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Abstract

During sentence production, linguistic information (semantics, syntax, phonology) of words is retrieved and assembled into
a meaningful utterance. There is still debate on how we assemble single words into more complex syntactic structures such
as noun phrases or sentences. In the present study, event-related potentials (ERPs) were used to investigate the time course
of syntactic planning. Thirty-three volunteers described visually animated scenes using naming formats varying in syntactic
complexity: from simple words (‘W’, e.g., ‘‘triangle’’, ‘‘red’’, ‘‘square’’, ‘‘green’’, ‘‘to fly towards’’), to noun phrases (‘NP’, e.g., ‘‘the
red triangle’’, ‘‘the green square’’, ‘‘to fly towards’’), to a sentence (‘S’, e.g., ‘‘The red triangle flies towards the green square.’’).
Behaviourally, we observed an increase in errors and corrections with increasing syntactic complexity, indicating a
successful experimental manipulation. In the ERPs following scene onset, syntactic complexity variations were found in a
P300-like component (‘S’/‘NP’.‘W’) and a fronto-central negativity (linear increase with syntactic complexity). In addition,
the scene could display two actions - unpredictable for the participant, as the disambiguation occurred only later in the
animation. Time-locked to the moment of visual disambiguation of the action and thus the verb, we observed another P300
component (‘S’.‘NP’/‘W’). The data show for the first time evidence of sensitivity to syntactic planning within the P300 time
window, time-locked to visual events critical of syntactic planning. We discuss the findings in the light of current syntactic
planning views.
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Introduction

Language is an important basis for communications with others.

As a speaker, we are constantly constructing streams of thoughts

and planning messages to transfer these thoughts into the outside

world. As a listener, we receive acoustic, visual and contextual

information, and integrate this into a meaningful message.

Whereas speech production and comprehension (or encoding

and decoding) have been separate fields in psycholinguistics, recent

discussions argue that they are interwoven, non-isolated processes,

that largely share underlying mechanisms (see e.g., [1,2]).

Although a lot is already known about online syntactic processing

during comprehension based on electroencephalography (EEG)

and functional magnetic resonance imaging (fMRI), comparably

less is known for the production analogue. A balanced knowledge

is necessary to investigate potential commonalities of syntactic

processing in both modalities. The current study focuses on

syntactic planning during production and addresses the question

when in time syntactic planning for speaking takes place.

There are many accounts on how we apply grammatical rules to

be able to generate meaningful utterances. In general, most

researchers agree that speaking involves conceptual, syntactic, and

phonological planning that leads to articulation. Views differ on

whether we should see these processes as serial stages, unfolding

over time, or more as parallel processes. In classic serial accounts,

speakers carry out syntactic sentence planning in several steps.

First, lexical concepts and corresponding syntactic information

(e.g., whether it is a noun or adjective; lexical selection) are

identified and activated. Secondly, syntactic relations and func-

tions are assigned to each word (e.g., subject versus object;

function assignment) and proper inflections are added (e.g., -s for

plural, -ed for past tense). Finally, words are assembled into so

called syntactic structural frames (constituent assembly) [3,4].

Friederici [5,6] also assumes serial processing, but suggests that

syntactic processes first build a local structure, after which

grammatical and semantic relations are assigned in a utterance.

In an interactive view, Kempen ([2], but see also e.g., [7,8])

describes a localist neural network model in which grammatical

encoding is a task assigned to the Unification space (or U-space).

Via a recursive transition network (RTN), activation spreads

across so-called treelets or syntagma’s that can be bound to

lemmas. A list of annotated lemmas is eventually converted to a list

of word forms. The author notes, however, that although processes

(conceptual, syntactic) are initiated in parallel, the behaviour of the

network may seem serial because some processes may require

more time. The stage-like behaviour is therefore only an emergent
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property of the model. Other views do not assume that a formal

grammar (rules) interacts with a mental lexicon (words). They

rather consider language as an emergent property, emphasizing

the role of the user’s experience [9,10,11,12,13,14]. The role of

experience, however, is also evident in other, more classic views

(e.g., the recursiveness of network models, [2]).

Most theories envision speech production as an incremental

process, although the units of increment differ between views

[4,15,16,17], but might also vary across speakers (e.g., cognitive

capacity, experience), and could be dependent on the situational

context (e.g., time pressure) [4,18,19,20]. Further, sentence

planning can be either lexically or structurally incremental (one

can guide the other, [21]), or a flexible interaction between both.

Evidence from a recent study points towards structural incremen-

tality [22], implying a role for structural assembly in early sentence

production (i.e., preceding lexical retrieval; and in contrast to

psycholinguistic views in which lexical retrieval occurs prior to

syntactic planning; [3,15]).

Whereas there is still the ongoing debate about the exact nature

of syntactic planning, only recently studies have ventured to

investigate the neural aspects of information processing during the

production of complete sentences. Several brain areas have been

reported to be involved in syntactic encoding, including the left

inferior frontal gyrus (LIFG; BA 44/45/47), left posterior medial

temporal gyrus (lpMTG, BA 21), and bilateral supplementary

motor areas (SMA; BA 6) [23,24,25,26,27,28,29]. Not much is

known, however, about the time course of syntactic encoding (see

also [30]). A method of choice to investigate temporal character-

istics of information access is EEG, and its derivative, the event-

related potential (ERP). For single word production, the experi-

mentally elicited lateralized readiness potential (LRP) [31,32,33],

and the N200 go-no go component [34,35,36] have been

extensively studied in single word and noun phrase production.

Based on the LRP and the N200 go-no go results, it has been

estimated that semantic access precedes syntactic access by

approximately 90 ms, which is followed by phonological encoding

after around 40 ms, suggesting incremental planning (but also see

the discussion in [37]). So far, the most direct measure of the time

course of syntactic encoding was carried out via invasive

intracranial electrophysiology (ICE). Sahin et al. [38] used ICE

to record local field potentials (LFPs) near Broca’s area in patients

who had to either read or inflect a word (past/presence or

singular/plural). The recordings revealed a component around

320 ms after target word presentation sensitive to (morpho)syn-

tactic processing. In an ERP study, Marek et al. [39] asked

participants to overtly describe a walk through a 2D grid consisting

of geometric colour figures either in a simple (‘‘go up, go right’’),

medium (‘‘go up to the circle’’), or complex (‘‘go up to the green

circle’’) manner. They found a P300-like component at 350–

500 ms post stimulus onset, distributed over centro-parietal

electrodes, that was more positive for medium and complex

utterance conditions compared to the simple condition. The

authors concluded that the P300 is sensitive to conceptual and/or

syntactic complexity variations.

In summary, electrophysiological studies suggest that syntactic

encoding is carried out around 300–500 ms after stimulus onset.

However, this conclusion is based on indirect measures (LRP/

N200 go-no go paradigms), rather than direct naming; based on

rather artificial naming tasks (explicit inflection of a certain word

within sentence context - which we normally do not do in an

highly automatic process); or based on ambiguous interpretations

of the data (i.e., no clear separation of conceptualisation and

syntactic complexity in the experimental design). In the present

study, we used a more direct and natural approach, in order to

gain insights into the electrophysiological correlates of syntactic

planning. In analogy to a positron emission tomography (PET)

study by Indefrey et al. [24,25], we employed a paradigm where

visually animated scenes elicited overt multi-word utterances in a

relatively natural way. Participants were instructed to describe the

scenes as fast and accurate as possible using a sentence -, a noun

phrase -, or a single word format (in Dutch). For example, in one

of the visual stimulations a red triangle bumps into a green square.

In the complex, sentence-level (‘S’) syntax condition participants would

describe the scene as ‘‘De rode driehoek botst tegen het groene vierkant op.’’

[‘‘The red triangle bumps into the green square.’’], in the medium,

noun phrase level syntax (‘NP’) condition they would illustrate the trial

as ‘‘de rode driehoek’’, ‘‘het groene vierkant’’, ‘‘tegen op botsen’’ [‘‘the red

triangle’’, ‘‘the green square’’, ‘‘to bump into’’]. In the minimal

syntax, words (‘W’) condition the correct response would be

‘‘driehoek’’, ‘‘rood’’, ‘‘vierkant’’, ‘‘groen’’, ‘‘tegen op botsen’’ [‘‘triangle’’,

‘‘red’’, ‘‘square’’, ‘‘green’’, ‘‘to bump into’’]. The participants were

instructed on the type of naming format at the beginning of each

block. Visual stimulation was kept constant across conditions.

The rationale of Indefrey et al. behind the three different

utterance types was that the required syntactic processing

parametrically varied in complexity [24,25]. Overall the task

requires a range of cognitive information processing. The visual

scene - identical across conditions - triggers visual and conceptual

encoding of motion, colour, and form, as well as of the action

(either ‘to fly towards’ or ‘to bump into’). In addition, concepts

(i.e., the different geometrical figures plus the verb) must be

ordered for serial articulation. Linguistic encoding, depending on

the utterance instruction, should trigger the build-up of the

appropriate syntactic structure and the filling in of the structure

with suitable elements. Following the logic of Indefrey et al., we

assumed that the ‘W’ condition required lexical selection of words

but virtually no syntactic encoding. In the ‘NP’ condition, syntactic

processing was necessary on a noun phrase level, because the

retrieval of certain syntactic information and inflections was

required (i.e., the article of a noun, inflection of the adjectives,

assembly into a phrase). In the ‘S’ condition, syntactic planning

was necessary on a sentence level, which includes the processing

required in the words ‘W’ and noun phrase ‘NP’ conditions, but

also the combination of two noun phrases by adding the verb in its

proper form.

The application of high resolution EEG allowed us to time-lock

the ERP to certain events within the utterance planning process.

We specify two critical events. One event is the scene onset, as it

starts the planning of the first elements of the utterance. A second

critical event is the moment at which the target action is

disambiguated (both scene variations started identical and

diverged only from that point on). At that moment, one of the

two actions were displayed - unpredictable for the participant. The

disambiguating visual moment allowed the speaker access to the

target action concept and its syntactic realisation. It also allowed to

bind the first noun phrase to the second noun phrase, using the

target verb.

ERPs were recorded from the scene onset on. We took a rather

explorative approach in this study. Based on a more modular,

serial account, we expected that components sensitive to syntactic

processing would show a parametric amplitude modulation related

to the syntactic complexity variation within a certain time window

(based on the additive factor logic [40]). The detected time

windows of the parametric modulation should give insights into

the time course of syntactic planning stages. Based on the limited

electrophysiological literature available [38,39], we expected to

observe a variation with syntactic complexity around 300–500 ms

time window after stimulus onset in correspondence of a P300

ERP Correlates of Syntactic Encoding
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component, associated with phrase-level syntactic planning. For

post-verb disambiguation sentence planning, we aimed to present

first empirical evidence with this experiment. In addition, from a

more integrative theoretical view, we did not rule out immediate

and parallel integration that would affect neural processing in a

non-additive manner. This parallel processing might result in early

effects in the ERP (i.e., in time windows sensitive to visual and

conceptual encoding, [41,42,43]). We will discuss the results in the

light of the different language accounts.

Materials and Methods

Ethics Statement
The ethical committee of the Faculty of Psychology and

Neuroscience (Maastricht University) gave clearance for the study.

All participants gave written informed consent.

Participants
Thirty-four healthy volunteers participated in this study. Data of

one participant were excluded from the analysis because of the

health history and current medication use. Twenty-one of the 33

remaining participants were female. One was left-handed. The

mean age was 21.8 years (SD 2.6 years). All had normal or

corrected to normal vision and were native Dutch speakers. The

participants received financial compensation or received academic

credit points.

Stimuli
Visually animated scenes were presented to the participants.

Each scene consisted of three geometrical shapes (square, triangle,

or circle) having one of three different colours (red, blue, and

green). The individual figures covered approximately 1.6u (height)
of visual angle and were configured around the centre (one above

and two below the centre on either side). The total configuration

covered approximately 5.8u (width)65.4u (height) of visual angle.
In each trial, one of the three geometrical figures performed an

action upon another figure: it could either be ‘to fly towards’ or ‘to

bump into’. The two scene types started visually identical until

they diverged at a certain point (see the Procedure section for details

on how the scenes differed). In each scene two of the objects could

be distinguished by their colour only. This made it more natural to

name the colour together with the shape of the objects. The

content of the scene was randomly varied across trials (i.e., the

shapes, colours, positioning of the figures, and the action). Such

variation of the events in the scene was included to keep

participants alert and to have online utterance planning on a trial

by trial basis.

The paradigm was designed using Presentation 14.0 software

(Neurobehavioral Systems, Inc.).

Procedure
Participants were instructed to overtly describe the presented

animated scenes using one of three possible responses: word-‘W’,

noun phrase-‘NP’, or sentence-‘S’ format (an example for each

condition would be as follows: word-‘W’ - ‘‘driehoek’’, ‘‘rood’’,

‘‘vierkant’’, ‘‘groen’’, ‘‘naar toe vliegen’’ [‘‘triangle’’, ‘‘red’’, ‘‘square’’,

‘‘green’’, ‘‘to fly towards’’]; noun phrase-‘NP’ - ‘‘de rode driehoek’’,

‘‘het groene vierkant’’, ‘‘naar toe vliegen’’ [‘‘the red triangle’’, ‘‘the green

square’’, ‘‘to fly towards’’], and sentence-‘S’ - ‘‘De rode driehoek vliegt

naar het groene vierkant toe.’’ [‘‘The red triangle flies towards the green

square.’’]) (see the Introduction for an example of the ‘to bump into’

scene types). After having received instructions, a practice version

consisting of 3 blocks (i.e., one per condition) containing 18 trials

each was started. The practice session was followed by the main

experiment, which consisted of three runs. A single run consisted

of three blocks (one per naming condition). The order of naming

conditions was randomized within each run (i.e., six possible run

types) and across participants.

Each block started with a brief instruction reflecting the type of

naming format to be performed (i.e., either ‘SENTENCE’,

‘NOUN PHRASE’, or ‘WORD’), followed by 40 trials, consisting

of a different scene each (see Stimuli). A total of 120 trials were

recorded for each condition. Each trial started with a fixation

point (white asterisk on a black background) for 2000 ms, followed

by the display of the geometric figures that moved. The duration

of animation in the scene differed (955 or 1885 ms), depending on

the action format (‘to fly towards’ or ‘to bump into’, respectively).

The difference in animation durations was due to a different

amount of action frames (10 versus 18 frames, where the actual

‘bump’ event occurred at frame 14, at 1520 ms after scene onset).

The two scenes types associated with the two different actions were

visually identical until the moment that the ‘to fly towards’ trials

froze while ‘to bump into’ trials continued. The stimulation always

ended with a freeze configuration lasting 3000 ms (see Figure 1).

Participants were instructed to start the description of the scene as

fast and as accurate as possible, and to minimize eye movements.

The next trial started via a self-paced button push (by USB

keyboard key). This self-pacing format was chosen to take into

account inter-individual differences in naming onset and duration.

An entire trial took approximately 8000 ms (fixation, scene, freeze

time and button to switch to the next trial to continue).

During the recordings, participants were seated in an electri-

cally-shielded, sound-attenuated room in front of a computer

monitor (distance approximately 80 cm).

Apparatus and EEG Recording
The EEG was measured using an elastic cap in which 32 tin

electrodes were mounted (Electro-Cap International (ECI), Inc.),

positioned according to the international 10–20 system [44]. The

signal was recorded from twenty electrodes - F3, Fz, F4, FC3, FCz,

FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, P4, O1, Oz, O2, T3

and T4 - referenced online to the left mastoid (A1). Offline the

signal was re-referenced to the average signal of both A1 and A2.

Vertical eye movements and blinks were monitored by two

electrodes placed at the left upper and the lower orbital ridge.

Horizontal eye movements were recorded with electrodes placed

on the left and right cantus. The impedance of all electrodes was

kept below 5 kV. Data acquisition was done using Brain Vision

Recorder software (Brain Vision, MedCaT B.V.) and the signal

was amplified using a 0.05–50 Hz band pass and sampled at a

2 ms-interval (500 Hz). The scene onset as well as the voice onset

triggered a code pulse. The code was written directly into the EEG

recordings and was used for later event-related analyses. The voice

onset was recorded via the microphone and transferred as onset

time pulse into the log file. The pulse was triggered when the

sound pressure level reached a certain threshold (individually

adjusted for each participant).

Analyses
For the behavioural data, the number of errors (i.e., any

deviation from the expected utterance: incorrect object, colour,

action, naming format, or ordering) and corrections (i.e., any overt

corrective effort during the response utterance) were computed

using the recorded audio data and the manual scores collected

online by the experimenter. Dysfluent speech was not necessarily

coded as a error or correction, only if there was overt corrective

effort or a mistake. Moreover, we computed the voice onset time

(VOT) as the time between the onset of the scene and the onset of

ERP Correlates of Syntactic Encoding

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e82884



the overt naming. We also calculated the total speech time (TST)

that was defined as the time difference between naming onset and

the button response. VOTs,0.5 seconds and .4.5 seconds and

TSTs,2 seconds and .10 seconds were considered outliers and

were discarded from the analysis. A repeated-measures General

Linear Model (GLM) with syntactic complexity as factor (3 levels:

W, NP, S) was used to analyse the behavioural data.

With respect to the EEG data, trials in which the participant’s

response was incorrect, corrected or absent were excluded from

further analysis. The EEG data related to the correct naming trials

were epoched from 2200 to 2500 ms post stimulus onset (to

include the entire interval from the onset of visual scene to the end

of the display/onset of articulation), band pass filtered from.3–

30 Hz (zero phase, 24 dB), and baseline corrected (from 2200 to

0 ms).

In order to reduce artefacts in the signal, Independent

Component Analysis (ICA) was used. ICA blindly decomposes

the multi-channel EEG data into temporally maximally indepen-

dent components (which computationally corresponds to compo-

nents sharing the least mutual information) [45,46]. An Indepen-

dent component (IC) is characterized by a time course and a scalp

topography reflecting the contribution (weight) of that component

to the EEG signal at each of the scalp channels (not to be confused

with traditional ERP scalp topographies). The ICs typically consist

of brain or non-brain (artefact) processes, or are comprised of

noisy data (e.g., large, atypical movements do not share mutual

information with the other sources and hence would fall into

separate unreliable ICs). Non-brain artefact-related (e.g., stereo-

typed eye blinks, eye movements, and muscle movements) and

noisy ICs can be identified by visually inspecting the correspond-

ing topographies and time courses. By removing such ICs, one can

filter out the contributions of those processes to the signal.

Therefore, this procedure allows de-noising the data, without

losing trials and hence statistical power.

In our procedure, we first removed (in the original EEG space)

the large and atypical artefacts from the data based on visual

inspection to avoid that ICA would extract unreliable ICs devoted

to noisy data. On average, 82.1% of the trials were kept for further

analysis: 97 trials in ‘S’, 98 in ‘NP’ and 102 in ‘W’ condition.

Then, the data were decomposed using the infomax algorithm in

EEGlab ([47], http://www.sccn.ucsd.edu/eeglab). Scalp map

topographies and time courses associated with all ICs were used

to identify those components related to stereotyped artefacts which

were removed from the data (e.g., eye movements and blinks

typically show a far-frontal projection on the map, and are easily

spotted by inspecting the time course; muscle artefact components

have a typical spatial localization to the temporal sites and show

high power at the high frequencies). This was done individually for

all participants (on average 7.8 component per dataset, corre-

sponding to 31% of components).

The remaining, task-relevant components were back-projected

onto the original ERP data space and were averaged across trials,

separately for each condition. In the back-projected ERPs, epochs

were divided in two time ranges: one time interval was time-locked

to the onset of the scene (preceding the ‘bump’ event; 2200 to

1000 ms after onset of the scene), and one was time-locked to the

‘bump’ event (2200 to 800 ms after the ‘bump’ event, or 1320 to

2320 ms post scene onset; see also Figure 1). Only the ‘bump’

event was considered in the further analysis, because it is a visual

event to which the data can be time-locked (such an event is absent

Figure 1. Overview of trials. Schematic overview of the experimental trials, separately for the two action formats (‘to fly towards’ and ‘to bump
into’). For illustrative purposes, only screenshots of the trials are displayed (the objects were actually moving). The displayed ERP epochs illustrate the
different time windows of interest for the analysis (scene epoch, immediately starting after scene onset; and bump epoch, after the ‘bump’ event and
hence after disambiguation of the target verb). Note that action formats are randomized across trials and are not instructed nor predictable to the
participants.
doi:10.1371/journal.pone.0082884.g001

ERP Correlates of Syntactic Encoding
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in the ‘to fly towards’ trials). Most importantly, from this time on, it

was definite which of the two action verbs applied (‘to bump into’

or ‘to fly towards’). Prior to this point, the speaker could still doubt

on which of the two events were to be described, and hence he or

she could not anticipate and prepare a description of the event

(chance level). Note that in the ‘bump’ epoch, less trials were

included (only the ones in which the figures bumped and not the

ones in which the figures flew towards each other, as the visual

stimulation differed between these), corresponding to on average

46 trials in ‘S’, 47 in ‘NP’ and 49 in ‘W’. For three participants,

information on the scene types was not available, hence the

analyses on the ‘bump’ epoch were performed on the remaining

thirty participants. The ‘bump’ epochs were baseline corrected

(2200 to 0 ms after the ‘bump’ event).

Based on visual inspection of the grand averages (averaged

across all participants), target ERP components and corresponding

time windows were specified. Time windows were chosen around

the component’s maxima (i.e., either in a standard way [peak

latency plus and minus 30 ms for instance] or – especially for later,

more variable, components – relying on the data itself to choose

the most appropriate range) and were kept constant across

conditions. For each ERP component, the mean signal per

condition and participant was computed.

Statistics on ERP data were performed on the mean amplitude

data (computed per time window, per condition, and per

participant). We used a repeated measures General Linear Model

(GLM) with syntactic complexity as within-subjects factor (3 levels:

W, NP, S) together with two topographical factors: laterality (left,

central, right) and anterior-posterior (F, FC, C, CP, P, O) (i.e., in

the omnibus tests, a combined total of 18 electrodes were

included). Main effects and interaction effects were inspected.

Based on interactions between topographical factors and condi-

tion, additional analyses were performed on subsets of electrodes.

In case of main effects, linear contrasts were inspected first. In case

the linear contrasts did not describe the data well, pair-wise

comparisons were inspected. Corrections for multiple testing

(Bonferroni, in case of pair-wise comparisons) and for sphericity

violations (Greenhouse Geisser) were made when necessary.

Extreme outlier values (.3*interquartile range) were excluded

from the analysis. An alpha of 0.05 (corrected) was used as

significance level.

Results

Behavioural Data
Accuracy. The number of errors varied linearly with syntactic

complexity: the more complex the syntax, the higher the number

of errors (linear contrast: F1, 32 = 7.42, p= .010; main effect of

syntactic complexity: F1.66, 53.04 = 3.83, p= .035; ‘W’: mean

1.09%, SE.23%; ‘NP’: mean 1.29%, SE.25%; ‘S’: mean 1.81%,

SE.38%). The same effect was observed for the amount of

corrections (linear contrast: F1, 32 = 19.56, p,.001); main effect of

syntactic complexity: F1.84, 58.83 = 14.00, p,001; ‘W’: mean

3.50%, SE.38%; ‘NP’: mean 5.86%, SE.69%; ‘S’: mean 6.48%,

SE.68%; see Figure 2).

Inspecting any potential differences in accuracy measures

between the two action verbs revealed no main effects of action

verb, nor any interaction effects (errors: main effect of action verb

p = .116, interaction effect p = .351; corrections: main effect of

action verb p= .276, interaction effect p= .157).

Reaction times. The voice onset times (VOT) revealed a

main effect of syntactic complexity (F1.46, 40.81 = 20.00, p,.001).

Contrast analyses showed that in the ‘W’ condition the latencies

were significantly shorter compared to both the ‘NP’ and ‘S’

condition (P,.001, for both cases; ‘W’: mean 1.30 s, SE.061 s;

‘NP’: mean 1.43 s, SE.073 s; ‘S’: mean 1.43 s, SE.073 s). Analysis

of the total speech time (TST) revealed a main effect of syntactic

complexity (F1.52, 42.53 = 4.65, p= .023; ‘W’: mean 4.21 s,

SE.083 s; ‘NP’: mean 4.32 s, SE.098 s; ‘S’: mean 4.28 s,

SE.092 s), but the contrast analysis failed to find any significant

differences (Figure 2).

Analysis of the action verbs revealed no main effect and no

interaction effect for the VOTs (main effect p= .085, interaction

effect p= .884). However, there was an interaction between action

verb and condition in the TST (p= .017). Follow up analysis

showed that the ‘to bump into’ trials resulted in higher TST in all

conditions (all p,.001; on average 4.50 s versus 3.96 s). Further,

only in the ‘to fly towards’ trials, there was a condition effect

(p= .010): TST was highest for the ‘NP’ condition. ‘NP’ differed

significantly from ‘W’ (p-corrected=0.03) and marginally significant

from ‘S’ (p-corrected= .069).

ERP Data
Visual inspection of the grand averages showed a clear ERP

morphology during the first 1000 ms post scene onset, followed by

a relatively steady period (in which no event-related activity was

visible) (see Figure 3). Another subset of ERP components was

observable at a relatively late time interval (from approximately

1500 ms after scene onset onwards), in correspondence of the

‘bump’ event when the target verb was disambiguated (i.e., ‘to

bump into’ instead of ‘to fly towards’). The statistical analysis was

focused on these two epochs of interest: the first ranged from2200

to 1000 ms after the scene onset and prior to the ‘bump’ event

(before the action format and thus the verb was available) and the

second was related to the time window between 2200 to 800 ms

after the ‘bump’ event (when the verb was available, correspond-

ing to 1320 to 2320 ms after scene onset, limited to the ‘bump’

trials). Statistics were carried out across several time windows.

Components belonging to the 2200 to 1000 ms post scene onset

time-window were labelled as ‘scene’ components. These were the

P1 scene (90–150 ms), the N1/P2 scene (100–240 ms), the P3 scene

(350–550 ms), and the fronto-central negativity, post scene (600–

900 ms). The components following the ‘bump’ event were

defined as ‘bump’ components, namely the P1/N1 bump (20–

150 ms), P2 bump (140–280 ms) and the P3 bump (300–500 ms)

(Figure 3). Note that the labels P1, N1, P2 and P3 are used for

descriptive purposes. P1 refers, for instance, to the first positive

voltage inflection, N1 to the first negative voltage inflection and so

forth.

Time windows of interest post scene onset. Time window

90–150 ms – P1 post scene: A positive deflection was observed in the

90–150 time window with a clear occipital distribution and a peak

around 120 ms post scene onset. Within this time window, no

syntactic complexity effects (F2.00, 63.91 = 0.187, p= .830), nor any

condition-related interaction effects (p..15) were found.

Time window 100–240 ms – N1/P2 post scene: In the 100–240 ms

time window, a negative-positive complex was observed with two

frontally distributed maxima: a (rather small) negative component

peaking at 130 ms post stimulus, followed by a positive component

with a maximum around 210 ms post stimulus onset. The N1 was

analyzed in the 100–160 ms post stimulus onset window, and

showed no effects of syntactic complexity (F1.98, 63.45 = 0.054,

p= .946), nor any syntactic complexity-related interaction effects

(p..19). In the P2 time window (180–240 ms post stimulus), also

no syntactic complexity effects (F1.92, 63.43 = 1.616, p= .208) and

no interaction effects (p..17) were found.

Time window 350–550 ms – P3 post scene: During the 350–550 ms

time-window, a positivity consisting of a parietal and a more

ERP Correlates of Syntactic Encoding
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anterior distributed component was observed. The parietal

distributed positivity evolved between 350 and 450 ms with a

maximum around 390 ms after stimulus onset. The analysis

revealed no syntactic complexity effect (F1.99, 63.82 = 0.080,

p= .923). There was a significant interaction effect between

syntactic complexity and the anterior-posterior factor (F2.93,

93.86 = 4.178, p= .008), but follow up analyses revealed no

significant effects per anterior-posterior plane (p..15).

The second component was analyzed in the time window 450–

550 ms post stimulus onset. The overall analysis revealed a trend

towards a significant interaction between syntactic complexity and

anterior-posterior (F2.59, 82.88 = 2.643, p= .063). Simple contrasts

showed that only at frontal electrodes (F), a significant syntactic

complexity effect was present (F1.91, 63.10 = 3.99, p= .025) (FC:

p= .287; C: p= .719; CP: p = .772; P: p= .976; O: p= .801). Pair-

wise comparisons at F showed a significant difference between ‘W’

and ‘NP’ (F1, 32 = 6.31, p-corrected= .017) and a trend towards a

difference between ‘W’ and ‘S’ (F1, 32 = 4.00, p-corrected= .054) (see

Figure 4A).

Time window 600–900 ms – fronto-central negativity post scene: A

negative component was most prominently visible at fronto-central

sites in a rather late time-window (600–900 ms post scene onset).

In the overall analysis, a trend towards an interaction effect was

found between syntactic complexity and anterior-posterior (F2.59,

83.02 = 1.83, p= .055). Simple effect analyses on the fronto-central

plane (FC, C) revealed a significant syntactic complexity effect

(F1.98, 63.22 = 3.60, p= .034) (at other electrode planes, p..05).

Contrast analysis confirmed a linear relation (F1, 32 = 6.80,

p= .014): higher syntactic complexity related to higher negativity

of the target amplitude (see Figure 4B).

Time windows of interest post bump event. Time window

20–150 ms – P1/N1 post bump: In the 20–150 ms time window, a

positive component was observed (20–80 ms post bump event)

followed by a negative component (70–150 ms post bump event),

both having a central distribution. No significant syntactic

complexity effects were found (P1 component: F1.63,

47.32 = 2.053, p= .148; N1 component: (F1.80, 52.07 = 2.928,

p= .068), nor any significant interactions effect in either compo-

nent (all p..1).

Time window 140–280 ms – P2 post bump: In this time window, a

component complex was visible with an earlier posterior

distribution and a later fronto-central topography. Within this

140–280 ms time window, no significant syntactic complexity

effect was found (F1.64, 47.50 = 2.64, p= .091), nor any condition

related interaction effect (p..17).

Time window 300–500 ms – P3 post bump: A positive component

was observed in the 300–500 ms time-window, having a posterior

distribution. In addition to an overall marginally significant

syntactic complexity effect (F1.75, 47.27 = 3.29, p= .052), there was

an interaction between syntactic complexity and anterior-posterior

distribution (F2.02, 54.59 = 4.76, p= .012). Simple effect analyses

showed that only at posterior sites (CP, P), there was a significant

syntactic complexity effect (F1.76, 47.61 = 4.45, p= .021) (at F, FC:

F1.80, 48.49 = 1,923, p= .161). Pair-wise comparisons showed that

‘S’ significantly differed from ‘NP’ and differed marginally from

‘W’ (p-corrected= .004 and p-corrected= .067, respectively), where ‘S’

was more positive than ‘W’ and ‘NP’ (see Figure 5).

Discussion

The aim of the present study was to investigate when syntactic

encoding takes place during sentence planning. The sentence

planning was triggered by a visual scene of moving objects. We

asked participants to overtly describe these scenes using naming

formats with parametrically varying syntactic complexity (using

single words ‘W’, noun phrases ‘NP’, or a complete sentence ‘S’).

We assumed that any variation in neural activity related to

syntactic complexity would be reflected at the level of the ERP

signal. Further, the design of the paradigm allowed us to

temporally separate initial noun phrase planning starting at scene

onset, from planning at sentence-level (occurring after all

information is available, or after target action/verb disambigua-

tion). Based on serial syntactic processing views, we expected ERP

modulation around 300–500 ms after scene onset (associated with

noun phrase-level syntactic planning). We based this hypothesis on

previous behavioural studies on single word productions [48] and

on more recent electrophysiological studies using sentence

production paradigms [38,39]. However, we did not exclude the

possibility of early and non-additive neural modulations, as might

be predicted by connectionist or interactive models in which

visual, conceptual and syntactic processes are initiated in parallel

and influence each other (e.g., [2,14]), or might not even be

viewed independently (e.g., [12]).

Behaviourally, both the number of errors and corrections

showed a linear relation with syntactic complexity (the more

syntax, the more errors and corrections), indicating that the

intended complexity manipulation was successful. The linearity of

the pattern can be interpreted as support for increasing syntactic

complexity. Syntactic complexity did not influence the total speech

time (TST). The TST, however, differed across action verbs,

where ‘to bump into’ trials resulted in longer TSTs in all

Figure 2. Behavioural data. Mean accuracy (left panel) and reaction times (right panel) per condition. Reaction times (plus standard errors) are
displayed for voice onset times (VOT; left axis) and for total speech times (TST; right axis). Asterisks indicate significant linear trends (observed for
accuracy) or significant contrasts (observed for VOT). ‘W’ =minimal syntax, word condition, ‘NP’ = noun phrase-level syntax condition, ‘S’ = sentence-
level syntax condition.
doi:10.1371/journal.pone.0082884.g002
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conditions, compared to ‘to fly towards’ trials. As we analyzed only

the ‘to bump into’ trials in the post bump time window, this does

not pose any difficulties for our results in this window. The type of

action verb did not affect any of the other behavioural measures,

excluding the possibility of confounding effects in the post scene

epoch where both action verbs were analyzed together. With

respect to the voice onset time (VOT), we found that the word-‘W’

condition differs from both the ‘NP’ and ‘S’ conditions. In

particular, VOT was shorter for the ‘W’ condition (on average

1.30 s in contrast to 1.43 s, for both ‘NP’ and ‘S’), suggesting that

prior to the initiation of the utterance there is already syntactic

planning at the level of the noun phrase. Consistent with that, ‘NP’

and ‘S’ both require planning of noun phrases, while ‘W’ does not.

The encoding requirements in ‘NP’ and ‘S’ do not differ at this

moment, while they both differ from ‘W’. From this data and

design, however, we cannot distinguish whether this planning

entails syntactic retrieval and morpho-syntactic processing (inflec-

tions) or syntactic structure building (assuming the structure is

Figure 3. Overview of ERPs. Grand average ERPs, separately for the
two action formats (solid lines = ‘to bump into’; dashed lines = ‘to fly
towards’), across the midline of the scalp (F = Frontal, C =Central,
P = Parietal, O =Occipital) for the entire epoch interval of 2200 to
2500 ms after scene onset, reflecting the speech planning from
stimulus onset onwards. The two time windows of interest are
highlighted: the post scene onset time window (where scenes of both
action formats, and their corresponding ERPs, are still identical) and the
post bump event time window (where the analysis was limited to the
‘to bump into’ trials, as the ‘to fly towards’ trials did not show an ERP
morphology during this time window). Target components are
indicated by arrows. Negative voltage is plotted upward in this and
all subsequent figures. Note that for plotting purposes, ERP waveforms
underwent a low pass filter (5 Hz, 6 dB cut-off).
doi:10.1371/journal.pone.0082884.g003

Figure 4. Syntactic complexity effects following scene onset.
Grand average ERPs, separately for the three syntactic complexity
formats (‘S’, ‘NP’, ‘W’), in the post scene onset epoch. A) The P3 syntactic
complexity effect (‘S’/’NP’.‘W’) at frontal midline electrode (Fz) within
the time window 450–550 ms post scene onset, together with the
topography maps of the effect distribution across the scalp (bottom;
left: ‘S’ minus ‘W’; right: ‘NP’ minus ‘W’). B) The fronto-central negativity
that modulated with syntactic complexity (linear effect: ‘S’.‘NP’.‘W’) at
fronto-central and central midline electrodes (FCz, Cz) within the time
window 600–900 ms post stimulus onset.
doi:10.1371/journal.pone.0082884.g004
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build incrementally), or both. Either explanation would fit the

observed modulation. Nevertheless, the data confirm the idea that

a speaker plans in advance [4,18,19], in this case including already

noun phrase related syntactic encoding. This is in line with

previous work on the production of noun phrases [49,50]. It

should be noted, however, that both the extent and the nature of

the advance planning might have been imposed by the design,

because it poses constraints on the available information at this

time. Previous studies have shown that the extensiveness of

utterance planning can be varied depending on the speakers’

experience (in this case repetition of utterances), the circumstances

(in this case availability of information), and cognitive abilities (see

e.g., [18,22]).

Compared to previous work on production of multi-word

utterances, the VOTs are relatively long. In a Dutch noun phrase

production study, VOTs varied around 580–670 ms, depending

on the condition (picture word interference paradigm) [50]. In

another study in which participants produced noun phrases,

VOTs were around 660–720 ms [49]. However, an important

difference between the design used in those experiments and in the

present one, is the stimulation. In the current study, participants

were instructed to describe a moving scene. The intended

message, therefore, has to be derived from a scene consisting of

several frames. In animations, as opposed to static pictures, it is not

immediately clear from the start position which figures are going

to be involved in the action. The information thus has to be

integrated over time, which can explain the elongation of VOTs.

In addition, it is important to note that the VOTs we observed are

quite similar to the reaction times reported by Indefrey et al. [24],

which used similar stimulation (1.29 s for ‘S’, 1.28 for ‘NP’ and

1.23 for ‘W’; reflecting similar VOTs and effects).

The observed ERPs related to overt speech production had a

similar morphology for all conditions (‘W’,’NP’ and ‘S’), with a

clearly visible P1, N1, P2, P3 complex and a fronto-central

negativity following scene onset. Another P1, N1, P2 and P3

morphology were found after the ’bump’ event (when all

information including the verb was available). The first divergence

across syntactic complexity conditions started approximately from

400 ms post scene onset on. We will discuss the components and

their potential syntactic complexity modulations in chronological

order, starting from the moment of scene onset.

Initial Syntactic Planning
Early components: The first components after scene onset - P1 and

N1/P2 - showed no variations across syntactic complexity

conditions, indicating similar demands on the early processing

functions. The early components have been associated with early

perceptual processes, with attention (P1 and N1, [41]), with the

early (pre)verbal stages of conceptual knowledge activation (linked

to the P1, [42,43]) and with lexical access (P2 related, [51,52,53]).

Although it can never be ruled out completely that the response

instructions resulted in differential preparatory states perceptual or

conceptual processing (see e.g., [54]), the finding that these early

ERP components were not modulated by our manipulation,

indicates that we succeeded to keep the variance of visual and

conceptual processing to a minimum over the three utterance

conditions.

P3 scene: In a specific window, between 350 and 550 ms post

scene onset, a P3-like component was clearly visible. It comprised

two subcomponents: one with a posterior scalp distribution and

one with a more anterior focus. No variation with syntactic

complexity was found in the posteriorly distributed activity (350–

450 ms post scene onset). At anterior sites variation with syntactic

complexity was present within the P3 time window (450–550 ms).

The word-‘W’ condition significantly differed from the noun

phrase-‘NP’ and (marginally) from the sentence-‘S’ conditions,

where ‘NP’ and ‘S’ elicited a higher positivity compared to ‘W’. At

this time point, the action format of the scene (verb) was still

ambiguous, but visual input was sufficient to give way to first noun

phrase planning (nouns and adjectives). ‘W’ did not require

retrieval of syntactic information or inflections at a noun phrase

level, while the noun phrase ‘NP’ and sentence ‘S’ condition did

(e.g., the retrieval of the syntactic gender reflected in the adjective

[in Dutch ‘de/het’] and the inflection of the adjectives

[‘groen.groene’; green]). The noun phrase-related syntactic process-

ing might in turn be reflected in higher P3 amplitudes at frontal

sites.

Syntax-first language accounts assume that utterance structure

is build prior to any lemma retrieval and morpho-syntactic

processing [5]. The observed data would also support such a view.

Either this component reflects incremental structure building of

the noun phrases, or it might be that the structure is already be

available, and the modulation reflects online filling of information

into the structure. Processing requirements for ‘NP’ and ‘S’ do not

differ for both scenario’s, but they both differ from ‘W’. Most

importantly, the observed ERP modulation between 450–550 ms

post scene onset indicates that this time window is sensitive to

syntactic noun phrase planning.

Figure 5. Syntactic complexity effects following verb disam-
biguation. Grand average ERPs, separately for the three syntactic
complexity formats (‘S’, ‘NP’, ‘W’), in the post ‘bump’ epoch. Top: Signals
from the centro-parietal and parietal midline electrodes (CPz Pz). The
gray-shaded area indicates the P3 bump syntactic complexity effect
(‘S’.‘NP’/‘W’) within the time window 300–500 ms post bump event.
Bottom: The P3 effect distribution as a topographic map (left: ‘S’ minus
‘W’; right: ‘S’ minus ‘NP’). Note that for plotting purposes, ERP
waveforms underwent a low pass filter (5 Hz, 6 dB cut-off).
doi:10.1371/journal.pone.0082884.g005
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In a previous electrophysiological production study, the P3 has

been associated with conceptual and/or syntactic complexity

(350–500 ms post stimulus onset, [39]), but the distribution of this

component was centro-parietal (while in the current study, the

effect was anterior). It seems unlikely, however, that the present

effect reflects conceptual planning, as previous studies found

conceptual effects in earlier time windows (e.g., 120 ms post

stimulus presentation, [42]), and we did not find such early

modulations. Also, the design of the current study minimized

conceptual processing. Further, with respect to timing, the result is

in line with studies on the time course of single word production of

Indefrey and Levelt [48], with Koester and Schiller’s study on

morphological encoding (priming effects were found 350–650 ms

after picture onset [55]) and with Sahin et al.’s study [38] who

suggested that syntactic encoding starts around 320 ms post

stimulus onset (although paradigms differ). In these previous

studies, syntactic structure building was not required, suggesting

that the P3 effect observed in the current study does not reflect

structure building only. In more general, non-linguistic terms, the

P3 has been associated to a monitoring function, context updating

and working memory actions (see e.g., [56]). It has also been

proposed that the P3 amplitude reflects activities in a network

controlled by joint operations of both attention and working

memory [57]. Whether the ERP effect observed in this study

reflects directly the differential demands on syntactic or differential

demands on attention and working memory processes accompa-

nying the linguistic processes cannot be disentangled. The present

P3 result shows that syntactic modulation either directly (direct

modulation of the P3) or indirectly (P3 modulation via attention

and processing load) correlates with neural activation in this time

window, indicating active syntactic processing in this time range.

Late negativity: The data also revealed a clear linear relation of

syntactic complexity across naming conditions within a (bilateral)

fronto-central negativity at 600–900 ms post scene onset. In

particular, we observed that - in terms of amplitudes - ‘S’ elicited

the most negative activity, followed by ‘NP’ and ‘W’. To our

knowledge there is no previous report on such an ERP modulation

during overt sentence production planning. We can only speculate

about its interpretation here based on the complexity manipula-

tion in our experiment. This fronto-central negativity might reflect

directly (continued) syntactic structure building of the sentence to

be uttered, as the syntactic structures varied across the three

conditions, and can be anticipated on. Some language accounts,

however, suggest that structure building already occurs relatively

early in sentence production [22], which would not be in

agreement with the observed rather late ERP modulation.

Alternatively, it might reflect modulated working memory

demands or a check/control monitoring on the appropriateness

of the planning so far.

Sentence-level Planning
Early post bump components: After a period of activity around

baseline, without any clear distinguishable ERP components (from

approximately 1000–1400 ms post scene onset), another temporal

event occurred in the visual stimulation: the ‘bump’ event. At that

moment in time, it became definite which of the verbs had to be

used (‘to bump into’ or ‘to fly towards’). In the ‘bump’ trials - time-

locked to the clearly defined ’bump’ event - another set of ERP

components arose that were absent in the ‘to fly towards’ trials.

This absence was most likely due to the lack of a clear temporal

event in the latter condition. We assume that similar cognitive

processes occur in these ‘to fly towards’ trials, but they do not

occur in temporal synchrony to an external event - as there is no

such event. Hence, they cannot be detected by the averaging

model of ERPs. The ERPs related to the ‘bump’ event showed a

centrally distributed P1/N1 and a subsequent P2 complex

(comprised of a posterior and more fronto-central component),

but no syntactic complexity effects in these component. Analogous

to the early post scene onset ERP components, these ERP

components are most likely associated with more perceptual,

conceptual, and basic attention processes related to the ‘bump’

event. Their insensitivity to the complexity modulation suggests

again comparable visual and conceptual processing across

conditions. Note that around the time of this post ‘bump’ epoch,

the voice onset started on average (1.3 – 1.4 s after stimulus onset),

which has been reported in the past to cause high frequency

artefacts in the ERP signal (see also [30]). To avoid noise in the

data caused by artefacts, we used ICA to clean the data.

Independent components related to eye and muscle artefacts were

filtered out of the data. As a result, we were able to observe a clear

ERP morphology. Note that this is of interest from a methodo-

logical point of view, as the applied pre-processing revealed

interpretable production ERPs within overt naming trials, even in

relatively late time windows.

P3 post bump: We again observed variation with syntactic

complexity within the P3-time window, but with a different, more

parietal distribution (instead of a frontal distribution). In addition

to differences in topographic distribution, we observed a difference

in amplitude modulations across conditions. The ‘S’ condition was

significantly more positive compared to ‘NP’ and marginally

compared to ‘W’ (‘NP’ and ‘W’ did not differ from each other).

The pattern of the complexity effect thus differed from the post

scene P3 (where ‘S’ and ‘NP’ were more positive compared to

‘W’), which is an interesting functional segregation of two types of

P3 effects. The difference in topography further suggests two

different sources for the post scene onset P3 and post bump onset

P3. At this moment in time (300–500 ms post bump event; or

1820–2020 ms post scene onset), all information was available to

the participant (including the type of verb). Under the assumption

that planning of the first noun phrases was already initiated

immediately after scene onset, it is likely that planning within this

later time window was related to local encoding of the newly

available element - the verb - (e.g., lexical access, inflection) and to

the (potentially continued) assembly of the utterance in general.

The specific pattern of syntactic complexity effects is consistent

with the idea that only in ‘S’ inflection of the verb plus assembly of

all elements into a syntactically well-formed utterance was needed,

while in ‘NP’ and ‘W’ this was not necessary. In the latter cases,

the verb was expressed as its unmarked form (infinitive) and the

word order was according to a predefined format.

Taken together, the complexity modulation in this study was

reflected in both modulations in behaviour and in the ERP. In the

fronto-central negativity we observed a linear pattern (the more

syntactic planning, the higher the amplitude). In both the P3

following scene onset and following verb disambiguation, we

observed a different complexity variation. This variation was

segregated in terms of function and topography (amplitude

modulations and distribution differed, respectively), indicating

different neural sources. The pattern in the components suggests

that the frontal P3 reflects early noun phrase planning, while the

later parietal P3 indicates noun phrase assembly and integration

processes. While other studies have already observed syntactic

modulations in the (first) P3 time window (e.g., [38,39]), the

current study is the first to delineate syntactic sentence planning

over time and to investigate the entire time window, using a more

realistic display of moving objects instead of static line drawings of

scenes. Therewith, it extends the findings of previous studies and
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demonstrates the possibility of investigating relatively late compo-

nents of sentence production in a naturalistic manner.

The observation of clear, distinguishable - relatively late - time

windows sensitive to syntactic encoding and a lack of any early

ERP effects, seems not to support integrative accounts that assume

early initiation of all processes. However, it cannot be excluded

that the observed stage-like behaviour in the data emerged as a

property of parallel accounts [2]. Speculatively, the data do not

seem to directly support evidence for language as an emergent

property, as one might expect enhanced planning for the new, un-

learned utterance structures (‘W’, and in lesser extent ‘NP’)

compared to the natural and learned structure of the sentences in

‘S’. However, other experimental setups would be needed to test

such models directly and explicitly.

The results are in agreement with incremental encoding of the

utterance, unfolding over time. From the current design, however,

we cannot distinguish whether lemma retrieval/assignment and

morpho-syntactic processing comes first, or only after syntactic

structure building.

Although linear effects were expected, based on the parametric

variation across conditions and the results of the PET study

[24,25], this was not always the case. The effect in both P3

components was not linear, but reflected a different modulation

(‘W’ versus ‘NP’/‘S’, and ‘W’/’NP’ versus ‘S’, respectively).

Notably, the current ERP study was able to delineate the time-

insensitive PET result over time. By exploiting the high temporal

resolution and certain aspects of the design, the current ERP

results give us more insight in the temporal aspect of syntactic

encoding. The observed ERP pattern further suggests that the

overall PET effect is a summation of neural activity within

different time windows and with distributed neural sources. The

functional role of the LIFG and the observed linear correlation

with syntactic complexity has to be re-evaluated in future

experiments.

Inherent to the study of syntactic encoding is that it is impossible

to create a pure manipulation of syntactic planning, as it never

occurs in isolation and is difficult to manipulate without changing

any of the other processes [30]. For instance, we cannot exclude

differential perceptual effects across conditions caused by the

instructions, as certain naming format in a given block may alter

the perception and degree of attention to certain objects. The

observed lack of effects in the early ERP components support the

idea that any perceptual and attentional differences were

negligible in the present design.

In addition, all three conditions required temporal ordering of

the words into an utterance. This temporal ordering is related to

conceptual encoding [15] and might involve some form of

structure building. Next to the need of listing adjectives and

nouns in a serial order, the infinite verb in ‘W’ and ‘NP’ is also a

phrase (‘‘naar toe vliegen’’ or ‘‘to fly towards’’). Overall, ordering and

minimal structure encoding might have decreased the net

difference between complexity conditions. However, the lack of

early ERP effects and the later, observed complexity effects,

indicate that the conceptual ordering was not different across

conditions, and that the complexity manipulation was sufficient to

be reflected in the data, respectively.

Another limitation of the study was that the blocked design

resulted in repetitions of the same response condition, and thus the

same type and structure. Repeating the same structure across trials

and conditions was chosen to keep conceptual processes as

constant as possible, but may have potentially caused priming

effects. It is plausible that structural priming effects might have

occurred in the current study, facilitating the processing of a

subsequent utterance with the same structure [58]. The priming

might have reduced planning of the structure across trials.

Nevertheless, even in face of potential structural priming effects,

the syntactic complexity modulation was robustly found in several

components. In future research, the use of filler trials requiring

different utterance structures could be considered, to avoid

structural priming effects and potentially increase the magnitude

of the effects.

Conclusion

In this study, we have examined the temporal aspects of

syntactic encoding in sentence production. ERPs were cleaned

from (muscle) artefacts using ICA, and we observed a clear ERP

morphology. Event related potentials associated to immediate

noun phrase-planning were found starting from scene onset on. By

exploiting the fact that verb availability was not immediate, but

temporally defined by an event, we were able to investigate

relatively late ERPs related to noun phrase assemblies and overall

sentence integration. More specifically, we found that overt

description of a movie-like scene elicited very similar P1/N1/P2

components across all complexity conditions (words, noun phrases,

or sentence format). From 400 ms onwards, conditions started to

deviate in specific time windows. In particular, we found three

components showing a modulation with syntactic complexity:

following scene onset an anterior P3 scene effect (at 450–550 ms

post scene onset; ‘S’/‘NP’.‘W’) and a fronto-central negativity (at

600–900 ms post scene onset; ‘S’.‘NP’.‘W’) were observed, and

following the ‘bump’ event another, more posterior, P3 effect

(300–500 ms after verb availability; ‘S’.‘NP’/‘W’). We interpret

the components in the first time window - the P3 scene and fronto-

central negativity - as related to syntactic encoding of noun phrases.

The P3 related syntactic encoding here seems to involve the

retrieval of syntactic information, such as inflections, and the

assembly of words into phrases, in which ‘S’/‘NP’ differ from ‘W’.

The late negativity seems sensitive to syntactic structure building

as it modulates differently across the three conditions. The ERP

component in the later time window - the P3 bump - is related to

more global syntactic planning at the sentence level. This may

involve encoding of the verb and continued assembly of the

utterance, in which ‘S’ differs from ‘NP’/‘W’. The data show that

the P300 time window is sensitive to syntactic planning, both at

noun phrase-level and at sentence-level. The functional segrega-

tion and differential topographical distributions of the P3

components further indicates different neural sources, suggesting

that noun phrase planning and sentence-level planning require

different cognitive operations.
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