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Abstract
The current approach to intracranial hypertension and brain tissue hypoxia is reactive, based on fixed thresholds.
We used statistical machine learning on high-frequency intracranial pressure (ICP) and partial brain tissue oxygen
tension (PbtO2) data obtained from the BOOST-II trial with the goal of constructing robust quantitative models to
predict ICP/PbtO2 crises. We derived the following machine learning models: logistic regression (LR), elastic net,
and random forest. We split the data set into 70–30% for training and testing and utilized a discrete-time survival
analysis framework and 5-fold hyperparameter optimization strategy for all models. We compared model perfor-
mances on discrimination between events and non-events of increased ICP or low PbtO2 with the area under the
receiver operating characteristic (AUROC) curve. We further analyzed clinical utility through a decision curve anal-
ysis (DCA). When considering discrimination, the number of features, and interpretability, we identified the RF
model that combined the most recent ICP reading, episode number, and longitudinal trends over the preceding
30 min as the best performing for predicting ICP crisis events within the next 30 min (AUC 0.78). For PbtO2, the LR
model utilizing the most recent reading, episode number, and longitudinal trends over the preceding 30 min
was the best performing (AUC, 0.84). The DCA showed clinical usefulness for wide risk of thresholds for both
ICP and PbtO2 predictions. Acceptable alerting thresholds could range from 20% to 80% depending on a patient-
specific assessment of the benefit-risk ratio of a given intervention in response to the alert.
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Introduction
Annually, >5.5 million people experience severe (sTBI)
traumatic brain injury (TBI) worldwide.1 Outcomes
have not substantially changed over the past 30 years
with mortality of 30–40% and very limited break-
throughs after almost 200 randomized controlled trials
(RCTs).2,3 There are few effective treatments for sTBI,
and presently management is centered on the early
evacuation of mass lesions and identification and treat-
ment of secondary brain injury (SBI) that evolves in the
hours and days after initial impact. Contemporary crit-
ical care of patients with sTBI aims to identify and
manage SBI by monitoring of intracranial pressure
(ICP), cerebral perfusion pressure (CPP), and partial
brain tissue oxygen tension (PbtO2).4 This approach
is recommended by the Brain Trauma Foundation
guidelines and more recently by the Seattle Interna-
tional Severe TBI Consensus Conference.5,6 The thera-
peutic paradigm underlying these recommendations is
a reactive one, where fixed, population-based treatment
thresholds are observed and acted upon to alleviate SBI.
However, by the time treatment is enacted, it may be
too late. The ability to predict the onset of these ‘‘crisis’’
events would provide clinicians with valuable time to
attempt aborting or manage these episodes more effec-
tively, instead of merely reacting when thresholds are
violated.7

Prediction efforts can be broadly divided into two
approaches: 1) ICP forecasting, involving algorithms
designed to predict future ICP values, and 2) ICP
dose prediction, which involves algorithms aimed at
the development of early warning systems of impend-
ing crisis events. Our work belongs to the latter cate-
gory. A few studies have been published attempting
to forecast future ICP values, or predict the onset of
ICP crisis events, and one investigation has explo-
red both ICP and PbtO2 dose predictions.8–10 In this
article, we report on the performance and clinical use-
fulness of predictive models for intracranial hyperten-
sion and brain tissue hypoxia in high-frequency data
obtained from the BOOST-II (Brain Oxygen Optimi-
zation in Severe Traumatic Brain Injury) phase II ran-
domized trial.11 The objectives are 2-fold: 1) explore
machine learning models utilizing high-frequency
data and using a minimal set of features that can pre-
dict intracranial hypertension and brain tissue hypoxia
insults as defined in BOOST-II; 2) show that this mod-
eling is of clinical utility based on decision curve
analysis (DCA).

Methods
The BOOST II Data Set is the source of data for the
present work, and the study has been approved by
the University of Chicago (UChicago) institutional
review board (IRB) under protocol IRB19-1847. The
BOOST-II study was a two-arm, single-blind, prospec-
tive, randomized controlled multi-center phase II trial
assessing safety and efficacy of a management proto-
col optimizing PbtO2 post-sTBI (ClinicalTrials.gov
registration NCT: 00974259); 110 patients were ran-
domized. After randomization, the control group (ICP
only) was managed with a standard-of-care step-wise
intervention strategy triggered by an ICP ‡20 mm Hg
for >5 min. The intervention group (ICP + PbtO2)
was medically managed with step-wise treatments to
correct either an ICP increase or a reduction in PbtO2

(£20 mm Hg, >5 min).
The study concluded that a treatment protocol guided

by both ICP and PbtO2 reduces the duration of measured
brain tissue hypoxia.11 The combined ICP/PbtO2 group
was managed according to four types of events: A) no in-
terventions; B) high ICP; C) low PbtO2; and D) high ICP
+ low PbtO2 (Supplementary Table S1 provides patient
characteristics who experienced at least one ICP or
PbtO2 event vs. patients who experienced no events).
For ICP prediction, we investigated the succession of
events from A or C to B or D; once this change was
detected, subsequent observations were discarded (i.e.,
all B/D->B/D episodes were removed). For PbtO2, the
succession used was A or B to C or D; once this change
was detected, subsequent observations were discarded
(i.e., all C/D->C/D removed). We constructed several
sets of features for both outcomes. First, we used event
number and the last recorded measurement. Then, we
expanded to include trends (mean, median, standard de-
viation, minimum, maximum, difference between first
and last recording, difference between most recent rec-
ordings, and area under the curve [AUC]) over the pre-
ceding 30 min.

Finally, we added frequency-domain measures (slope
of power spectrum distribution, variance of power
spectrum distribution, and approximate entropy). We
derived the following machine learning models: logistic
regression (LR), elastic net (EN), and random forest
(RF). We split the data set into 70–30% for training
and testing and utilized a discrete-time survival analy-
sis framework and 5-fold hyperparameter optimization
strategy for all models. Briefly, data within the training
set were blocked into 30-min intervals where the last
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observations were chosen as representative of the
block. Models were trained to predict the outcome
within the next block. The test data set was not
blocked when evaluating model performances. We
compared model performances on discrimination
between events and non-events of increased ICP or
low PbtO2 with the area under the receiver operating
characteristic (AUROC) curve. We further analyzed
clinical utility or net benefit from making treatment
decisions based on predictions through a DCA using
a set of observations sampled from the test data set
that had an equal proportion of outcomes.12

Results
Figure 1 (upper panel) depicts the AUROC best model
performances for ICP prediction, with the RF exhi-
biting best performance (AUROC, 0.78), whereas for
PbtO2, the LR model was the best performing
(AUROC, 0.84). Supplementary Tables S2 and S3 pro-
vide AUROCs for ICP and PbtO2 prediction within the
next 30 min for the various models tested. In summary,
the LR model that only used the most recent ICP read-
ing and episode number predicted ICP crisis events
within the next 30 min with good discrimination
(AUC, 0.73; 95% confidence interval, 0.72–0.74).

FIG. 1. Upper panel: AUROC best model performances for ICP prediction, with the RF exhibiting best
performance (AUROC, 0.78), whereas for PbtO2, the LR model was the best performing (AUROC, 0.84). Lower
panel: decision curve analysis showing clinical usefulness for wide risk of thresholds for both ICP and PbtO2

predictions. AUROC, area under the receiver operating characteristic curve; ICP, intracranial pressure; RF,
random forest; PbtO2, partial brain tissue oxygen tension; LR, logistic regression.
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However, extending to an RF model improved perfor-
mance (RF AUC 0.78 vs. LR AUC 0.73; p < 0.001). For
PbtO2 crisis event prediction, the addition of longitudi-
nal features to a feature set comprising the most recent
PbtO2 reading and episode number did not improve
performance of the LR model (AUC, 0.84 vs. 0.83).
Extension to RF decreased performance (RF AUC
0.82 vs. LR AUC 0.84), indicating overfitting.

Overall, when considering discrimination, number
of features, and interpretability, we identified the RF
model that combined the most recent ICP reading,
episode number, and longitudinal trends over the pre-
ceding 30 min as the best performing model for pre-
dicting ICP crisis events within the next 30 min. An
LR utilizing the most recent PbtO2 reading, episode
number, and longitudinal trends over the preceding
30 min was the best performing model for predicting
PbtO2 (see Fig. 2 for feature variable importance plots).
The DCA showed clinical usefulness for a wide risk
of thresholds for both ICP and PbtO2 predictions
(Fig. 1, lower panel). Acceptable alerting thresholds
could range from 20% to 80% depending on a patient-
specific assessment of the benefit-risk ratio of a given
intervention in response to the alert.

Discussion
The approach underlying current management of
ICP, CPP, and PbtO2 is based on mostly fixed, generic
treatment thresholds as triggers for an escalating list of
interventions. An important caveat is that by the time
treatment is initiated, even if a return to desirable values
is achieved, irreversible SBI may have occurred. This
could partly explain the lack of effect, or indeed the neg-
ative clinical outcome, of a reactive management mode
toward fixed values of ICP in guiding treatment.13–15

Combining statistical machine learning with clinical in-
sight allows the construction of robust quantitative mod-
els to predict ICP/PbtO2 crises. Although previous work
has been published on predicting ICP crises, these ap-
proaches used either low-resolution data, utilized hun-
dreds of independent variables, or require hours-long
epochs of monitoring to deliver predictions.8–10,16

Recently, Carra and colleagues undertook the valida-
tion testing of Gaussian processes (GPs)-based predic-
tive modeling using the high-resolution CENTER-TBI
data set.10 These algorithms demonstrated good inter-
center robustness, with the model achieving an accu-
racy of 88%, sensitivity of 83%, and specificity of 91%
in providing a 30-min forewarning of an ICP crisis
(defined as an ICP >30 mm Hg lasting at least 10 con-
secutive min). However, using GPs, though promising
with retrospective data, is computationally intensive
and requires 4 h of input data to allow it to make a pre-
diction. In contrast, we show here that it is possible to
achieve reasonable predictive performance using few
and clinically intuitive features, such as the most recent
ICP/PbtO2 reading, episode number, and longitudinal
trends over the preceding 30 min, to form models
that are perhaps less prone to overfitting and more
likely to generalize to clinical settings. The performance
of these features is consistent with past work on ICP/
PbtO2 predictive modeling from a single-center retro-
spective study of 817 sTBI patients based on prospec-
tively collected physiological data.9

It should be noted that metrics of accuracy such as
AUROC do not address the clinical value of a model,
and, in fact, models with very different AUROCs can
be comparable, or even models with higher AUROCs
can sometimes lead to inferior clinical utility.17 For
these reasons, we undertook DCA, as suggested by
Steyerberg and colleagues.12 The decision curves demon-
strate that the presented models can be of clinical utility,
given that within a wide threshold range they provide
higher net benefits than strategies of always treating
(alert-all policy), and over current practice in which no

FIG. 2. Feature variable importance plots. ICP,
intracranial pressure; PbtO2, partial brain tissue
oxygen tension.
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warning exists (no alert policy). Setting an alerting
threshold is a clinical decision, with acceptable thresh-
olds ranging from 20% to 80% depending on a patient-
specific assessment of the benefit-risk ratio of a given in-
tervention in response to the alert; the riskier the inter-
vention, the higher should the alerting threshold be.

These models require prospective validation to inform
individualized prediction assessments in real time.
Besides a prospective assessment of accuracy, real-time
validation can provide mechanistic insights. A limitation
of the presented purely data-driven predictive modeling is
that it does not address the mechanisms behind predicted
crises events. In order to design clinical management ap-
proaches, characterization of the mechanisms responsible
for generating crises is further required. This approach
may be novel in targeting SBI after TBI; nevertheless, it
has been shown in other clinical environments that deliv-
ering alerts for predicted cardiorespiratory instability to
providers leads to a marked decrease in both instability
duration and the numbers of occurrences of serious insta-
bility episodes.18,19 Higher doses of intracranial hyperten-
sion, cerebral hypoperfusion, and brain tissue hypoxia
have been associated with worse outcomes after
sTBI.9,11,20–23 The ability to predict such events could en-
hance efforts to reduce the burden of these insults and, by
extension, potentially improve functional outcomes.

Conclusion
Combining statistical machine learning with clinical insight
allows the construction of robust, clinically valuable quan-
titative models to predict ICP/PbtO2 crises. These models
require prospective validation for their performance and
in order to gain mechanistic insights. An accurate, auto-
matic system of alarm delivery sets the stage for consider-
ing and testing a preemptive clinical algorithm for the
prevention of crisis events. Such a clinical algorithm, if
successful, could shift our treatment approaches from
the current reactive mode to a preemptive one.
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EN ¼ elastic net
GPs ¼ Gaussian processes
ICP ¼ intracranial pressure
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LR ¼ logistic regression

PbtO2 ¼ partial brain tissue oxygen tension
RF ¼ random forest

SBI ¼ secondary brain injury
sTBI ¼ severe TBI
TBI ¼ traumatic brain injury
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