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Role of the Cytokine-like Hormone Leptin in Muscle-
bone Crosstalk with Aging
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The cytokine-like hormone leptin is a classic adipokine that is secreted by adipocytes, in-
creases with weight gain, and decreases with weight loss. Additional studies have, how-
ever, shown that leptin is also produced by skeletal muscle, and leptin receptors are 
abundant in both skeletal muscle and bone-derived mesenchymal (stromal) stem cells. 
These findings suggest that leptin may play an important role in muscle-bone crosstalk. 
Leptin treatment in vitro increases the expression of myogenic genes in primary myo-
blasts, and leptin treatment in vivo increases the expression of microRNAs involved in 
myogenesis. Bone marrow adipogenesis is associated with low bone mass in humans 
and rodents, and leptin can reduce marrow adipogenesis centrally through its receptors 
in the hypothalamus as well as directly via its receptors in bone marrow stem cells. Yet, 
central leptin resistance can increase with age, and low circulating levels of leptin have 
been observed among the frail elderly. Thus, aging appears to significantly alter leptin-
mediated crosstalk among various organs and tissues. Aging is associated with bone 
loss and muscle atrophy, contributing to frailty, postural instability, and the incidence of 
falls. Therapeutic interventions such as protein and amino acid supplementation that 
can increase muscle mass and muscle-derived leptin may have multiple benefits for the 
elderly that can potentially reduce the incidence of falls and fractures. 
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INTRODUCTION

The incidence of debilitating bone fractures increases with age, and as the ag-
ing population expands in nations around the world the public health burden of 
these age-related bone fractures continues to grow. The risk of hip fracture dou-
bles every 5 to 6 years after age 60, underscoring the dramatic increase in fracture 
risk that accompanies older age.[1] Older individuals who are at greatest risk of 
fracture frequently show a spectrum of features broadly categorized as “frailty”, 
defined by unintentional weight loss, self-reported exhaustion, muscle weakness, 
slow walking speed, and low physical activity.[2] The functional and behavioral as-
pects of frailty such as muscle weakness and reduced walking speed are, not sur-
prisingly, also associated with loss of lean mass in the form of sarcopenia.[3] The 
muscle weakness and reduced muscle mass that characterize sarcopenia are asso-
ciated with an increased risk of falling, which is in turn a primary cause of bone frac-
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tures.[4] Thus, while middle-age is often associated with in-
creased body weight in many developed countries, later life 
is frequently characterized by loss of body mass, loss muscle 
mass, bone loss, and ultimately bone fractures.

The constellation of factors that characterizes the frailty 
phenotype suggests that some of these features may be 
physiologically related through endocrine or paracrine path-
ways. The integrative physiology of exercise provides a very 
clear example of the extensive crosstalk that can exist among 
different organs and tissues.[5] For example, muscle is now 
recognized as a source of circulating myokines that can be 
impacted by resistance training and physical activity,[6,7] 
fat is a source of secreted adipokines that can be modulat-
ed by weight loss and may effect a number of different or-
gans and tissues,[8] and bone is now acknowledged to 
produce a circulating osteokine osteocalcin that can alter 
insulin sensitivity and exercise adaptation.[9] It is also be-
coming better appreciated that some of these pathways 
are significantly altered with aging, modifying the network 
for tissue crosstalk that exists in younger individuals.[10] 

The cytokine-like hormone leptin is a classic adipokine 
that is secreted by adipocytes, increases with weight gain, 
and decreases with weight loss.[8] Additional studies have, 
however, shown that leptin is also produced by skeletal 
muscle [11-14] as well as bone cells,[15] and leptin recep-
tors are abundant in these musculoskeletal tissues.[16,17] 
The leptin receptor is highly conserved in vertebrates, and 
leptin functions as a growth factor for both muscle and 
bone early in life.[18] In addition, altered leptin signaling 
may play a key role in the aging process, as leptin resistance 
is known to occur in the brain of aging rodents.[19] Leptin 
levels are positively associated with longevity in centenari-
ans,[20] and the ratio of leptin to adiponectin is positively 
correlated with muscle strength in older adults.[21] In ad-
dition, higher leptin levels are associated with a reduced 
risk of dementia in elderly people.[22,23] Leptin signaling 
and changes in leptin sensitivity with age are therefore 
likely to contribute to age-related degeneration of multi-
ple organs and tissues. This review summarizes the evidence 
for leptin’s role in the maintenance of muscle and bone mass 
with aging, and suggests future directions for research aimed 
at defining the basic mechanisms of organ crosstalk link-
ing age-related changes in musculoskeletal tissues.

THE ANABOLIC EFFECTS OF LEPTIN ON 
SKELETAL MUSCLE

Leptin levels normalized for total protein are actually high-
er in mouse skeletal muscle than in mouse adipose tissue 
(Fig. 1A).[24] Muscle can accumulate fat, but fat does not ac-
cumulate substantially in normal mouse skeletal muscle, sug-
gesting that the high concentrations of leptin in muscle are 
derived from muscle cells themselves.[25] This is further indi-
cated by the observation that myoblasts secrete leptin in vi-
tro,[12] and that leptin is released from skeletal muscle in 
vivo.[13,14] Importantly, leptin release from skeletal muscle 
is only slightly less than release from adipose tissue (per unit 
tissue mass), yet muscle comprises a much greater percent-
age of body composition than fat, revealing that muscle is an 
important source of circulating leptin.[14] As noted above, 
leptin receptors are abundant in skeletal muscle (Fig. 1B),[17] 
their expression in skeletal muscle is altered with changes in 
physical activity,[17,26] and the absence of functional leptin 
receptors in skeletal muscle impairs the capacity for myoblast 
proliferation and differentiation.[16] On the other hand, treat-
ment of isolated primary myoblasts with leptin increases 
proliferation and the expression of myogenic genes (Fig. 1C).
[16] These findings point to an autocrine function of muscle-
derived leptin, but circulating leptin is also likely to have im-
portant anabolic effects on skeletal muscle. Leptin treatment 
increases muscle mass and decreases the expression of atro-
phy-related factors such as myostatin, muscle RING-finger 
protein-1 (MuRF1), and muscle atrophy F-box (MAFbx) in 
muscle (Fig. 1C).[16,27] Circulating and muscle-derived insu-
lin-like growth factor 1 (IGF-1) are both increased with leptin 
treatment in aged mice as well as in leptin-deficient mice, 
[24,28] indicating that many of the anabolic effects of leptin 
on skeletal muscle are likely to be mediated by IGF-1. Finally, 
recent data suggest that leptin may also stimulate follistatin 
production in a circadian manner, and follistatin is a potent 
antagonist of myostatin.[29] 

We have not detected a significant change in muscle-
derived leptin with age (Fig. 1D), nor have we identified 
any changes in leptin receptor expression in skeletal mus-
cle with age.[16] These observations are consistent with 
the finding that exogenous leptin can increase the expres-
sion of myogenic genes in primary myoblasts from aged 
mice,[16] and leptin treatment can increase muscle mass 
in aged mice and alter the expression of myogenic microR-
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NAs such as miR-31 and miR-223.[30] In addition, leptin 
treatment produces a marked decrease in miR-489 expres-
sion in aged mice,[30] and miR-489 is known to maintain 
muscle satellite cells in a quiescent state.[31] Thus, leptin-
induced suppression of miR-489 activity would be expect-
ed to enhance the capacity for muscle regeneration and 
repair in older animals. Although bone-derived mesenchy-
mal stem cells appear to lose their responsiveness to leptin 
with age (see below), this does not seem to be the case in 
skeletal muscle. Age-related differences in the response of 
muscle and bone progenitor cells to leptin with age may 
also result from intrinsic differences in the progenitor cells 
themselves, as bone-derived stem cells appear to exhibit 
greater impairments with age compared to stem cells iso-
lated from muscle or adipose tissue.[32] 

LEPTIN AND AGE-RELATED CHANGES IN 
BONE MARROW CELL POPULATIONS

The central effects of leptin on bone, mediated by hypo-

thalamic leptin receptors and the beta-adrenergic signal-
ing network, were initially thought to suppress bone for-
mation producing a low bone mass phenotype.[33] More 
recent studies show that the effects of leptin on the skele-
ton are quite complex, and that leptin deficiency is associ-
ated with low bone mass primarily due to reduced cortical 
bone.[34-36] Central infusions of leptin in leptin-deficient 
ob/ob mice actually increase cortical bone formation and 
total bone mass,[28] but leptin also has important periph-
eral, direct effects on osteoblasts and bone-derived mesen-
chymal stem (stromal) cells (BMSCs). In fact, the leptin re-
ceptor is now regarded a marker of BMSCs[37] that medi-
ates the switch between osteogenesis and adipogenesis.
[38,39] Leptin receptors are also abundant in the perioste-
um surrounding cortical bone (Fig. 2A). Leptin treatment 
of leptin-sensitive BMSCs increases the expression of bone 
morphogenetic protein 2 (BMP-2) as well as the secretion of 
the chemokine stromal cell-derived factor 1 (SDF-1) (CXCL12). 
[40] Other studies indicate that replacement of bone mar-
row cell populations with stem cells lacking the leptin re-

Fig. 1. (A) Leptin levels measured in homogenized mouse tissue normalized by total protein. Means with different superscripts differ significantly 
from one another (P<0.05). (B) Immunostaining for the long form of the leptin receptor (Ob-R) in cross-sections of mouse skeletal muscle, show-
ing positive staining relative to control samples (no primary antibody). (C) Peripheral, direct (muscle) and central (hypothalamic) pathways through 
which leptin alters pathways regulating skeletal muscle hypertrophy. (D) Leptin levels measured in homogenized mouse tissue normalized by total 
protein in young adult (12 months) and aged (12 months) mouse samples. ns, not statistically significant (P<0.05) for age-related differences; GH, 
growth hormone; IGF, insulin-like growth factor; mTOR, mechanistic target of rapamycin.
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ceptor impairs bone formation, whereas restoring direct 
leptin signaling by transplanting cells expressing the leptin 
receptor enhances bone formation.[41] Moreover, as noted 
above, leptin can stimulate the growth hormone (GH)/IGF-
1 axis, and IGF-1 is a potent osteogenic factor. Thus, leptin 
can effectively couple food intake and energy reserves with 
bone formation through both central and peripheral (di-
rect) actions. 

Aging appears to impact leptin’s effects on bone metabo-
lism in several ways. First, central leptin resistance, which is 
known to increase with aging,[19] is likely to attenuate leptin’s 
central effects mediated by the hypothalamus. This may 
have a particularly important influence on bone marrow 
adipogenesis and the accumulation of bone marrow fat 
with age. Intrahypothalamic injection of leptin reduces mar-
row adipocytes in both mice[42] and rats[43], which ap-
pears to be mediated by beta-adrenergic signaling.[42,44] 
Moreover, leptin deficiency due to either absence of leptin 
or calorie restriction increases marrow adipocytes (Fig. 2B).
[45] These findings suggest that reduced hypothalamic sen-
sitivity to leptin would be expected to support an overall in-
crease in marrow adipocytes with aging (Fig. 2C). An increase 
in marrow fat with age-associated leptin resistance would 
also be consistent with the well-known phenomenon of in-
creased marrow fat seen with advanced age in humans. 

Second, evidence indicates that aging has a significant 
effect on BMSCs and their response to leptin. Individuals 
with osteoporosis have reduced levels of leptin in the bone 
marrow microenvironment,[46] BMSCs isolated from os-
teoporotic donors show lower leptin binding capacity than 
BMSCs from normal donors,[47] and leptin can suppress 
the adipogenic differentiation of BMSCs from healthy do-
nors but not in BMSCs from osteoporotic donors.[48] The 
study by Astudillo and colleagues[47] suggests that leptin 
insensitivity due to decreased leptin binding occurs with 
age, but the molecular mechanisms underlying this phe-
nomenon are not well understood. It is also unclear how 
leptin receptor expression, or the expression of microRNAs 
targeting the leptin receptor, are altered with age in BM-
SCs. BMSCs isolated from older individuals are observed to 
have impaired proliferation, increased senescence, and re-
duced potential for osteoblastic differentiation.[32,49-51] 
It is certainly possible that some of these age-associated 
changes in BMSC function documented in older donors 
may be associated with alterations in factors associated 
with leptin signaling, such as microRNAs targeting the leptin 
receptor or molecules such as suppressor of cytokine sig-
naling 3 (SOCS3) and protein tyrosine phosphatase 1B (PT-
P1B) that inhibit leptin signal transduction.[52,53]

Fig. 2. (A) Immunostaining for the long form of the leptin receptor (Ob-R) in cross-sections of mouse cortical bone (c), showing positive staining in 
periosteal cells (p) relative to control samples (no primary antibody). (B) Increased number of bone marrow adipocytes (asterisks) in bone cross-
sections from POUND mice lacking both forms of the leptin receptor (lb/lb) compared to marrow from normal lean mice. (C) Peripheral, direct (bone-
derived mesenchymal stromal cells [BMSC]) and central (hypothalamic) pathways through which leptin alters pathways regulating osteogenesis 
and adipogenesis in bone marrow. beta-AR, beta-adrenergic receptor.
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DISCUSSION 

Leptin secretion links food intake and energy reserves 
with energy expenditure, growth, and reproduction.[54] 
The role of altered leptin signaling in aging has, however, 
received less attention. Aging is associated with overall re-
duced calorie intake as well as reduced protein intake,[55-57] 
which would be expected to lower circulating levels of leptin. 
Not surprisingly malnutrition in the elderly is in many cases 
associated with reduced leptin,[58,59] as well as with re-
duced subcutaneous fat and reduced lean mass.[60] Many 
of the physical changes observed with older age such as 
reduced lean mass, bone loss, and cognitive decline may 
be related. For example, frailty and muscle weakness are 
associated with dementia,[61,62] and aging and leptin re-
sistance have been linked with the development of Alzhei-
mer’s disease.[63] These observations then raise the ques-
tion of what interventions might increase leptin produc-
tion and lean mass in older patients. We have found that 
the amino acid tryoptophan increases muscle-derived leptin, 
IGF-1, and follistatin in mice on a low protein diet,[64] and 
others have found that amino acid supplements plus exer-
cise increase both serum leptin and musculoskeletal func-
tion in older adults.[65] These studies suggest that dietary 
interventions may provide one approach for reducing loss 
of lean mass with aging,[66] perhaps through a leptin-me-
diated pathway (Fig. 3). Recombinant human leptin (rhLep) 
has shown potential for increasing IGF-1 and markers of bone 
formation in women with hypothalamic amenorrhea,[67] 
although other studies indicate that the effects of rhLep on 
lean mass may be more modest.[68] 

Resistance exercise can improve muscle strength and 
power in the elderly[69,70] whereas bone is much less re-
sponsive to mechanical stimuli with age.[10] This may indi-
cate that targeting muscle through nutritional supplemen-
tation (Fig. 3) as well as with resistance exercise is likely to 
have a greater impact on reducing the risk of falls and frac-
tures than targeting bone itself; however, given that leptin 
can mediate the differentiation of bone marrow stromal 

cells directly and reduce bone marrow adipogenesis via its 
receptors in the hypothalamus, increasing leptin levels with 
increasing muscle mass may have some positive effects on 
the skeleton. These changes, in addition to the fact that 
leptin may prevent some neurodegenerative decline with 
aging, suggest that increasing muscle mass and strength 
in the elderly may have multiple, positive effects on the 
brain and the skeleton. 
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