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Background: Current electrocardiography (ECG) criteria indicate only the presence or

absence of left ventricular hypertrophy (LVH). LVH is a continuum and a direct relationship

exists between left ventricular mass (LVM) and cardiovascular event rate. We developed

a mathematical model predictive of LVM index (LVMI) using ECG and non-ECG variables

by correlating them with echocardiography determined LVMI.

Patients and Methods: The model was developed in a cohort of patients on treatment for

essential hypertension (BP>140/90 mm of Hg) who underwent concurrent ECG and echocardio-

graphy. One hundred and forty-seven subjects were included in the study (56.38±11.84 years, 66%

males). LVMI was determined by echocardiography (113.76±33.06 gm/m2). A set of ECG and

non-ECG variables were correlated with LVMI for inclusion in the multiple linear regression

model. The model was checked for multicollinearity, normality and homogeneity of variances.

Results: The final regression equation formulated with the help of unstandardized coeffi-

cients and constant was LVMI=18.494+ 1.704 (aLL) + 0.969 (RaVL+SV3) + 0.295 (MBP) +

15.406 (IHD) (aLL – sum of deflections in augmented limb leads; RaVL+SV3 – sum of

deflection of (R wave in aVL + S wave in V3); MBP – mean blood pressure; IHD=1 for the

presence of the disease, IHD=0 for the absence of the disease).

Conclusion: In the model, 50.4% of the variability in LV mass is explained by the variables

used. The findings warrant further studies for the development of better and validated models

that can be incorporated in microprocessor-based ECG devices. The determination of LVMI

with ECG only will be a cost-effective and readily accessible tool in patient care.
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Introduction
Electrocardiography (ECG) is employed in a clinical setting to detect the presence or

absence of left ventricular hypertrophy (LVH) using predefined criteria. Commonly

used ECG criteria fail to adequately screen for LVH missing more than 70% cases.

Sokolow-Lyon criteria have sensitivity and specificity of 5% and 97%, respectively.1

Cornell voltage criteria show better sensitivity (24%) but worse specificity (65%).2

Dichotomous categorisation of LVH using ECG does not provide any information

about the degree of LVH. On the other hand, echocardiographic determination of left

ventricular mass (LVM) is an anatomically validated tool that reliably calculates left

ventricular (LV) mass in units of gram. Since echocardiography is not readily available

in many settings, the prediction of LV mass with the help of electrocardiography is of

great clinical utility.
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While numerous ECG criteria for detecting LV hypertro-

phy are in use,1,2 studies on the predictive model for LVmass

using ECG are very few. Crow et al conducted a study in

1995 on patients with mild hypertension and correlated var-

ious ECG parameters with echocardiographic LVmass. They

observed that the correlations between ECG parameters and

echocardiographic LV mass index varied widely (−0.12 to

0.43). When systolic blood pressure and body mass index

were introduced as predictors in their regression model, the

correlation improved significantly. Therefore, the researchers

suggested combining ECG variables with other non-ECG

variables or non-invasive measurements for improving

ECG predictivity for LV mass.3 A year later (in 1996),

Vries et al published a multiple linear regression model to

determine LV mass using both ECG and non-ECG variables.

The proportion of explained variability in the model was

45% (r = 0.67).4 The gap in total explained variability is

suchmodels warrants further exploration and research. In our

study, we developed a multiple linear regression (MLR)

model, predictive of the left ventricular mass index using

a set of ECG and non-ECG criteria.

Patients and Methods
Study Subjects
All participants in the study were patients of uncontrolled

essential hypertension. The inclusion criteria for the study

were 1. Age between 35 and 85 years 2. Blood pressure

>140/90 mm of Hg 3. Concentric left ventricular hyper-

trophy (LVMI>115 g/m2 in men and>95 g/m2 in women).

The exclusion criteria were 1. Chronic kidney disease

(GFR < 60mL/min/1.73 m2); 2. Pregnancy and women in

childbearing age group, not on contraceptives; 3.

Congestive cardiac failure NYHA class II–IV; 4.

Valvular heart disease, cardiac arrhythmia, 2nd or 3rd

degree heart block, sick sinus syndrome; 5. Post-

myocardial infarction with regional wall motion abnorm-

ality or Ejection Fraction <50%; 6. Known bilateral renal

artery stenosis; 7. Secondary hypertension; 8. Chronic

liver disease (AST/ALT values>3 times the upper limit

of normal). The study was approved by the Institutional

Human Ethics Committee (IHEC), All India Institute of

Medical Sciences, Bhopal vide approval letter no. IHEC-

LOP/2017/MD001 dated 13 October 2017.

Sample Size
The data for the linear regression model were obtained

from a larger study conducted to compare the efficacy of

anti-hypertensive regimens. The patients (n=156) who

underwent concurrent electrocardiography and echocardio-

graphic examination were included in the analysis. Nine

outlier data that were influencing the fit of the model were

excluded. The power of the study was determined post-

hoc. Using a one-tailed alpha=0.05, a sample size of 147

and R2 =0.53 (Coefficient of determination), the power of

the study was found to be 99% to detect statistically

significant correlation (P<0.05) between the dependent

variable and the predictors.

Determination of Left Ventricular Mass

Index (LVMI) Using Echocardiography
The measurements of the left ventricle were made in the

parasternal long-axis view. The direction of the ultrasound

beam was kept perpendicular to the long axis of the left

ventricle. Oblique sections overestimate ventricular

dimensions and therefore, meticulously minimised.

A standard protocol of taking the measurements at or

immediately below the tip of mitral valve leaflets was

adopted. All measurements were taken either in 2D linear

or M mode. The measurements of the posterior (PWT) and

septal wall thickness (IVST) and left ventricular end-

diastolic (LVID) and end-systolic diameters were under-

taken according to the recommendations of the American

Society of Echocardiography (ASE). The formula used for

determination of LVM was:

LVM=0.8 [1.05 (LVID+IVST+PWT)3 – (LVID)3] +0.65

LVMI=LVM/Body surface area

Body surface area= 0.007184 x W0.425 x H0.725.6

(W= Weight, H= Height)

As per the latest American Society of

Echocardiography (ASE) guidelines, for designating

a case as Echocardiography detected LVH, left v-

entricular mass index (LVMI) should be more than 115

g/m2 and 95 g/m2 for men and women, respectively.

Alternatively, Interventricular Septal wall thickness

(IVST) should be more than 1.0 cm and 0.9 cm in men

and women, respectively.7

Model Development
The MLR model was developed using SPSS version 22.0.

The dependent variable in the model was echocardiogra-

phy determined LVMI. A set of independent variables

(both categorical and continuous) were selected and tested

for inclusion in the model. Outliers were identified and

removed before testing of variables for significance.
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A step by step approach towards the development of the

model is described under the following headings.

Selection of Variables

A relevant set of ECG and non-ECG variables were iden-

tified for presumed inclusion in the model.

ECG Variables

The choice of ECG variables is based on the assumption

that the electrical deflections of QRS complexes in ECG

leads are dependent on ventricular mass (predominantly on

the left ventricle due to larger size). Considering the inter-

individual variation in the anatomical position of the heart,

it is hypothesized that the sum of the deflections in the

limb leads, augmented limb leads and precordial leads will

be representative of voltage change in the oblique, central

and transverse position of the heart, respectively.8 For

simplicity, we decided to separately test the three explana-

tory variables – sum of the deflections in the (i) limb leads,

(ii) augmented limb leads and (iii) precordial leads. We

introduced a fourth explanatory variable – the sum-total of

deflections of all the leads taken together. It is assumed

that the most correlated variable representative of the

voltage change (and hence the cardiac mass) will depend

on the proportion of the different types of the anatomical

position of the heart in the study sample.9 Since echocar-

diography cannot differentiate this variation in cardiac

topography, we decided to test all the four variables in

multiple linear regression analysis and introduced the most

appropriate variables in the best fit model. All the deflec-

tions were measured in terms of small square divisions in

the ECG paper. One small square division is 1 mm in

length and corresponds to 0.1 mV. In addition, Sokolow-

Lyon and Cornell voltage criteria were also tested. All

ECG parameters included for screening were continuous

scale variables.

Non-ECG Variables

Non-ECG continuous variables included for analysis were

age, weight, body mass index, body surface area, duration

of hypertension, systolic blood pressure, diastolic blood

pressure, mean blood pressure and pulse rate. Non-ECG

categorical variables analysed were gender, dyslipidaemia,

presence of diabetes and presence of ischemic heart

disease.

Testing of Variables

Bivariate correlation between LV mass (dependent vari-

able) and the independent variables was determined using

Pearson correlation coefficient. The dichotomous indepen-

dent variables were tested by recoding into “0” and “1”.

For example, gender was recoded into “1” for male and

“0” for female. A two-tailed p value of <0.05 was con-

sidered statistically significant.

Feeding Variables into Model (Model Building)

The significant variables obtained through bivariate corre-

lation were tested for inclusion in an MLR model by the

stepwise forward selection method. In this method, the

correlates are added sequentially in decreasing order of

the strength of correlation. The model is assessed for

improvement in explained variability and significance of

variables after each addition.

Removing Variables from Model (Model Trimming)

A variable is removed from the model if the significance

level falls below a predefined critical value during each

step of the stepwise forward selection method. We kept the

cut off probability for removing a variable from our model

at >0.05. A variable is also removed if there is redundancy

due to multicollinearity between variables. In our MLR

model, a variable was discarded if the value of Variance

Inflation Factor (VIF) was found to be more than 2.5.

Creation of Best Fit Model

The final multiple linear regression model was developed

using the significant independent variables that were

retained after the entry and elimination step. The model

was checked for normality and homogeneity of variances.

The model was re-run with significant predictors only. R2

value was obtained which denotes the total variation in the

dependent variable explained by the independent variables

in the best fit model. The final regression equation was

formulated with the help of unstandardized coefficients

and constant.

Model Cross-Validation

The model was tested for Goodness of Fit by cross-

validation using two methods – the simple Hold-out

method and the iterative Leave-one-out method.

Hold-Out Method

We split our sample population into two consecutive sets –

a training cohort (the initial 2/3rd, n=98) and a validation

cohort (the later 1/3rd, n=49). A best fit MLR model was

developed in the training cohort with the significant pre-

dictors. The regression equation of the best fit model of the

training cohort was used to predict the dependent variable
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in the validation cohort. The strength of correlation

between observed and predicted data in the validation

cohort was used to judge the validity of the model. The

margin of error and 95% confidence interval for the slope

of the regression line were also calculated. A P-value of

less than 0.05 was considered statistically significant.

Leave-One-Out Method

In this method, every single observation was assigned

a predicted value using the best-fit model based on all

but the said observation. The strength of correlation

between the observed and predicted values in the whole

cohort (n=147) was used to judge the validity of the

model. The margin of error and 95% confidence interval

for the slope of the regression line were also calculated.

A P-value of less than 0.05 was considered statistically

significant.

Results
One hundred and forty-seven subjects were included in the

study (97 men and 50 women) after removing outliers that

were influencing the fit of the model. The mean value of left

ventricular mass index (LVMI), the dependent variable, was

113.76 gm/m2 with a standard deviation of 33.06 gm/m2.

Tables
The summary statistics of the explanatory variables and

their correlation with LVMI are tabulated under three

headings – 1) non-ECG continuous (Table 1), 2) non-

ECG categorical (Table 2), 3) ECG continuous (Table 3).

Continuous variables were expressed as mean and stan-

dard deviation and categorical variables were expressed as

counts and percentages.

Non-ECG Continuous Variables
The non-ECG continuous variables found to be significantly

correlated were body weight (r= −0.22), body surface area (r

= −0.20), systolic blood pressure (r =0.28), diastolic blood

pressure (r =0.26) and mean blood pressure (r =0.32). Body

weight and body surface area were not included in the multi-

ple linear regression model because the dependent variable

LVMI was already adjusted for body weight and body sur-

face area. To avoid redundancy, mean blood pressure (MBP)

was the only blood pressure variable included in the final

model as it was maximally correlated with LVMI Other

continuous variables – age (r =0.03), pulse rate (r = −0.08)

and duration of hypertension (r = −0.001) were not found to

have a significant correlation with LVMI.

Table 1 Non-ECG Continuous Variables Tested for Inclusion in

the Predictive Model for Left Ventricular Mass Index (LVMI)

Non-ECG

Continuous Variables

Mean±Std.

Deviation

Pearson

Correlation

P value

Age (years) 56.38±11.83 0.03 0.76

Weight (kg) 68.24±12.22 −0.22 0.01

Height (cm) 161.17±8.49 0.05 0.57

Body Surface Area (m2) 1.72±0.16 −0.20 0.02

Pulse rate (beats/minute) 81.09±13.96 −0.08 0.37

Systolic BP (mm of Hg) 162.68

±21.99

0.28 0.001

Diastolic BP (mm of Hg) 92.96±12.13 0.26 0.001

Mean BP (mm of Hg) 116.20

±12.78

0.32 <0.001

Duration of

hypertension (years)

6.02±5.39 −0.001 0.99

Note: A two-tailed P value<0.05 was considered statistically significant.

Table 2 Non-ECG Categorical Variables Tested for Inclusion in

the Predictive Model for Left Ventricular Mass Index (LVMI)

Non-ECG

Categorical Variables

Frequency/

Percent

Pearson

Correlation

P value

Gender (Men/

Percentage)

97/66% 0.04 0.67

Ischemic heart disease

(Present/Percentage)

47/38% 0.35 <0.001

Diabetes (Present/

Percentage)

45/30.6% 0.04 0.64

Dyslipidemia (Present/

Percentage)

24/16.3% −0.11 0.17

Note: A two-tailed P value<0.05 was considered statistically significant.

Table 3 ECG Continuous Variables Tested for Inclusion in the

Predictive Model for Left Ventricular Mass Index (LVMI)

Sum of

Deflections

Mean±Std.

Deviation

Pearson

Correlation

P value

(i) Limb leads (LL) 27.24±9.41 0.60 <0.001

(ii) Augmented limb

leads (ALL)

22.16±7.06 0.64 <0.001

(iii) Precordial leads

(PL)

110.70±34.87 0.51 <0.001

(iv) All twelve leads

(ATL)

160.10±44.60 0.56 <0.001

(v) Sokolow Lyon

criteria (SL)

25.54±10.58 0.49 <0.001

(vi) Cornell voltage

criteria (CV)

17.93±8.06 0.53 <0.001

Note: A two-tailed P value<0.05 was considered statistically significant.

Ahmed et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Medical Devices: Evidence and Research 2020:13166

http://www.dovepress.com
http://www.dovepress.com


Non-ECG Categorical Variables
The only non-ECG categorical variable found to be sig-

nificantly related to LVMI was the presence of ischemic

heart disease (IHD) (r =0.35). Other categorical variables –

gender distribution (r =0.04), presence of diabetes (r

=0.04) and presence of dyslipidaemia (r = −0.11) were

not found to have a significant correlation with the depen-

dent variable.

ECG Variables
All the six ECG variables tested showed a significant

correlation with LVMI and were included for analysis in

the multiple linear regression model (Table 3).

Retained and Removed Variables
The variables were retained or removed by the stepwise

forward selection method as shown in Table 4. The non-

ECG continuous and categorical variables retained were

MBP and IHD, respectively. The ECG variables retained

were Augmented limb leads and Cornell voltage (Figure 1).

Being the only non-ECG continuous variable, MBP (P=0.07,

R2 change=0.012) was retained as an exceptional variable.

Best Fit Model
The model was re-run with retained significant variables

(Table 5). The proportion of explained variability (R2) was

50.4%. There was a significant improvement in adjusted

R2 with the addition of each variable. Multicollinearity

was eliminated. The residuals were normally distributed

(Figure 2). The values of the standardized residual values

indicated that no outliers and influential cases were present

in the data set. Finally, using the unstandardized coeffi-

cients and the value of the constant obtained from the

results of the best fit model, the regression equation to

predict LVMI was conceived.

LVMI=18.494 + 1.704 (aLL) + 0.969 (RaVL+SV3) +

0.295 (MBP) + 15.406 (IHD)

(aLL – sum of deflections in augmented limb leads;

RaVL+SV3 – sum of deflection of (R wave in aVL +

S wave in V3); MBP – mean blood pressure; IHD=1 for

the presence of the disease, IHD=0 for the absence of the

disease)

Cross-Validation
Hold-Out Method

The mean LVMI in the training cohort was 115.93 ±35.62

gm/m2. The mean observed and predicted LVMI in the

validation cohort was 109.42±27.03 and 115.24±27.91 gm/

m2 respectively. There was a strong correlation between

predicted and observed values of LVMI in the validation

cohort (R=0.69, P<0.001) (Figure 3A). The slope of the

regression line (unstandardized coefficient) was 0.708

(95% confidence interval: 0.487–0.928, P<0.001) with

a margin of error of 21.6%.

Leave-One-Out Method

The mean LVMI was 113.76 ±33.06 and 113.40±21.70

gm/m2 in the original cohort and leave-one-out set, respec-

tively. There was a strong correlation between predicted

and observed values of LVMI in the two sets (R=0.62,

P<0.001) (Figure 3B).The slope of the regression line

(unstandardized coefficient) was 0.405 (95% confidence

interval: 0.321–0.490, P<0.001) with a margin of error

of 8.4%.

Discussion
The objective of the MLR method is to simultaneously

incorporate the optimum number of explanatory variables

in a predictive model and derive the maximum explained

variability for the dependent variable. The MLR model

eliminates redundant variables and pools the contribution

of individual predictors into a single effect. Validated

models with a low proportion of error can serve as ready-

made tools in risk assessment, establishing diagnoses or

judging response to therapy. In our work, we developed an

MLR model for the prediction of LVMI (measured in gm/

m2) in hypertensive LVH. Though recent work in this field

are few, we present a comparative assessment of existing

literature vis-a-vis our own work.

In as early as 1991, Wolf et al had developed a model on

ECG criteria only. Although there was significant variability

in patient characteristics, it was a pioneering work and opened

avenues for further research. They developed separate models

for men (n=203) and women (n=252) using ECG criteria in

a variegated sample comprising normal subjects, patients of

valvular heart disease, coronary artery disease, hypertension

and others (R2 = 0.18–0.68). The researchers observed that for

a given number of independent variables, the multiple corre-

lation was always slightly higher with LVMI than the LV

mass. We observed the same phenomenon while developing

our model. LVMI is also a clinically more meaningful and

precise measure of LV hypertrophy. Therefore, we also devel-

oped our regression model with LVMI as the outcome of

interest. The R2 value in our study was 0.504. In their hyper-

tensive sub-cohort (n=17; 10 men and 7 women), the R2 for
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men and women was 0.34 and 0.54, respectively. Unlike our

study, the predictors were R (aVL), T (V), and S (V) for men

and R (aVL), T (V), and S (I) for women.10 These predictors

were found to be weaker correlates in our study and could not

be included in our model.

In our study, the presenting mean blood pressure was

the most important measurable clinical correlate of LVMI

(R=0.3, p<0.001). Recently, in 2014, Varis et al reported

a correlation between systolic blood pressure and cardiac

mass (R=0.4–0.6) involving both normotensive (n=252)

and hypertensive (n=275) subjects. Using two non-ECG

variables – Body Mass Index and systolic BP (SBP) and

one ECG predictor-Cornell voltage/Cornell product, the

researchers developed models that could explain 33% to

41% of the variability in LVMI.11 In an otherwise old

literature (Glasser and Koehn 1989), however, the authors

did not find any significant correlation between SBP/MBP

(R=0.03/0.00). Instead, a high correlation with the varia-

bility of blood pressure was seen (R=0.56).12 In a similar

study (n=317), Hammond et al found that the correlation

of SBP and DBP with hypertensive LVH was 0.22

(P<0.001) and 0.17 (P<0.05), respectively.13 Although

the degree and duration of high blood pressure that

induces development of LVH is not known, these studies

(including our present study) show that high blood pres-

sure may be an important determinant of echocardiogra-

phy detected cardiac enlargement. Conversely, blood

pressure reduction brings significant regression of LVH

in as less as 24 weeks regardless of the duration of hyper-

tension and previous therapy.14 This indicates that the

progression and regression of LVH may be more dynamic

than anticipated. Another clinical characteristic, the pre-

sence of ischemic heart disease (IHD), was observed as an

important predictor variable in our study. Considering the

presence or absence of IHD as a dichotomous variable,

a significant correlation was observed (R= 0.33, P <0.001).

LVMI was higher in patients who had IHD by a mean

value of 15.406. We could not identify any other study

using ischemic heart disease as an explanatory variable in

the predictive model of LVMI.

The ECG variables which explained the maximum

variability in LVMI without redundancy in our best fit

model were the sum of deflections in augmented limb

leads and Cornell voltage. The sum of deflections in aug-

mented limb leads has the maximum correlation coeffi-

cient (R=0.64) and independently explained 41% of the

variability in LVMI. The sum of deflections corresponding

to Cornell voltage criteria was also high (R=0.53).

Table 4 Stepwise Forward Selection Method for Construction of Multiple Linear Regression Model Predictive of LVMI

Step Variables Added P value VIF R2 Adj. R2 Variables Removed

1 Augmented limb leads (ALL) <0.001 1.00 0.408 0.404

2 Augmented limb leads (ALL) <0.001 7.50 0.408 0.400 Limb leads (LL)

Limb leads (LL) 0.880 7.50

3 Augmented limb leads (ALL) <0.001 2.15 0.424 0.416

All twelve leads (ATL) 0.043 2.15

4 Augmented limb leads (ALL) <0.001 2.27 0.450 0.438 All twelve leads (ATL)

All twelve leads (ATL) 0.340 2.51

Cornell voltage criteria (CV) 0.010 1.77

5 Augmented limb leads (ALL) <0.001 1.67 0.460 0.449 Precordial leads (PL)

Cornell voltage criteria (CV) 0.040 1.86

Precordial leads (PL) 0.060 1.76

6 Augmented limb leads (ALL) <0.001 2.16 0.459 0.447 Sokolow Lyon criteria (SLC)

Cornell voltage criteria (CV) 0.002 1.52

Sokolow Lyon criteria (SLC) 0.073 1.64

7 Augmented limb leads (ALL) <0.001 1.66 0.458 0.446

Cornell voltage criteria (CV) 0.002 1.52

Mean BP (mm of Hg) 0.083 1.14

8 Augmented limb leads (ALL) <0.001 1.70 0.504 0.490

Cornell voltage criteria (CV) 0.001 1.53

Mean BP (mm of Hg) 0.072 1.14

Ischemic heart disease (Present) <0.001 1.04
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Collectively, the two ECG variables in our model

explained 44.6% of the variance in LVMI. Laszlo et al

(2016) and Varis et al (2014) reported a correlation coeffi-

cient between Cornell voltage and left ventricular mass or

its indices as 0.68 and 0.44, respectively. The study by

Laszlo et al was a part of a large population-based obser-

vational study (ActiFE-Ulm study) which recruited 432

subjects from the original cohort to study ECG-Echo cor-

relation. The majority of the patients were hypertensive

(70%) with or without comorbidities (coronary artery dis-

ease – 19%, diabetes – 15%, dyslipidaemia – 33%).15 In

contemporary literature, Cornell voltage and product are

very frequently used ECG predictors of LV mass

(R=0.438–0.443, Xie et al, R=0.15–0.17, Zhang et al,

R=0.439–0.427, Varis et al, R=0.68, Laszlo et al). Xie

et al (2010) studied 546 consecutive hypertensive patients

and found the correlation coefficient for Cornell voltage in

men (BMI<24), men (BMI>24), women (BMI<24) and

women (BMI>24) was 0.265, 0.446, 0.375, and 0.385,

respectively.16

Table 5 Best Fit Model for LVMI with Retained Significant

Predictors

Predictor Unstandardized

Coefficient

Adj.

R2

P value

Aug. limb leads 1.704 0.404 <0.0001

Ischaemic Heart

disease

15.406 0.448 <0.0001

Cornell Voltage 0.969 0.482 0.001

Mean blood

pressure

0.295 0.490 0.072

Note: A two-tailed P value<0.05 was considered statistically significant.

Abbreviations: Adj. R2, adjusted R square; Aug. limb leads, sum of deflections in

augmented limb leads; Cornell Voltage, sum of deflections as in Cornell criteria;

MBP, mean blood pressure; IHD, presence of ischemic heart disease.

Figure 2 (A) Histogram of standardised residuals indicating normal distribution. All residuals are lying within the limit of 3 SDs. (B) Scatter plot of standardised residuals

against standard predicted values. The dots are uniformly distributed on either side of the horizontal line at the level of standardised residual=0. The plot shows

homogeneity of variance at different standardised predicted values.
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Figure 1 Scatter plots of ECG variables against the dependent variable (LVMI). (A)

Sum total of deflections in augmented limb leads (ALL) (R=0.64). (B) Sum of

deflection of R wave in aVL and S wave in V3, Cornell Voltage(CV) (R=0.53).

Abbreviation: LVMI, left ventricular mass index.
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Model by Vries et al in 1996 was the first successful

attempt to develop a predictive model for left ventricular

mass using both ECG and non-ECG criteria. Using multi-

ple regression analysis, the representative equation to pre-

dict left ventricular mass was formulated:

LV mass (g) = ~137.5–13.1*SEX + 1.1*AGE+

101.4*BSA + 0.43*PVldur + 28.7*SV1 + 26.5*SV4,

where SEX = gender (0 = male, 1 = female); AGE = age

(years); BSA = body surface area (m2); PV1dur = duration of

the terminal part of the P-wave in V1 (milliseconds): and SV1

and SV4= S-voltages (mV) in the corresponding precordial

leads V1 and V4 (R2 = 0.45, mean squared residual = 1020).

Statistical significance levels of the β coefficients: SEX (P =

0.034), AGE (P = 0.000), BSA (P = 0.000), PV1dur (P <0.009).

SV1 (D<0.001) and SV4 (p = <0.001). The researchers opined

Where the above model explains 45% of the variance,

a model with only sex, age and BSA as independent

variables explains 31%, indicating that an additional 14%

of the variance is explained by the ECG variables. We

found no evidence for collinearity problems in our model,

with all variance inflation factor values <2.

Post hoc, the authors validated the model in a validation

sample (n=92) and found a relatively high correlation

between the predicted and the observed LV mass, r =

0.65, corresponding to 42% of the explained variance.4

Our study was cross-validated by two methods. The cor-

relation between the predicted and the observed LV mass

was 0.69 and 0.62 by hold-out and leave-one-out method,

respectively.

Varis et al, in a community-based study in 2014, invol-

ving a population sample (n=252) and a hypertension

sample (n= 275) in middle age group subjects, developed

gender-specific models based on BMI, systolic blood pres-

sure, Cornell voltage and Cornell product. There was no

significant difference in the various models based on

Cornell voltage and Cornell product. The researchers

observed a greater correlation with Cornell product

(although the difference was not significant statistically).

In our study, both Cornell voltage and Cornell product

were significant predictors. However, we did not include

Cornell product in our best fit model to avoid multicolli-

nearity and greater significance of Cornell voltage. The

three determinants in the study by Varis et al explained

46–48% (47–49%) of the variation in LVMI among men

and 50–54% (52–57%) among women.11

In our model, we had combined a set of ECG and non-

ECG criteria to increase the predictability of the outcome

variable. We found a significant correlation with two non-

ECG variables – Mean blood pressure and presence or

absence of ischemic heart disease. While high blood pres-

sure as an etiological factor associated with LVH is estab-

lished beyond doubt, few studies have shown its

usefulness as an explanatory variable for calculation of

left ventricular mass. Crow et al observed in their study

that the use of non-ECG parameters like systolic blood

pressure and body mass index consistently improved LV

mass predictability.3 Earlier, Glasser and Koehn had devel-

oped a regression model for LVMI based on non-ECG

criteria only. The equation for calculating LVMI was for-

mulated as LVMI=93.85+6.91 (1 SD of blood pressure)

−3.09 duration of hypertension.12 In our study, we had

included both old and new cases of hypertension in the

age group of 35 to 85 years of age. We did not find

a significant correlation based on gender and therefore

conceived a single model for both the sexes. Instead, the

dichotomous variable of presence or absence of ischemic

heart disease was found to be a significant predictor in our

model. Although the association of ischemic heart disease

with left ventricular hypertrophy has been shown in
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Figure 3 (A) Scatter plot of predicted against the observed values of LVMI in the

hold-out validation method (R=0.69). (B) Scatter plot of predicted against the

observed values of LVMI in the leave-one-out validation method (R=0.62).

Abbreviation: LVMI, left ventricular mass index.
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previous studies (Eskerud et al),17 the incorporation of this

variable in the predictive model of LVMI is a novel con-

cept. Eventually, the best fit model which was developed

with all the significant regressors was able to explain

50.4% of the variability in LVMI irrespective of gender,

age, weight, body mass index, presence of diabetes, pre-

sence of dyslipidaemia and duration of hypertension.

In the clinical scenario, more than 36 ECG criteria are in

vogue to judge the presence or absence of LVH.18 ECG criteria

are obscure in terms of quantifying the magnitude of an

increase in LV mass. Most of them have low sensitivity and

high specificity whichmeans that a large part of the population

at risk will not be identified.19 This has tremendous clinical

significance because a direct and progressive relationship

exists between left ventricular mass in grams and the rate of

cardiovascular events.20 Since the imaging method to measure

LV mass is both cost and skill dependent, algorithm based on

mathematical modelling incorporated in ECG units can serve

as a viable alternative. Though our single centre cross-

validated model is not robust enough for use as a tool in

clinical practice, our work justifies the need for further

research in the field. Existing know-how on this potential

technology is scarce and we need more research to shape an

error-free and robust model that can be applied universally.

Limitations
Our study was a single centre study with a relatively small

sample size. We recorded office BP only in our study. Office

BP readings reflect only an instantaneous picture of a patient’s

true BP and provide no idea about the diurnal variation in BP.

Recent research have shown that ambulatory blood pressure is

better than office BP in diagnosis and monitoring of

hypertension.21 The use of ambulatory blood pressure in our

study would have provided more realistic results but could not

be done due to limitation of cost and resources.

Echocardiography is the standard clinical method for

the estimation of left ventricular mass. Though the inter-

observer and intra-observer variabilities are not clinically

significant, the correlation between echocardiography

determined LV mass and post-mortem measurement

(Gold standard) showed that echocardiography explains

85% of the variance.4 Cardiac magnetic resonance ima-

ging provides better resolution and quantification of LV

mass, but low cost, real-time imaging and prompt inter-

pretation make echocardiography popular in clinical prac-

tice. In studies where regression of LV mass is the primary

outcome, magnetic resonance imaging should be the pre-

ferred imaging modality.22 The proportion of error due to

errors in measurement of LV mass in echocardiography

method, lies undetermined in our study.

Conclusion
In our study, we have developed a multiple linear regres-

sion model to predict left ventricular mass index from a set

of ECG and non-ECG variables. We used predefined ECG

criteria (as continuous independent variables), mean blood

pressure (as continuous non-ECG independent variable)

and presence of ischemic heart disease (as dichotomous

non-ECG independent variable). A r value of 0.701 was

obtained which indicates that 50.4% of the variability in

LV mass is explained by the variables used in the model.
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