NLDBM hardware is directly trained and evolved to imple-

ment the desired functions.

Model-based learning

The first approach is model-based in the sense that we used a model of the Fig 2 architecture

combined with an evolutionary computation algorithm to evolve this model to implement the

desired operation or function. When the evolution is successfully finished, we take the result-

ing programing inputs and apply them to the fabricated NLDBM hardware in order to verify

the accuracy of the results. As evolution is done externally and on a computer, this approach is

much faster than the direct training method.

Our architecture is composed of four NLDBM logic blocks. Each logic block is modeled

with its instruction set, which determines which function each NLDBM logic block imple-

ments when different control inputs are applied. Each NLDBM logic block receives four con-

trol bits, and can implement different two-input, one-output combinational functions. We

applied different control inputs to each NLDBM logic block inside the fabricated chip and

observed the association between control inputs and the type of function that the logic block

implements. Table 1 is the instruction set obtained for these NLDBM logic block. The first

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 8 / 17

https://doi.org/10.1371/journal.pone.0228534


column is the four-bit control inputs (C1C2C3C4.) to program the logic block, and the second

column is the function number that the logic block implements. Two control inputs C1 and

C2, are basically Cp in the Fig 1 block diagram, which perturb the initial state of the nonlinear

circuit. Two other control inputs, C3 and C4, are the bifurcation inputs, Cλ. This instruction

set is a part of the model for the fabricated hardware. Note that all four NLDBM logic blocks

have the same instruction set because they have the identical circuit design and implementa-

tion. Of course, there are some fabrication variations, but those variations are not great enough

to change the instruction set and we observe the same instruction set for different instances of

the logic block on the chip.

The function numbers in the second column of Table 1 instruction set is nothing more

than a unique number to label and identify different functions. The function number for each

function is obtained based on the outputs of the function when different combinations of the

inputs are applied to the logic block. As an example, when different input combinations 00, 01,

10, and 11 are applied to the NLDBM logic block, and the outputs are, as an example, 1, 0, 1,

and 0 respectively as shown in Table 2, we label the function as function number 10 because 10

is the outputs in decimal number system: 1(MSB)×23+0×22+1×21+0(LSB)×20 = 10.

The rest of the model is concerned with the connections in terms of how the inputs are con-

nected to the NLDBM logic block via multiplexers, how the outputs of the logic blocks are fed

back to their inputs, and how these connections can be programmed. We also included the

limitation imposed by the packaging in the model as well. Also, for simplicity, we apply the

new inputs to the first column, while the other columns receive the outputs of the logic blocks

from their previous columns as their inputs.

NLDBM hardware provides flexibility at the hardware level, and we use an evolutionary

computation algorithm to evolve and train this inherently flexible hardware. The main idea of

Darwinian evolution is that the individuals among a species that are more fitted to an environ-

ment or a given situation are more likely to survive and reproduce. Those better-fitted parents

pass on their good genes to offspring comprising the next generation of species that should be

more fitted to the environment than the previous generation. This type of natural selection,

combined with random mutations during reproduction, provide a path for a species to evolve

Table 1. The instruction set of a single fabricated NLDBM logic block.

Control bits (C1C2C3C4) Functions

0000 13

0001 8

0010 9

0011 8

0100 5

0101 1

0110 1

0111 1

1000 13

1001 1

1010 9

1011 0

1100 5

1101 1

1110 5

1111 1

https://doi.org/10.1371/journal.pone.0228534.t001

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 9 / 17

https://doi.org/10.1371/journal.pone.0228534.t001
https://doi.org/10.1371/journal.pone.0228534


towards an optimal generation that has adapted to the environment or the given problem. Fol-

lowing this approach to optimization, different heuristic optimization and learning methods

are introduced [23]. Evolutionary computation is an umbrella term that is used for different

algorithms that mimics natural, Darwinian evolution. And different variations of each algo-

rithm have been reported. The flowchart for the technique that we used in this research as a

simple imitation of Darwinian evolution is depicted in Fig 4. This technique can be considered

as a genetic algorithm without crossover, which has been used in evolvable hardware design

before [24]. We used this technique because of its simplicity. However, we expect that with fur-

ther research on application of different types of evolutionary computation or other learning

methods on NLDBM hardware results can be further improved.

Consider the control inputs to the NLDBM hardware as the genotype, and the operation

that the programmed NLDBM hardware implements as the phenotype. The final goal is to

find specific control inputs that program the NLDBM hardware to implement the desired

operation. Under the genetic algorithm, the flexible NLDBM hardware evolves and morphs in

order to implement the desired operation. Here we have focused on simple, basic digital func-

tions as objective functions that we need the hardware to implement. These functions can be

presented in a truth table, and this truth table tells which outputs the function should produce

for different input values. This table is basically our training dataset. Our goal is to train the

NLDBM hardware to implement this table. More specifically:

1. The algorithm starts from a random population, in this case random initial control inputs.

The algorithm randomly sets the programing inputs and obtains a fitness value for the

resulting “individual” (programmed NLDBM hardware model) by comparing the outputs

against the expected outputs—the desired truth table. With each correct output bit, the

individual is awarded with one point. The final fitness value is the number of these points

combined. Of course it is very unlikely that the initial random control inputs will program

the morphable hardware to implement the desired truth table. Therefore, the NLDBM

hardware model has to undergo evolution to perfect its performance. The most fitted ran-

dom individual–the one with the highest fitness value–is found and this individual will be

used as the parent in step 2.

2. A new population of offspring is obtained from the parent based on mutation. Mutation is

implemented by simply flipping some of the control bits. The number of bits flipped, also

known as mutation rate, changes over time from generation to generation as the individuals

evolve and approach the optimal individual and finial solution. At the beginning we start

from a high mutation rate (flipping a lot of bits) in order to quickly explore the solution

space. But then as the population starts to converge to the final optimal solution, we reduce

the mutation rate, therefore performing the final fine-tuning.

3. The most fitted offspring–the one with the highest fitness value–is found, and if its fitness

value is greater or equal to the fitness value of the parent, it replaces the parent, otherwise

we continue with the original parent.

Table 2. An example function implemented by the two-input, one-output NLDBM logic block.

I1 I2 Output

0 0 1(MSB)

0 1 0

1 0 1

1 1 0(LSB)

https://doi.org/10.1371/journal.pone.0228534.t002

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0228534.t002
https://doi.org/10.1371/journal.pone.0228534


Fig 4. Flowchart for the genetic algorithm used in this article.

https://doi.org/10.1371/journal.pone.0228534.g004

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 11 / 17

https://doi.org/10.1371/journal.pone.0228534.g004
https://doi.org/10.1371/journal.pone.0228534


4. This completes one iteration of the simple genetic algorithm. If the desired maximum fit-

ness is achieved, here correctly implementing the entire truth table with no issue, the evolu-

tion stops and it produces the final control inputs. If not, the evolution process repeats

from step 2. If the algorithm reaches the maximum and has to be restarted with some other

initial values and settings from step 1.

Addition operation. Imagine the aim is to perform an addition operation and the size of

operands is two-bit each. The truth table (the training data) for this two-bit addition is shown

in Table 3.

A and B are two two-bit operands, and Q is the three-bit output. We set the number of col-

umn iteration of the final design to five. This column iteration number dictates how many

times the outputs of the single-column design in Fig 2 are fed back to the input lines to per-

form more computation on them before producing the final outputs. When the outputs of the

single-column fabricated hardware are fed back to the inputs 5 times, the result is equivalent

to Fig 5 unrolled architecture, which contains five separate columns of NLDBM logic blocks.

The NLDBM logic blocks can be, and usually are, programmed differently for each column.

Therefore, we will have different control inputs for different columns.

After 148,844 iterations of the genetic algorithm and a population size of 20, the algorithm

converges to control inputs that program the NLDBM hardware to implement the addition

operation.

The genetic algorithm was relatively slow to converge and it needed 148,844 iterations to

converge, when one would expect a faster convergence for an addition operation of two-bit

operands. The reasons for this slow convergence were the limitations that we had imposed on

the morphable hardware model due to factors such as packaging where we have two common

control inputs for all logic blocks. Such constrains and limitations greatly reduced the flexibil-

ity of the fabricated NLDBM hardware and it took a longer time for the algorithm to find a set

of control inputs in this constrained solution space. In our future hardware designs, where we

will not have such limitations and each logic block will have its own separate control inputs,

Table 3. Truth table for a two-bit addition operation.

A1 A0 B1 B0 Q2 Q1 Q0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 1

0 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 0

1 0 1 1 1 0 1

1 1 0 0 0 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 1

1 1 1 1 1 1 0

https://doi.org/10.1371/journal.pone.0228534.t003

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 12 / 17

https://doi.org/10.1371/journal.pone.0228534.t003
https://doi.org/10.1371/journal.pone.0228534


we would expect much faster convergence because the full flexibility and reconfigurability of

all the logic blocks will be at our disposal.

Once we obtained the solution from the evolved model, we confirmed the results by apply-

ing the programing inputs to the fabricated chip to test that it was performing the desired

operation. As a visual example, see Fig 6, where the output waveforms of the fabricated chip

are shown for four addition operations in a row. We used the results of the genetic algorithm

as the control inputs, and provided four sets of two-bit binary data inputs (11, 11), (00, 00),

(10,10), and (11,10) as operands. Three output bits Q2Q1Q0 can be read from the waveform

for the different input sets as 110, 000, 001, and 101, which are the expected outputs for an

addition operation. Note that each instruction requires 5 clocks, because we set the number of

column iterations to 5. At each clock one iteration of the column is executed.

To ensure reliability and repeatability of the results, we applied a simple statistical test. We

repeated each experiment 10 times for each set of inputs and operations and collected the

results. We only accept results that are consistent across all runs of the experiment. All the

results reported in this article have passed this statistical test to insure reliability and robustness

of the results.

Fig 5. The unrolled architecture effectively equivalent to the case when the outputs of the fabricated circuit are fed back to the

inputs five times.

https://doi.org/10.1371/journal.pone.0228534.g005

Fig 6. Observed output waveforms from NLDBM hardware. The results of four addition outputs can be observed

from the outputs.

https://doi.org/10.1371/journal.pone.0228534.g006

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 13 / 17

https://doi.org/10.1371/journal.pone.0228534.g005
https://doi.org/10.1371/journal.pone.0228534.g006
https://doi.org/10.1371/journal.pone.0228534


Direct training of the fabricated chip

In this section, our fabricated hardware undergoes training to learn to implement desired

functions. The genetic algorithm as the training algorithm applies different programing inputs

to the physical NLDBM hardware, and obtains the real output from the fabricated hardware to

determine the fitness value of the current circuit design. The example function that we use

here is Hamming weight. The Hamming weight of a binary string is the number of “1”s in it.

Table 4 shows three-bit streams, and we want to count the number of 1’s.

Similar to our model-based learning, we made some assumptions and set some parameters

manually, although we could have let the system learn them as well. We set the number of col-

umn iterations to three, assuming that three columns are enough to implement the Hamming

weight of three-bit inputs. The inputs are fed to the first column, and the output of the three

logic blocks from the third iteration of the column are considered to be the outputs.

We used the same previously described genetic algorithm for training, but with the impor-

tant difference that now instead of using a model of the chip, the fabricated chip itself is in the

learning loop, the circuit receives the data and control inputs, and the outputs are read from

the output pins of the circuit. The algorithm converged after 1,240 iterations, and the NLDBM

hardware was able to perform the Hamming weight calculation.

As a visual demonstration, Fig 7 shows the output waveforms of the fabricated hardware for

five Hamming weight calculations in a row. Five different strings of inputs are given to the

Table 4. Hamming weight function as an example objective function. Q1Q0 presents the number of 1’s in the

A2A1A0 stream.

A2 A1 A0 Q1 Q0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

https://doi.org/10.1371/journal.pone.0228534.t004

Fig 7. Observed output waveforms from NLDBM hardware. The hardware calculates Hamming weights of five

different inputs.

https://doi.org/10.1371/journal.pone.0228534.g007

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 14 / 17

https://doi.org/10.1371/journal.pone.0228534.t004
https://doi.org/10.1371/journal.pone.0228534.g007
https://doi.org/10.1371/journal.pone.0228534


hardware, and the hardware produces two-bit outputs, Q1Q0, as the output. Note that in this

example each instruction is executed in 3 clocks, because we set the number of column itera-

tions to 3.

This direct training of the NLDBM hardware itself instead of using models has interesting

advantages. For example, the NLDBM hardware can adapt to internal or external imperfec-

tions or changes or faults that were not captured within the model. In our previous work [25]

we demonstrated a NLDBM logic block that was overheated to a point that its operation and

performance changed, but then it was manually reprogrammed to perform the same opera-

tions reliably, albeit with a different set of control inputs. That idea, in conjunction with evolv-

able, self-learning nonlinear hardware that we introduced in this article, results in an adaptive

nonlinear hardware that can also tolerate faults and withstand variable environments and

conditions.

Conclusions

We were able to combine nonlinear dynamics and chaos theory with Darwinian evolution,

two popular and powerful natural, biologically-oriented concepts, in order to design and fabri-

cate VLSI circuitry and demonstrate a proof of concept implementation of nonlinear dynam-

ics-based learning. We introduced our latest fabricated nonlinear dynamics-based morphable

(NLDBM) hardware, which is morphable and flexible, and can be reprogrammed to imple-

ment different functions. We demonstrated how this NLDBM hardware can learn to imple-

ment different functions with no need for direct programing.

We also showed how a model of the NLDBM hardware can be used for training, and how

the NLDBM hardware itself can be directly trained to evolve and learn to implement different

objective functions.

The main conclusion of our paper is that nonlinear dynamics and chaos can provide a suit-

able platform for learning. Different functions coexist within the complex dynamics of nonlin-

ear circuits. The system can learn how to morph in order to solve a given problem. In this

context, learning happens at the circuit level by utilizing the inherent dynamics-based morph-

ability of the nonlinear hardware.

In this paper, we have demonstrated the learning capability of the dynamics-based hard-

ware by implementing exemplary functions. Questions such as the learning capacity of the

hardware, optimal training methods to learn different functions, or generalization beyond

the training dataset warrant further investigation.

Author Contributions

Conceptualization: Behnam Kia, Allen Mendes, Akshay Parnami, Robin George, Kenneth

Mobley, William L. Ditto.

Formal analysis: Behnam Kia.

Funding acquisition: William L. Ditto.

Investigation: Behnam Kia, Robin George, Kenneth Mobley, William L. Ditto.

Methodology: Behnam Kia, Kenneth Mobley.

Project administration: William L. Ditto.

Resources: William L. Ditto.

Software: Behnam Kia, Allen Mendes, Akshay Parnami, Robin George, Kenneth Mobley.

Supervision: William L. Ditto.

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 15 / 17

https://doi.org/10.1371/journal.pone.0228534


Validation: Behnam Kia, Akshay Parnami, Robin George, Kenneth Mobley, William L. Ditto.

Writing – original draft: Behnam Kia.

Writing – review & editing: Behnam Kia, William L. Ditto.

References
1. Berger TW, Chauvet G, Sclabassi RJ. A biologically based model of functional properties of the hippo-

campus. Neural Networks. 1994 Jan 1; 7(6–7):1031–64.

2. Song D, Chan RH, Marmarelis VZ, Hampson RE, Deadwyler SA, Berger TW. Nonlinear dynamic

modeling of spike train transformations for hippocampal-cortical prostheses. IEEE Transactions on Bio-

medical Engineering. 2007 Jun; 54(6):1053–66.

3. Rabinovich MI, Muezzinoglu MK. Nonlinear dynamics of the brain: emotion and cognition. Physics-

Uspekhi. 2010; 53(4):357–72.

4. Berger TW, Song D, Chan RH, Marmarelis VZ, LaCoss J, Wills J, et al. A hippocampal cognitive pros-

thesis: multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Transactions on

Neural Systems and Rehabilitation Engineering. 2012 Mar; 20(2):198–211. https://doi.org/10.1109/

TNSRE.2012.2189133 PMID: 22438335

5. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015 May; 521(7553):436. https://doi.org/10.

1038/nature14539 PMID: 26017442

6. Hornik K. "Approximation capabilities of multilayer feedforward networks." Neural networks 4.2 (1991):

251–257.

7. Indiveri G, Linares-Barranco B, Hamilton TJ, Van Schaik A, Etienne-Cummings R, Delbruck T, et al.

Neuromorphic silicon neuron circuits. Frontiers in neuroscience. 2011 May 31; 5:73. https://doi.org/10.

3389/fnins.2011.00073 PMID: 21747754

8. McKenna T. M., McMullen T. A., and Shlesinger M. F. "The brain as a dynamic physical system." Neuro-

science 60.3 (1994): 587–605. https://doi.org/10.1016/0306-4522(94)90489-8 PMID: 7936189

9. Langton CG. Computation at the edge of chaos: phase transitions and emergent computation. Physica

D: Nonlinear Phenomena. 1990 Jun 1; 42(1–3):12–37.

10. Bertschinger Nils, and Natschläger Thomas. "Real-time computation at the edge of chaos in recurrent

neural networks." Neural computation 16.7 (2004): 1413–1436. https://doi.org/10.1162/

089976604323057443 PMID: 15165396

11. Gauthier Daniel J. "Reservoir computing: Harnessing a universal dynamical system." Phys. Rev. Lett

120 (2018): 024102.

12. Kia B, Mobley K, Ditto WL. An integrated circuit design for a dynamics-based reconfigurable logic block.

IEEE Transactions on Circuits and Systems II: Express Briefs. 2017 Jun; 64(6):715–9.

13. Kia B, Lindner J, Ditto WL. Nonlinear dynamics based digital logic and circuits. Frontiers in computa-

tional neuroscience. 2015 May 15; 9:49. https://doi.org/10.3389/fncom.2015.00049 PMID: 26029096

14. Kia Behnam, Lindner John F., and Ditto William L. "A simple nonlinear circuit contains an infinite number

of functions." IEEE Transactions on Circuits and Systems II: Express Briefs 63.10 (2016): 944–948.

15. Haddow PC, Tufte G. An evolvable hardware FPGA for adaptive hardware. In Evolutionary Computa-

tion, 2000. Proceedings of the 2000 Congress on 2000 (Vol. 1, pp. 553–560). IEEE.

16. Keymeulen D, Zebulum RS, Jin Y, Stoica A. Fault-tolerant evolvable hardware using field-programma-

ble transistor arrays. IEEE Transactions on Reliability. 2000; 49(3):305–16.

17. Rocke P, McGinley B, Maher J, Morgan F, Harkin J. Investigating the suitability of FPAAs for evolved

hardware spiking neural networks. InInternational Conference on Evolvable Systems 2008 Sep 21

(pp. 118–129). Springer, Berlin, Heidelberg.

18. Kia Behnam, Lindner John F., and Ditto William L. "Nonlinear dynamics as an engine of computation."

Phil. Trans. R. Soc. A 375.2088 (2017): 20160222.

19. Hastad, John. "Almost optimal lower bounds for small depth circuits." Proceedings of the eighteenth

annual ACM symposium on Theory of computing. ACM, 1986.

20. Blum Avrim, and Rivest Ronald L. "Training a 3-node neural network is NP-complete." Advances in neu-

ral information processing systems. 1989.

21. Goodfellow Ian, et al. Deep learning. Vol. 1. Cambridge: MIT press, 2016.

22. Krizhevsky Alex, Sutskever Ilya, and Hinton Geoffrey E. "Imagenet classification with deep convolu-

tional neural networks." Advances in neural information processing systems. 2012.

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 16 / 17

https://doi.org/10.1109/TNSRE.2012.2189133
https://doi.org/10.1109/TNSRE.2012.2189133
http://www.ncbi.nlm.nih.gov/pubmed/22438335
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.3389/fnins.2011.00073
http://www.ncbi.nlm.nih.gov/pubmed/21747754
https://doi.org/10.1016/0306-4522(94)90489-8
http://www.ncbi.nlm.nih.gov/pubmed/7936189
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1162/089976604323057443
http://www.ncbi.nlm.nih.gov/pubmed/15165396
https://doi.org/10.3389/fncom.2015.00049
http://www.ncbi.nlm.nih.gov/pubmed/26029096
https://doi.org/10.1371/journal.pone.0228534


23. Eiben AE, Smith J. From evolutionary computation to the evolution of things. Nature. 2015 May; 521

(7553):476. https://doi.org/10.1038/nature14544 PMID: 26017447

24. Stomeo E, Kalganova T, Lambert C. Generalized disjunction decomposition for the evolution of pro-

grammable logic array structures. In Adaptive Hardware and Systems, 2006. AHS 2006. First NASA/

ESA Conference on 2006 Jun 15 (pp. 179–185). IEEE.

25. Kia B, Parnami A, Mendes A, Ditto W. Nonlinear dynamics-based adaptive hardware. InAdaptive Hard-

ware and Systems (AHS), 2017 NASA/ESA Conference on 2017 Jul 24 (pp. 200–205). IEEE.

PLOS ONE Nonlinear dynamics based machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0228534 March 3, 2020 17 / 17

https://doi.org/10.1038/nature14544
http://www.ncbi.nlm.nih.gov/pubmed/26017447
https://doi.org/10.1371/journal.pone.0228534

