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Motion-induced blindness (MIB) occurs when a dot embedded in a motion field subjectively vanishes. Here we report the
first psychophysical data concerning effects of microsaccade/eyeblink rate upon perceptual switches during MIB. We find
that the rate of microsaccades/eyeblink rises before and after perceptual transitions from not seeing to seeing the dot, and
decreases before perceptual transitions from seeing it to not seeing it. In addition, event-related fMRI data reveal that, when
a dot subjectively reappears during MIB, the blood oxygen-level dependent (BOLD) signal increases in V1v and V2v and
decreases in contralateral hMT+. These BOLD signal changes observed upon perceptual state changes in MIB could be
driven by the change of perceptual states and/or a confounding factor, such as the microsaccade/eyeblink rate.
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Introduction

When high-contrast stationary stimuli, such as dots, are
embedded within a global moving pattern, such as a rotating
field of crosses, the dots seem to disappear and reappear
alternately, although they are in fact constantly present in the
stimulus [1]. At least two hypotheses have been raised to account
for the phenomenon of motion-induced blindness (MIB). The
first hypothesis argues that MIB is related to surface completion
[2] or perceptual filling-in [3]. Perceptual filling-in is also known
as ‘perceptual fading’ or “The Troxler effect’ [4], which occurs
when an object, though present in the world and continually
casting light upon the retina, vanishes from visual consciousness
to be replaced by its surrounding background. This phenomenon
is commonly thought to arise because of bottom-up local sensory
adaptation to edge information [5] and is presumed to occur
early in the visual pathway, such as in the lateral geniculate
nucleus of the thalamus (LGN) or even retinal ganglion cells [6—
8]. Because perceptual fading involves both loss of signal about
the presence of an object, and filling in of the background in
place of the object, it is possible that the effect has both a retinal
and a cortical component arising from neuronal adaptation and
filling-in, respectively. Retinal and cortical accounts are not
mutually exclusive. For example, retinal adaptation could lead to
a weakened edge signal sent from retinal ganglion cells, followed
by a cortical filling-in process [9,10].

A second hypothesis maintains that MIB may be a kind of
perceptual rivalry [11] between the motion background and the
target, perhaps arising because of attentional mechanisms [1].
Proponents of this view argue that MIB is unlikely to reflect
retinal suppression, sensory masking or adaptation [1,12,13].
They point out that if there are several stationary dots present in
a MIB display, sometimes one dot will disappear while the others
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may not [1]. Similarly, if several dots have disappeared, only one
might reappear, while the others will remain unseen. If retinal
stabilization were the sole cause of MIB, fixation would stabilize
all dots equally, and all would disappear together. Conversely,
the fact that dot reappearance can also be piecemeal suggests
that the mechanism underlying reappearance is not simply due
to breaks in retinal stabilization induced by blinks or micro-
saccades. Such breaks would again occur over the entire retinal
image, and thus should lead to reappearance of all dots together.
It has also been shown that object and grouping procedures
influence MIB [1,13]. For example, when two triangles are
overlapping (i.e., making a star of David pattern with one
triangle green and the other red) two legs of one triangle are
more likely to go into and out of MIB together than two legs
from different triangles [1]. Furthermore, changes to an object’s
characteristics while that object has vanished under MIB, can
affect how the information returns to awareness [13]. The
finding that MIB can continue even during movement of
perceptually vanished objects also suggests that MIB is not
caused by bottom-up local sensory adaptation [1,13].

Here we examine both the microsaccade rate and eyeblink rate
upon perceptual switches during MIB. If MIB involves bottom-up
local sensory adaptation to edge information, we would expect to
see a change in microsaccade/eyeblink rate before a target
reappears from motion-induced blindness, similar to what has
been observed during Troxler fading [14]. On the contrary, if
bottom-up local sensory adaptation to edge information is not
necessary to induce MIB, we would expect to see no change in
microsaccade/eyeblink rate before a target reappears from
motion-induced blindness.

In a second experiment, we apply event-related functional
magnetic resonance imaging (f[MRI) to examine the neural basis of
subjective visibility following the induction of MIB.

April 2009 | Volume 4 | Issue 4 | e5163



Figure 1. Stimuli. The rotating background stimulus for inducing MIB.
It consisted of cyan crosses on a black background rotating
counterclockwise at 70°/sec, as indicated by the yellow arrows (not
present in stimulus). After fixating on the central fixation spot for
several seconds, the cyan dot disappears and reappears alternatively.
doi:10.1371/journal.pone.0005163.g001

Results

In each of the four stimulation blocks, a single target dot was
presented in one of the four quadrants (left top, left bottom, right
top, or right bottom) on a motion background (Figure 1). Subjects
were required to indicate their perceptual state by pressing a
button. Figures 2 and 3 show that the microsaccade/eyeblink
rate was correlated with the type of perceptual switches during

Mition-Induced Blindness

MIB. In Figure 2, eyeblink rate was significantly greater than the
baseline rate both before and after a perceptual switch to the ‘see’
condition. In contrast, eyeblink rate was significantly smaller than
the baseline both before and after a perceptual switch to the ‘no
see’ condition. Figure 3 shows that the microsaccade rate was
significantly greater than baseline both before and after a
perceptual switch to the ‘see’ condition, and was significantly
smaller than the baseline only before a perceptual switch to the ‘no
see’ condition.

In the fMRI experiment, we further examine the neural basis of
subjective visibility following the induction of MIB. We compare
the BOLD signal after perceptual switches by averaging data from
‘see’ conditions that followed ‘no see’ conditions, and vice versa.
Since receptive fields within a given retinotopic ‘quadrant’ (left
hemisphere Vl1v for example) only receive bottom-up input from
one quadrant of the visual field (e.g. right top), we can compare the
BOLD signal in different conditions to see whether the BOLD
signal only changes when the target dot undergoing MIB is
directly located in the corresponding quadrant.

Regions of interest (ROIs) in the current study include
individually specified retinotopic areas Vlv, V1d, V2v, V2d,
V3v, V3d, V3A/B, and V4v (Figures 4). We focus on these visual
areas because it has been shown that neuronal activity in
retinotopic visual areas is correlated with perceptual rivalry and
attentional modulation [15]. Examining BOLD responses in these
areas during MIB should help us to understand whether these
phenomena are related. In addition to these areas, localizer scans
were performed to isolate hM'T+, which is of particular interest in
this study because hMT+ is an area of the brain known to process
motion [16-20].
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Figure 2. Rates of eyeblinks (n =10) around the time of a perceptual switch (time 0). The rate of eyeblinks rises before and after perceptual
transitions from ‘no see’ to ‘see’, and decreases during perceptual transitions from ‘see’ to ‘no see.’ In the two-tailed simple t-test, those data points
that are significantly different than the baseline (red line) are marked as * (p<<0.05)

doi:10.1371/journal.pone.0005163.9g002
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Figure 3. Rates of microsaccades around the time of a perceptual switch (time 0). The rate of microsaccades rises before and after
perceptual transitions from ‘no see’ to ‘see’, and decreases before perceptual transitions from ‘see’ to ‘no see.’ In the two-tailed simple t-test, those
data points that are significantly different than the baseline (red line) are marked as * (p<<0.05).

doi:10.1371/journal.pone.0005163.9g003

Figure 5 shows the average timecourse data for the ‘see’ and
‘no see’ states. An asterisk above or below a data point, in the color
of that data point indicates that it differs significantly (p<<0.05)
from TR, (the BOLD signal at the time of a perceptual state
change set to zero). Our results show that, in general, early visual
areas have a stronger BOLD activation after a perceptual switch
(Figure 5) such that signal intensity rises after perceptual
transitions from ‘no see’ to ‘see’ (pink) for the case where the dot

was in fact present in the corresponding contralateral quadrant.
Surprisingly, BOLD signal deviations reached significance not
only when the target was located within these ROTI’s contralateral
‘within’ quadrant (as opposed to the contralateral quadrant where
the dot was not present), which might have been expected, but also
when the target was located ipsilaterally to these ROIs, which was
far from expected. BOLD signal modulates relatively more weakly
with perceptual state in contralateral or ipsilateral V3v, V3d

peripheral
7.8 degrees

Figure 4. Retinotopy. (a) A typical retinotopic map of the flattened left hemisphere occipital pole for one subject is shown with the approximate
borders between the retinotopic areas specified in black. Retinotopic area masks were individually specified for each hemisphere of each subject.
Blue here represents the lower vertical meridian, cyan/green the horizontal meridian, and red the vertical meridian. (b) A typical retinotopic map of
the flattened left hemisphere occipital pole for one subject is shown with the approximate borders specified in black between the central (<4.6 visual
degrees), middle (4.6-7.8 visual degrees), and peripheral (>7.8 visual degrees) areas.

doi:10.1371/journal.pone.0005163.9g004
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Figure 5. The differences of BOLD timecourses (TR=1.6 seconds) upon perceptual switches in V1v, V1d, V2v, V2d, V3v, and V3d.
The BOLD signal change averaged across voxels within subjects’ ROls and across hemispheres relative to the 16 slice volume acquisition (TR)=0
position, corresponding to the beginning of a volume in which the subject reported a perceptual switch. The area is marked ‘contra within’ when the
target was located inside the corresponding visual field, and marked ‘contra outside’ when target was located on the contralateral side to the ROI but
outside the corresponding visual field. The area is marked ‘ipsi’ when the ROl was on the same side as the target that underwent MIB. The x-axis
shows the time in units of TR (1.6 seconds), and the y-axis shows the percentage change of BOLD signal (%). The results show that the BOLD signal
increased when the stimulus reappeared from MIB in V1v and V2v. The same result was observed when the stimulus was presented ipsilaterally to
these areas. Statistics for Figures 5 and 6: N=14; A two-tailed t-test was carried out to compare the value of TR=0 (set to be zero) to the means of
each TR individually. Those data points that are significantly different than 0 are marked as *' (p<<0.05).

doi:10.1371/journal.pone.0005163.g005

(Figure 5), V3A or V4v (Figure 6a). In arca hM'T+ (Figure 6b), Discussion

the BOLD signal decreases upon transition to ‘see’ when the

target dot was presented contralaterally, which is opposite the An increase in microsaccade rate before target reappearance
BOLD response pattern evident in areas V1v and V2v. from perceptual fading was recently reported [14]. This finding
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Figure 6. The differences of BOLD signal timecourses (TR= 1.6 seconds) upon perceptual switches in V3A/B, V4v, and hMT+. (a) The
BOLD signal modulates weakly in V3A/B or V4v. (b) The BOLD signal modulates with the percept in contralateral hMT+, in a manner largely opposite
that of V1v and V2v. In particular, BOLD signal decreases upon subjective disappearance of the dot in hMT+, but increases in V1 and V2.

doi:10.1371/journal.pone.0005163.9g006

confirms that microsaccades or blinks likely break the bottom-up
local sensory adaptation to edge information that is presumably
necessary for perceptual fading to occur. Our results are consistent
with these findings, showing that the microsaccade rate increases
before perceptual switches to the ‘see’ condition during MIB. This
finding suggests that bottom-up local sensory adaptation to edge
information may play some role during MIB, and is in line with
other evidence that there are some similarities between MIB and
Troxler fading [2,3].

An interesting finding is that the microsaccade/eyeblink rate
generally increases after perceptual switches to the ‘see’ states, and
decreases after perceptual switches to the ‘no see’ state. One
possible explanation is that shifts in attention may alter the
baseline microsaccade rate. Several authors have reported changes
in the baseline rate of microsaccades after the onset of a peripheral
cue that captures attention in humans [21,22,23] and monkeys
[24]. The decrease and then increase of microsaccade rate might
simply be the result of subjects paying either more or less attention
immediately before or immediately after the change in percept. It
is possible that when the target is not perceived, subjects paid more
or less attention to the stimuli and therefore made fewer
microsaccades.

Our fMRI data show that, among visual areas tested, the
BOLD response increases when the target dot, although
continually present in the stimulus, subjectively reappears
following MIB in V1v and V2v. In contrast, the BOLD response
decreases when the target reappears following MIB in hMT+.
Interestingly, modulation of the BOLD signal occurred in
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corresponding ipsilateral areas as well, although the physical
target was only located in one quadrant of the visual field. This
result is consistent with the possibility that eyeblinks and/or
fixational eye movements, which are correlated with switches in
perceptual state, may lead to changes in neuronal firing rate in
V1 [25-27] and ipsilateral and bilateral BOLD signal changes
[28].

Because we cannot rule out this possible confound of
microsaccades, it might seem that the present dataset should be
recollected with an fMRI eyetracker that has a high enough
temporal and spatial resolution to permit detection of micro-
saccades. This, however, would not settle the matter, and it is
difficult to imagine a method for presenting MIB that can get
around this problem, short of image stabilization upon the retina,
which might itself eliminate MIB entirely. First, at present, to our
knowledge, no commercially available eyetracker can detect
microsaccades reliably in the scanner. Second, even if micro-
saccades could easily be detected in the scanner, the eye
movements measured in the scanner would presumably demon-
strate what we demonstrated here psychophysically by measuring
eye movements during MIB outside of the scanner; Namely,
measuring eye movements in the scanner will presumably also
show that the probablility of microsaccade or eyeblink occurrence
changes prior to and/or subsequent to the onset of MIB. Thus the
potential confound will remain even if eye movements are
measured in the scanner. Nonetheless, one recent study [29] has
managed to detect the neural correlates of microsaccades in a few
subjects. They found that BOLD signal increases in V1 and V2,

April 2009 | Volume 4 | Issue 4 | e5163



but remains unchanged in hMT+ bilaterally following a micro-
saccade, and increases in all these areas following an eyeblink.
Thus our data in V1 or V2 could arise from microsaccades or
eyeblinks, but this is not the case for hMT+, where we see a
decrease in activity following motion-induced blindness. Thus,
despite the possibility of confounding eye movement effects in V1
and V2, although not for hMT+, it is useful to publicize the
present results as a first step toward determining the neural
correlates of visibility in motion-induced blindness.

If the bilateral BOLD activation we observe is not solely due to
confounding fixational eye movements that tend to occur at times
of perceptual transition between ‘see’ and ‘no see’ states, what
other possible factors might be involved? One possible model that
could account for the present data is one according to which the
bilateral BOLD signal modulation is caused by a corticocortical or
corticothalamocortical feedback mechanism from contralateral to
ipsilateral cortex. It is possible that each perceptual switch in MIB
is necessarily accompanied by an attentional change, which could
lead to a BOLD signal change through feedback activation [30—
39]. Another possibility is that this feedback activation, if any,
could be directly related to visual awareness [15,40-43] (but see
[44,45]). Other explanations of the data include retinal adaptation,
or possibly amplification of retinal adaptation effects at a cortical
level, due to some suppressive effects of the surround (e.g.,
surround suppression) on the target. This need not necessarily
involve feedback, and could reflect a feedforward mechanism.

Why does the BOLD response follow an opposite timecourse
upon perceptual switches during MIB in hMT+ and V1v? During
MIB, the dot appears to vanish, and to be replaced by the moving
background pattern. Even if no actual motion ever traverses the
location of the cyan spot, it seems that a moving surface does
traverse the location of the cyan dot once it has vanished from
awareness. This could comprise an instance of perceptual filling-
in. The location of the vanished cyan dot appears to be filled in
with motion in the sense that the crosses appear to lie on a rotating
black surface [46]. If more motion is perceived when the dot has
been filled in, hMT+ might respond more in the ‘no see’ case.
Another possibility is that the percept of the target cyan dot and
the percept of the background crosses might compete with each
other. In the ‘see’ case, less motion is perceived because the target
cyan dot is seen; in the ‘no see’ case, more motion is perceived
because the target cyan dot is not seen. These possibilities might
explain our finding that the BOLD signal in hMT+ falls after
transitions from ‘no see’ to ‘see’. As for the BOLD signal change
upon the stimulus onset/offset in hMT+, it is possible that the
BOLD signal goes up after physical target onset because neurons
in this area become more active upon stimulus onset.

To conclude, we report the first psychophysical data concerning
effects of microsaccade/eyeblink rate upon perceptual switches
during MIB. We find that the rate of microsaccades/eyeblink rises
before and after perceptual transitions from not seeing to seeing
the dot, and decreases before perceptual transitions from seeing it
to not seeing it. This finding suggests that bottom-up local sensory
adaptation to edge information may play some role for the
induction of MIB. We also report event-related fMRI data
indicating brain areas where BOLD signal is correlated with
subjective visibility of a target following the induction of motion-
induced blindness. We find BOLD signal modulation to be
correlated with conscious visibility of the target in bilateral V1, V2,
and hMT+. The correlation with perceptual state may arise
because the neuronal correlates of perceptual state exist in the
ROIs where these correlations are observed. Or they may arise
because of confounding fixational eye movements that may tend to
occur at points of perceptual transition between ‘see’ and ‘no see’
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states, attentional effects, or other forms of feedback, in which case
BOLD signal correlates of perceptual state during MIB would not
be indicative of the direct neural basis of these perceptual states.
Future experiments are required to unambiguously specify the
exact mechanism underlying correlations between BOLD signal
changes and changes in perceptual state observed during MIB.
While the present data do not unambiguously specify the neural
correlates underlying visibility in motion-induced blindness, they
do place useful constraints on what and where those neural
correlates might be. In particular, our finding that BOLD signal
drops bilaterally in hMT+ upon induction of motion-induced
blindness, cannot be attributed to microsaccades or eyeblinks,
because these have recently been found to not induce a decrease in
BOLD signal in hMT+ following their occurrence [29].

Materials and Methods

Psychophysics methods and procedures

Ten healthy volunteers (seven paid Dartmouth students and the
authors) participated in the experiment. Each run lasted 307.2 sec
and contained 4 stimulation blocks (76.8 sec each). In each
stimulation block, a cyan (CIE x=0.222, y=0.331) dot was
presented in one of the four quadrants (left top, left bottom, right
top, and right bottom) on a black (CIE x=0.275, y=0.437)
background on which cyan (CIE x=0.204, y=0.272) cross
elements arranged in a grid rotated counterclockwise around the
center point at a constant speed (70°/sec) (Figure 1). The order of
the 4 stimulation blocks, each containing a cyan dot in one of the
four quadrants, was randomized without replacement for each
run. The background contained cyan crosses and rotated
continuously. Each cyan cross subtended 0.75° in height and
0.75° in width, and was centered 2.25° from other cyan crosses
horizontally and vertically. The bars comprising the cross
subtended 0.75° in height and 0.12° in width. The cyan dot had
a diameter subtending 0.25° visual angle, centered 4° (left or right
from vertical midline) and 3° (above or below horizontal midline)
depending on which quadrant it was located in. The contour of
the cyan dot was blurred by equally mixing the color of the dot
with the color of the black background. This consisted of the
equiluminant cyan center, a dot of diameter 0.08°, surrounded by
a linear gradient between cyan and black that brought the overall
blurred dot diameter to 0.12° visual angle. Subjects reported their
current perceptual state by pressing a button with their right hand.
They were asked to press the right-hand button when they did not
see the cyan dot even if they knew it to be there, and release the
button when they did see it.

Eye movements were recorded using a SRresearch Eyelink2
system for the left eye. Eye position was sampled at 250Hz.
Observers ran in one or two sessions, each equivalent to a run of
the fMRI experiment. Observers were required to maintain
fixation on each trial. A miniature video camera, attached to an
adjustable headband and bar, was fitted about 2 cm below the
subject’s left eye, and eye movements were calibrated to a dot that
moved to nine positions on the screen in random order. Observers
rested their chin in a stable rest. The distance from their eyes to
the screen was adjusted such that the visual angles of the stimuli
were the same as that in the scanner. The head was not otherwise
constrained, although observers were instructed to maintain their
head perfectly still. Small head movements could be discounted
online by the eye tracker software using the output of four cameras
mounted on the monitor. The visual stimulator was a 2 GHz Dell
workstation running Windows 2000. The stimuli were presented
on a 23-in. SONY CRT gamma-corrected monitor with 1600 x
1200 pixels resolution and 85 Hz frame rate.
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Psychophysics Data analysis

Linear drifting in eye traces in both x-channel and y-channel
due to headband sliding was corrected before data analysis. We
took the total amount of drifting within a run and divided that
amount by the total duration of a run. This ‘drifting per unit of
time’ was then corrected for each time point. Eyeblinks and huge
eye movements were then identified by the algorithm of Engbert
and Kliegl [21] (velocity threshold=10 std.; minimum dura-
tion = 5 units of time; velocity type = 2; amplitude bigger than 3.33
visual degrees). Data in a time window starting 400 msec before
and ending 600 msec after each eyeblink or huge eye movement
were not used in the following analysis. Microsaccades were then
located using the same algorithm [21] (velocity threshold = 10 std.;
minimum duration =4 units of time; velocity type =2; Note that
we used a higher velocity threshold than what was used in Engbert
and Kliegl [21] to identify eyeblinks and large eye movements.
After removing these eyeblinks and large eye movements, we
applied the same algorithm again to identify microsaccades). A
secondary screening procedure was used to exclude those detected
microsaccades that were smaller than 0.15 visual degrees and
larger than 2 visual degrees. If there were any two microsaccades
(or a cluster of microsaccades) identified by the above algorithm
that had an interval shorter than 80ms between them, only the one
with the largest amplitude contributed to the final analysis. This
was done because microsaccades are followed by a refractory
period during which microsaccades do not occur [47].

Each subject’s button press time points were identified as the
onset of the perceptual switches, which correspond to the 0 points
in Figures 2 and 3. Within each subject, microsaccade/eyeblink
‘rate’ was plotted by calculating the total number of micro-
saccade/eyeblink within a 50ms window around each data point.
The interval between each data point is 50ms. The value of each
data point was then recalculated by taking the mean of the five
data points around it. Error bars indicate standard error of the
mean rate across subjects. A two-tailed paired t-test was carried
out to test whether there was a difference in microsaccade/
eyeblink rate from the baseline. Those data points that are
significantly different than the baseline are marked as * (p<<0.05).
The baseline (marked as red lines in Figures 2 and 3) is defined
by the mean of the first ten data points (—1600ms to —1150ms
before the O point) and last ten data points (from 1150ms to
1600ms after the O point).

fMRI Experimental design

14 healthy right-handed volunteers with normal depth percep-
tion and normal or corrected-to-normal visual acuity (seven
females and seven males between the ages of 18 and 41) were run
in the experiment. All gave written consent within a protocol
passed by the Dartmouth committee for the Protection of Human
Subjects and Dartmouth’s internal review board. Subjects were
paid twenty dollars per session.

Each subject was exposed on average to 6.6%=0.3 runs in the
scanner (range =4 to 8). The stimuli properties were identical to
the psychophysical setup except that each run lasted 403.2 sec
(252 TRs), and in each run, there were 4 stimulation blocks
(76.8 sec each), interleaved with 5 ‘no dot’ periods (19.2 sec each).
Care was taken to assure that subjects’ heads aligned with the
vertical meridian of the stimulus. Stimuli were projected from a
digital data projector (refresh rate 60Hz) onto a plexiglass screen
outside the bore of the magnet, and viewed via a tangent mirror
inside the magnet that permitted a maximum of 22°x16° visible
area. The projected image was smaller than this and subtended
approximately 17°x12°.
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Fixational task

Eye movements, wakefulness, and attention to the fixation point
were controlled for during the fMRI experiment by requiring
subjects to report whether the fixation had changed color by
pressing another button with their left hand. The fixation point
was 0.2°%0.2° located at the center of the screen. The fixation
point changed color randomly from blue/yellow to red/green on
average every 3.2 seconds. The color change occurred an equal
number of times during each block and the same number of times
in each run. No motor areas were found to be activated
differentially between conditions, corroborating that the motor
task was equivalent across all conditions. This task (pressing the
lefthand button transiently whenever the fixation point changed
color) was demanding and difficult to perform in the absence of
fixation. The data show that the average button-press accuracy
after a fixation point color change within runs that were included
in the analysis was 78.73%£2.57% and the average reaction time
(RT) was 848.04£53.47 ms. When analyzing color changes of the
fixation point as events, the results show that our fixation task does
not affect the BOLD signal in the retinotopic areas tested (data not
shown). In addition, when analyzing motor responses to the color
changes of the fixation point as events, the results also show no
BOLD signal modulation in the retinotopic areas tested (data not
shown).

MRI scans

Anatomical and functional whole-brain imaging was performed
on a 1.5 T GE Signa scanner. T1-weighted anatomical images
were acquired using a high-resolution 3-D spoiled gradient
recovery sequence (SPGR; 124 sagittal slices, TE =6 ms,
TR =16 ms, flip angle=25° 1x1x1.2 mm voxels). Functional
images were collected using a gradient spin-echo, echo-planar
sequence sensitive to BOLD contrast (T2*) (16 slices per volume,
3.75 mm in-plane resolution, 4.5 mm thickness, l-mm skip,
TR =1600 ms, T2* evolution time = 35 ms, flip angle =90°).

fMRI Data Analysis

Data were analyzed offline using BRAIN VOYAGER (BV)
4.9.6 and MATLAB software developed in house. Effects of small
head movements were removed using BV’s motion correction
algorithms. Functional data were not smoothed in the space
domain. Low frequency oscillations in the timecourse with periods
greater than or equal to 84 TRs (3 cycles per run) were removed.

Retinotopic mapping

Retinotopy was carried out on all (n=14) subjects run in the
main experiment using standard phase-encoding techniques
(4.5 mm thickness and 3.75-by-3.75 mm in-plane voxel resolution,
inter-slice distance Imm, TR = 1600 msec, flip angle =90°, field-
of-view = 240 x240x256 mm, interleaved slice acquisition, matrix
size = 64 x64; 16 slices oriented along the calcarine sulcus) with the
modification that two wedges of an 8Hz flicker black and white
polar checkerboard grating were bilaterally opposite like a bowtie,
to enhance signal to noise [48,49]. Wedges occupied a given
location for 2 TRs (3.2 seconds) before moving to the adjacent
location in a clockwise fashion. Each wedge subtended 18 degrees
of 360 degrees. 9.6 seconds (6 TRs of dummy scans) were
discarded before each run to bring spins to baseline. 168 volumes
were collected on each run. A minimum of 7 wedge runs were
collected for each subject and then averaged to minimize noise
before retinotopic data analysis in BV 4.9.6. A minimum of three
runs was collected per subject using expanding 8Hz flickering
concentric rings that each spanned approximately one degree of
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visual angle in ring width. Each ring was updated after one TR
(1.6s) after which it was replaced by its outward neighbor, except
that the outermost ring was replaced by the innermost ring,
whereupon the cycle was repeated. Retinotopic areas (V1d, Vlv,
V2d, V2v, V3d, V3v, V4v/VOI1, and V3A/B) were defined as
masks on the basis of standard criteria [48], assuming a
contralateral quadrant representation for V1d, Vlv, V2d, V2v,
V3d, and V3v, and a contralateral hemifield representation for
V4v/VO, and V3A/B [50]. V4v and the hemifield representation
just anterior to it, called VO [51], were combined into a common
mask because the border between these regions was not distinct in
all subjects, as was true for the combination of V3A and V3B into
a common V3A/B mask (Figure 4).

hMT+ masks

The human analog of macaque motion processing area MT has
been called V5 or human hMT+. Left and right hMT+ were
localized in 9 of the 14 subjects using a localizer scan comprised of
three to six runs of three minutes each. The hMT+ localizer
stimuli consisted of a grid of 3 x3 subgrids of solid white squares on
a black background whose length and height were approximately
one degree by one degree. This was constructed by eliminating the
zeroth, and *fourth, and *eighth rows and columns from a
regular grid of squares. Square centers were separated by
approximately three degrees. In baseline blocks the grid remained
stationary for a twenty-second epoch, followed by an epoch where
the grid rotated clockwise around its center at a speed of 270
degrees per second. Each run contained nine epochs of alternating
motion and non-motion stimulation. As in the main experiment,
subjects carried out a simple fixation task in order to assess visual
fixation and wakefulness, pressing a button in their right hand any
time the fixation point changed color. hMT+ was localized as
activity in the motion > non-motion GLM contrast that survived
the threshold p<<0.0001 corrected (fixed effects). In addition,
activation had to occupy the inferior occipital gyrus or inferior
temporal sulcus in order to be localized as hMT+. The mean
Talairach coordinates of hMT+ in the right hemisphere were
x=44.7, y=—66.8, and z=1.5, and in the left hemisphere:
x=—40.7, y=—69.9, z=3.3. The hMT+ masks thus localized
could contain area MST as well.

fMRI Data analysis

Event related time-course averages were constructed on a
subject-by-subject basis by averaging within individually mapped
retinotopic ROIs, including V1v, V1d, V2v, V2d, V3v, V3d,
V3A/B, and V4v. The average timecourse for each of the two
perceptual states was constructed by identifying the TR in which a
perceptual switch occurred and the 6 TRs that immediately
followed the switch. These intervals were categorized into the two
perceptual states. The BOLD signal in each interval was
normalized so that the value of the BOLD signal at TR,=0.
The normalized BOLD intervals were then averaged together by
category.
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Because our goal was to compare the BOLD signal that
occurred upon perceptual switches, we only averaged data from
‘see’ conditions that followed ‘no see’ conditions, and vice versa.
Thus the first button-press in each stimulation block, which always
corresponded to a ‘see’ state (induced by the stimulus onset at the
beginning of each stimulation block at the end of a ‘no dot” epoch),
was excluded to eliminate nonspecific onset effects that possibly
had nothing to do with the reappearance of the vanished dot after
a ‘no see’ state. Also, if the last button-press happened within 3
TRs before the end of a stimulation block, it was excluded to
eliminate any possible offset effects that likely had nothing to do
with MIB. A potential problem with timecourse averaging such as
that used here is that variable durations of perceptual states tend to
blur the later part of the timecourse of individual responses. In
order to avoid this possible contamination, we excluded those
percepts shorter than 2TRs. The time-course averaging was
carried out for all voxels in retinotopic cortex. Within each
retinotopic ROI, the average time-course data was then averaged
across all voxels. This resulted in an average time-course
waveform for each retinotopic area for each subject. These
waveforms were then averaged across subjects.

After excluding those percepts shorter than 2TRs, numbers in
the following parentheses indicate the percentage of time that a
subject was in the ‘see’ state at a given TR around a perceptual
switch to the ‘see’ state: TR =—3 (0%); TR = —2 (0%); TR = —1
(0%); TR=1 (100%); TR=2 (100%); TR=3 (100%); TR =4
(82%); TR =5 (62%). Similarly, numbers in parentheses below
indicate the percentage of time that a subject was in the ‘no see’
state at a given TR around a perceptual switch to the ‘no see’ state:
TR=-3 (0%); TR=—2 (0%); TR=—1 (0%); TR=1 (100%);
TR =2 (100%); TR=3 (100%); TR=4 (83%); TR=35 (55%).
Because of the hemodynamic response lag, we present the
timecourse data up to TR =6, which is presumably indicative of
the neuronal processing underlying the conscious state experi-
enced at TR =4, during which the subjects are in a given state
over 80% of the time. ‘See’ states do not include the duration at
the beginning of a run, which was always a ‘see’ state, because this
state was not a transition from a ‘no see’ state.

In areas Vl1v, V1d, V2v, V2d, V3v, and V3d, we further show
the timecourse for the following three conditions, based on
whether the target dot was presented inside (labeled ‘“‘contra
within”), outside (labeled “contra outside™), or ipsilaterally (labeled
“ipst”) to a ROI’s corresponding quadrant visual field. In areas
V3A, V4v, and hMT+, we only compared the timecourse based
on whether the target dot was presented contralaterally (the
“contra” condition) or ipsilaterally (the “ipsi” condition) to a ROI
because receptive fields within these areas are known to be large,
and thus may cross the horizontal meridian if not the vertical
meridian.
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