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ABSTRACT

Objective: Academic medical centers and health systems are increasingly challenged with supporting appropri-

ate secondary use of clinical data. Enterprise data warehouses have emerged as central resources for these

data, but often require an informatician to extract meaningful information, limiting direct access by end users.

To overcome this challenge, we have developed Leaf, a lightweight self-service web application for querying

clinical data from heterogeneous data models and sources.

Materials and Methods: Leaf utilizes a flexible biomedical concept system to define hierarchical concepts and

ontologies. Each Leaf concept contains both textual representations and SQL query building blocks, exposed by

a simple drag-and-drop user interface. Leaf generates abstract syntax trees which are compiled into dynamic

SQL queries.

Results: Leaf is a successful production-supported tool at the University of Washington, which hosts a central

Leaf instance querying an enterprise data warehouse with over 300 active users. Through the support of UW

Medicine (https://uwmedicine.org), the Institute of Translational Health Sciences (https://www.iths.org), and the

National Center for Data to Health (https://ctsa.ncats.nih.gov/cd2h/), Leaf source code has been released into the

public domain at https://github.com/uwrit/leaf.

Discussion: Leaf allows the querying of single or multiple clinical databases simultaneously, even those of dif-

ferent data models. This enables fast installation without costly extraction or duplication.

Conclusions: Leaf differs from existing cohort discovery tools because it does not specify a required data model

and is designed to seamlessly leverage existing user authentication systems and clinical databases in situ. We

believe Leaf to be useful for health system analytics, clinical research data warehouses, precision medicine bio-

banks, and clinical studies involving large patient cohorts.
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INTRODUCTION

Healthcare organizations are challenged to manage ever increasing

quantities of data, driven by the rise of electronic health record

systems, patient-reported outcomes, registries, mobile health

devices, genomic databases, and other clinical and nonclinical sys-

tems.1–3 Beyond importing these heterogeneous and complex data

into enterprise data warehouses (EDWs), healthcare organizations

are responsible for cleaning, integrating, and making the data acces-

sible to appropriate users and consumers; maintaining organiza-

tional compliance; and protecting patient privacy and preventing

security breaches. Even in cases in which data are successfully inte-

grated and made available, their extraction can be time-consuming

and difficult for consumers who may not have information technol-

ogy (IT) or informatics backgrounds.

To advance the needs of our health system at the University of

Washington and potentially other Clinical and Translational Science

Awards (CTSA) centers, we developed Leaf, a lightweight drag-and-

drop web application that enables direct querying of arbitrary clini-

cal databases. Because Leaf is a “blank canvas” and does not require

a particular clinical data model, making new data sources and bio-

medical concepts available in Leaf is often relatively simple, with no

data extraction or transformation required. Utilizing an Agile devel-

opment process with ongoing engagement of clinical users and

stakeholders, we have incrementally improved Leaf functionality

based on user feedback, adding capabilities such as real-time de-

identification algorithms and direct REDCap4 export. We have pri-

oritized the use of human-centered design5 techniques and modern

web best practices to make Leaf’s user interface clear and intuitive.

The result is a simple but powerful tool for our clinicians and

researchers that requires fewer technical resources to maintain

compared with other cohort discovery tools.

Background and significance
Cohort discovery tools have been demonstrated to be extremely use-

ful for observational research, clinical trial recruitment, and hospital

quality improvement programs.6–9 To find which cohort discovery

tools were best suited to our institution, we investigated several, in-

cluding Informatics for Integrating Biology and the Bedside (i2b2)6

and TriNetX.10 Our aim was to find a tool that was lightweight and

easily deployable, adaptable to new data sources and use cases, and

intuitive for our clinical and research users. As our institution oper-

ates a central EDW that is jointly used for quality improvement, an-

alytics, and research, we also sought to avoid creating a costly data

extraction process that would duplicate our EDW, instead working

to leverage the EDW itself. The opportunities we perceived which

drove the development of Leaf are summarized in the following

sections.

Opportunity 1: a lightweight “sidecar” data service to the EDW

Data sources, schema, and row values in our EDW (or any clinical

research biobank or databank) evolve with our electronic medical

records (EMRs) and institutional use cases require new sources be

ingested. Often this evolution of data cannot be predicted ahead of

time, and any tools using EDW data must therefore be flexible and

adaptable, ideally with minimal informatics effort. Our institution

also made a significant investment in our EDW as a valuable re-

source available across our enterprise, and we sought a tool that did

not attempt to recreate functionality in our EDW, but instead lever-

aged and complemented it. Finally, we envisaged a modular, mod-

ern, cloud-friendly tool that could be effectively deployed in either

cloud architectures or on premises, interoperating alongside other

tools in a service-oriented fashion (Figure 1).

Opportunity 2: customized user interface for different sites or data

A second opportunity was the need for an intuitive user interface

that could accommodate a wide array of data sources in a flexible

manner and facilitate discoverability without overwhelming or frus-

trating users. We had learned from experience that an effective user

interface needed to allow for both ontology-driven hierarchical data

elements, such as diagnosis and procedure codes, and also local data

presented in unique structure and textual descriptions. We also

aimed to design an interface that could display not only aggregate

patient counts, but also simple demographic visualizations and row-

level cohort data available in a single click.

Opportunity 3: streamlined prep to research and data request

processes

A third opportunity was a faster turnaround time for University of

Washington (UW) researchers to generate and test hypotheses while

reducing the burden of relatively simple cohort estimation requests

on our research informatics team. As many UW researchers spent

significant time requesting and waiting for cohort size estimates be-

fore submitting Institutional Review Board (IRB) requests, a tool

that could fulfill many of those requests quickly and efficiently held

great potential. To improve the timeliness of accessing clinical data

after IRB approval as well, we believed that allowing users to enter

IRB information directly and extensively logging their activity could

provide a faster, secure, and more readily auditable workflow than

previous manual processes.

Opportunity 4: better alignment with health system analytics

A fourth opportunity, related to the structure of UW Medicine infor-

matics teams, was to reduce duplication of efforts between our re-

search informatics team and other informatics teams involved in

hospital operations and analytics. As each of these teams uses our

EDW to query, catalog, and extract data, we perceived a unique op-

portunity to design a tool which served varied but often highly simi-

lar use cases for each. By allowing users to simply indicate their

purpose (quality improvement or research) and de-identify data as

needed, we believed that each informatics team and their users could

greatly benefit.

Leaf began as a small innovative project by the first author to

create a user-friendly tool that matched the powerful capabilities of

the i2b2 web application but queried our EDW directly, leveraged

the existing work of teams across our organization, and functioned

with no data extraction required. After an initial proof-of-concept

application was developed, Leaf was shown to leaders within our

hospital system and CTSA, eventually becoming a flagship collabo-

rative software project to improve self-service access to clinical data

across research, analytics, and the biomedical informatics academic

department at UW.

110 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 1



MATERIALS AND METHODS

Agile development and user engagement
Early in Leaf development, we sought to utilize Agile development

methodology11 to ensure the Leaf user interface and features were

driven by the needs of clinicians and researchers. The Leaf pilot

project was formed to engage approximately 30 clinicians and

researchers across various medical disciplines and organizations in

our CTSA in weekly Agile sprints over approximately 6 months.

After an initial meeting was held to introduce the tool and dis-

cuss the scope of the project, weekly web-based meetings were con-

ducted to iteratively introduce new features, gather feedback, and

prioritize items for upcoming sprints. After each sprint, the develop-

ment team worked to incorporate stakeholder ideas and coordinate

with our EDW team to make additional data elements available.

After the pilot phase was complete, we planned and created a

multitiered support system to triage user assistance and provide

oversight of future Leaf development. In February 2018, a central

instance of Leaf querying our EDW was approved as an

institutionally-supported tool at UW.

System architecture
A Leaf instance is typically deployed with a 1:1 relationship to the

clinical database or database server that it is intended to query (here-

after for simplicity we refer to clinical database in the singular, but

multiple clinical databases on a single server can be queried in the

same way provided that they share a Master Patient Index).12 A

Leaf instance is composed of 3 core architectural elements common

to many modern web applications:

• A user-facing client application written in React and TypeScript.
• A RESTful13 web application programming interface (API)

deployed to a web server written in C# and .NET Core.
• A small SQL Server application database for logging activity,

tracking queries, and caching patient identifiers.

Additionally, a separate web server is typically used to filter web

traffic and serve the client application to users in coordination with

a SAML2-compliant identity provider, such as Shibboleth or Active

Directory Federation Services. All components can be deployed on

either Linux or Microsoft Windows operating systems.

Data model assumptions
Leaf makes minimal assumptions about any clinical database it

queries. Indeed, one of the key insights of the Leaf application is

that nearly all standard and nonstandard clinical databases conform

to certain simple assumptions, which makes the largely model-

agnostic nature of Leaf possible. The assumptions are the following:

1. The clinical database to be queried has a common identifying

column name for patient identifiers across tables, such as Per-

sonId, patient_id, or PAT_NUM.

2. Similarly, the database has a common identifying column name

for clinical encounter identifiers, such as EncounterId or vis-

it_occurrence_id.

These columns are defined globally for a given Leaf instance,

and are expected to be present on every table, view, or subquery to

be queried, though encounter identifier and date columns need only

be present if a given SQL set has a 1:M relationship for a patient. In

tables in which these columns are not present or are named differ-

ently, SQL views or subqueries can be used instead to derive them.

Login and access modes
Leaf is designed to be able to query clinical databases with identified

patient information14 and hide or obfuscate that information when

accessed in “de-identified mode.” The workflow for this is as follows:

1. On login users are presented with options for accessing data for

the purposes of quality improvement or research. They must

then enter quality improvement documentation (ie, project

name, approving body) or IRB approval information, or alterna-

tively indicate that they do not have this information. Users then

select identified or de-identified access, with access limited to de-

identified mode if the user has no approved quality improvement

project or IRB application.

2. As users run queries and view row-level data in the “Patient

List” screen, the Leaf REST API de-identifies the output SQL

values depending on the data type (ie, a string, number, or date).

If Leaf is in de-identified mode, de-identification is performed us-

ing an attribute-based schema tagging system that marks fields

of supported Fast Healthcare Interoperability Resources (FHIR)

templates with data about their sensitivity. Depending on the

attributes of a given field, the underlying data will be left alone,

masked, or excluded. For example, the FHIR Person name field

is tagged as protected health information (PHI), and is removed

entirely, while the Encounter admitDate is tagged as both PHI

and mask-able, and so is shifted chronologically and included in

the output to the client application.

For information on Patient List datasets based on FHIR tem-

plates, see the Extracting and exporting data for a cohort section.

De-identification methods
At a high level, PHI in Leaf is handled similarly to methods for se-

cure password storage. When a query is run, the Leaf API generates

2 pieces of entropy:

1. A salt, unique to each patient in a given query in the form of a

randomly generated global unique identifier.

2. A pepper, unique to each cohort extracted by a user in a single

query in the form of a global unique identifier.

When row-level data are requested in de-identified mode, a

unique identifier for each patient is generated by using a hash func-

tion on the combined salted and peppered value. Date-shifting is

similarly performed as follows:

1. A random number generator is created using the hash of the

patient’s query-specific salt.

2. The first random number value between –1000 and 1000 is

extracted from the generator.

3. Each date for a patient is shifted by this value in hours.

For example, the Leaf “Basic Demographics” dataset (modeled on

the FHIR Patient and Person resources) includes a personId field (a

string) and a birthDate field (a date), both of which have been

tagged as PHI elements in the Leaf source code. A given Leaf instance

must configure an appropriate SQL SELECT statement for its respec-

tive clinical database which outputs required columns of these names

and types, along with other columns not tagged as PHI (eg, gender).

When a user requests row-level data for a cohort, the Leaf API

executes the configured SQL query on the clinical database, then pro-

ceeds to analyze the dataset metadata to develop a de-identification

plan based on the fields tagged as PHI. After the de-identification plan

is created for the query, it is executed by looping through each row
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and each PHI-tagged field of output, using the hash function on the

salt, pepper, and row value to insert a random number (if a string) or

a new date based on a randomly shifted value of the true date (if a

date). If a given SQL query therefore returns identified values for the

personId, birthDate, and gender columns of:

“MRN1234,” “1979-01-09 5: 00: 00,” “female”

The Leaf API will generate a de-identified output similar to:

“419858302,” “1978-11-25 13: 00: 00,” “female”

The de-identified data are then sent to the client application.

In practice, this ensures that each patient is given a different

unique set of identifiers and date-shift values for every query they

are included in, even if the criteria in the queries are identical.

Though under Health Insurance Portability and Accountability Act of

1996 dates with more granular information than the year are consid-

ered PHI, the practice of using randomly shifted dates (rather than

year alone) is similarly found in tools such as REDCap, and we have

found it to sufficiently balance patient privacy concerns with analysis-

related needs of Leaf users. For cohorts of a relatively small number

of patients (eg, <10) Leaf does not currently remove or obfuscate the

true count, though we intend to explore this in future work.

Concepts and mapping SQL objects
The Leaf application database has a central SQL table (app.Concept)

which defines the concepts that comprise Leaf queries, their hierar-

chical relationship to other concepts, and textual representations

seen by users. Each concept also contains a field for an arbitrary

SQL WHERE clause which functions as a programmatic representa-

tion of the concept in the clinical database to be queried (example in

Figure 2). The SQL FROM clause and corresponding date field (if

any) for concepts are similarly found via a foreign key relationship

to the app.ConceptSqlSet table, and thus all relevant SQL data

for a concept can be returned in a simple JOIN. A given concept

therefore requires only that the patient identifier field (and option-

ally, encounter identifier and date field) be present; any other fields

or sets referenced in the WHERE clause are flexible and assumed to

be present in the table or view.

This structure allows concepts to be remarkably flexible in terms

of programmatic representation (Figure 2) and presented visually to

users in an intuitive fashion (Figure 3). Leaf’s concept table therefore

functions as a programmatic and ontological metadata map of

queries to a clinical database.

To date, Leaf instances have been deployed and tested within

our development environments and we have successfully validated

this approach with a variety of data models, including the proprie-

tary vendor-specified model of our EDW, the OMOP Common

Data Model,15 i2b2,6 Epic Clarity,16 and MIMIC-III (Medical Infor-

mation Mart for Intensive Care-III).17

Concept modifiers
Additional SQL logical for a concept—often called a “modifier”6—

can be represented in Leaf by the addition of optional dropdown

elements which appears after the user has dragged the concept into a

panel. This can be represented visually to the user as:

Had a diagnosis of Type 2 diabetes mellitus without

complications (ICD-10 E11.9) from any data source

If the user clicks “from any data source,” a dropdown will be

shown with values such as:

• From Billing
• From Radiology

Each dropdown option contains both a textual representation

and programmatic element. If the user clicks a dropdown option,

the dropdown text changes to the selected option and the SQL

logic representing the concept will have the selected dropdown

option’s SQL (eg, @.data_source ¼ “billing”) appended to the

concept’s WHERE clause. Each concept can have multiple drop-

downs, so it is possible to allow users to easily modify a diagnosis

concept to specify both “From Billing” and “Primary Diagnosis,”

for example.

In addition to dropdowns, Leaf also allows for numeric filters

(demonstrated in Figure 3). Configuration metadata for additional

concept elements, such as optional numeric data (ie, a numeric

SQL field, default text, and units to display), dropdowns, and pa-

tient counts are stored in SQL tables in the Leaf application data-

base and can be added programmatically or by using the

application interface.

Query compilation
As users drag concepts over to define queries, the Leaf client creates

an array of abstract syntax tree (AST) objects in JavaScript Object

Notation representing the current user interface state and query defi-

nition. The AST objects themselves do not contain SQL, but instead

contain ConceptId pointers to concepts in the Leaf app.Concept

table included in the user’s query, along with additional metadata

describing the query.

When the AST objects are sent to the Leaf REST API after the

user clicks “Run Query,” the API performs the following steps:

1. Validates that the user is permitted to use each requested concept

in the AST based on the ConceptId values in the Leaf applica-

tion database.

2. Loads the SQL FROM and WHERE clauses and appropriate date

and numeric fields (if applicable) for each concept.

3. Generates individual SQL queries for each of the 3 panels in the

Leaf user interface that can be used to create queries. Empty

panels are excluded.

4. Computes a summed estimated query cost per panel to the data-

base using a simple heuristic determined by cached patient

counts per concept as proxy for cost, with a reduction if con-

cepts are constrained by dates or numeric values.

Figure 1. Diagram of the Leaf instance deployed at the University of Washing-

ton Medicine Enterprise Data Warehouse. Data from electronic medical

records and other clinical systems flow into the enterprise data warehouse.

Leaf, REDCap, and other tools are deployed in modular fashion to 41 query

the enterprise data warehouse and interoperate for data extraction and analy-

sis. API: application programming interface.
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5. Generates a SQL Common Table Expression by ordering the

panels by the estimated query cost values generated in (4). The

queries are then linked by SQL INTERSECT and EXCEPT state-

ments starting with the least estimated cost to optimize

performance.

6. Runs the query against the clinical database, map-reducing the

resulting patient identifiers in a hashset and caching them in the

Leaf application database should the user later request row-level

data for the cohort.

7. Returns a count of unique patients to the client application.

Building the concept tree using ontologies and the

Unified Medical Language System
Because Leaf concept definitions are stored in a simple SQL table,

relational database-based ontological mapping systems such as the

Unified Medical Language System18 can be leveraged to dynamically

build the Leaf concept tree programmatically, as has been demon-

strated with i2b2.19 The Unified Medical Language System has been

used extensively in our central EDW Leaf instance to build the con-

cept tree sections for diagnosis and problem list codes (International

Classification of Diseases-Ninth Revision [ICD-9], International

Figure 2. Example tabular values and Entity-Relation diagram illustrating hypothetical Leaf concepts for laboratory tests, hematology-based tests, and platelet

count tests. Each concept has both textual and programmatic representation components. The “@” symbols within the SqlSetWhere field denote ordinal posi-

tions to insert the SQL Set alias at query compilation time. Additional fields in the tables have been omitted for brevity.

Figure 3. User interface screenshots of the platelet count example concept as seen in Figure 1. The left image shows the concept within an intuitive nested hierar-

chy below “Hematology” and “Labs,” while the right image shows a simple visual query representation created after the user has dragged over the “Platelet

Count” concept 43 and filtered by a value (�300 K/mL).
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Classification of Diseases-Tenth Revision [ICD-10], and

SNOMED), procedure codes (Healthcare Common Procedure Cod-

ing System, Current Procedural Technology, Current Dental Tech-

nology, ICD-9, and ICD-10), and laboratory tests (Logical

Observation Identifiers Names and Codes).

As the hierarchical nesting of concepts serves a largely visual

rather than programmatic purpose (ie, descendent concepts do not

automatically inherit the SQL logic of their parents) administra-

tors must create this logic themselves when building concepts, typ-

ically using increasingly smaller ranges of codes via SQL BETWEEN

statements as the tree descends. Interestingly, as Leaf concepts al-

low the use of virtually any database schema, it is also possible to

alternatively use the i2b2 CONCEPT_DIMENSION or OMOP

concept_ancestor tables to both build the concept tree and

enforce this logic instead using IN or EXISTS statements, similar

to i2b2.

Programmatically generated Leaf concepts can also be data-

driven and unique to local clinical data. Scripts to generate unique

concepts for clinics, services, hospital units, demographic charac-

teristics, and other data types can be used to create arbitrary

institution-specific concepts. Data such as those derived from

natural language processing can similarly be made available in this

way.

In terms of structure, Leaf allows for a variety of strategies for

representing concepts depending on how best to present data to

users and how clean the data are. For example, a hypothetical con-

cept structure to query orders of ciprofloxacin for 50 mg may be:

a) Using a predefined nested structure where “50 mg” and other

possible values are hard-coded as child concepts:

- Medication Orders

- Ciprofloxacin (SQL: WHERE @.med¼ “ciprofloxacin”)

- 50mg (SQL: WHERE @.med ¼ ‘ciprofloxacin’ AND

@.unit ¼ ‘mg’ AND @.dosage ¼ 50)

- . . .

b) Using a single ciprofloxacin concept with dropdowns such as

that when dragged into a query the user would see:

Had a medication order of ciprofloxacin of any dose

and strength

Whereupon clicking “of any dose and strength” they can select

from a dropdown of values such as “50 mg,” “100 mg,” etc.).

c) Using a single ciprofloxacin numeric concept such that when

dragged into a query the user would see:

Had a medication order of ciprofloxacin of any dose

(mg)

Whereupon clicking “of any dose (mg)” they can specify a nu-

meric value or range, and the unit is hard-coded as “mg.”

d) A combination of the above approaches.

Querying multiple Leaf instances simultaneously
Because Leaf AST-based query representations do not contain SQL

but rather pointers to arbitrary concepts, mapping Leaf queries to

various data models is notably straightforward, with a few impor-

tant caveats.

Each Leaf concept contains an optional UniversalId field for

the purpose of mapping the concept to a matching concept in a dif-

ferent Leaf instance, provided that the UniversalId values are the

same. Concept UniversalId values must conform to the Uniform

Resource Name specification20 and begin with the prefix urn:

leaf: concept, but otherwise have no restrictions.

For example, 2 or more institutions with Leaf instances installed

can choose to allow their users to query each other’s clinical data-

bases using Leaf. After exchanging secure certificate and web ad-

dress information, administrators must agree on common naming

conventions for Leaf concept UniversalIds. A UniversalId of

a concept for ICD-10 diagnosis codes related to type 2 diabetes mel-

litus could be defined as

urn : leaf : concept : diagnosis : coding ¼ icd10 þ
code ¼ e11.00 � e11.9

which serves as a human-readable identifier and includes the domain

(diagnosis), the coding standard (ICD-10), and relevant codes to be

queried (a range of diabetes mellitus type 2–related codes from

E11.00 to E11.9).

Users from each institution continue to see the concepts defined

by their local Leaf instance in the user interface. As users run queries

across partner Leaf instances, however, each partner instance auto-

matically translates the sender’s concepts to local concepts by Uni-

versalIds. After concept translation, local instance-specific SQL

queries are generated and executed, with results returned to the

user. If a given Leaf instance does not have a local concept for any

one of the concepts included in the user’s query, it responds with

that information to the user and does not create a query.

Because each Leaf instance translates and runs queries indepen-

dently, a missing concept in one instance does not affect others,

which proceed to report results to the user. Importantly, Leaf server

API instances do not communicate patient count results or row-level

data directly to each other but instead send data only to the client af-

ter de-identification. Identified multi-instance queries are not

allowed; if a user is in Identified mode all queries are restricted to

their home institution.

Boolean logic and temporality constraints in cohort

definition queries
Leaf’s core functionality is as a flexible query constructor and execu-

tion engine. Queries can be configured to handle AND, OR, negation,

and various temporality constraints, and include multiple visual

cues to users. Temporal query relations are created vertically in the

user interface (Figure 4), while additional inclusion or exclusion cri-

teria with no temporal relations are represented horizontally in mul-

tiple panels (Figure 5). The query constructor user interface is

designed to approximate natural language as much as possible to

make query logic clear and readable to users.

Extracting and exporting data for a cohort
After executing a cohort estimation query, Leaf allows users to ex-

plore row-level data using the “Patient List” screen. Exportable

datasets (hereafter simply “datasets”) are defined by an administra-

tor and configured by dynamic SQL statements whose output must

conform to a template of predefined column names. Dataset tem-

plates include “Encounter,” “Condition,” “Observation,”

“Procedure,” and “Immunization,” and are based on denormalized

tabular representations of FHIR resources.21

Similar to concepts, Leaf datasets include an optional Univer-

salId field which allows multiple Leaf instances to return predict-

able row-level FHIR-like clinical data (Figure 6), even if their

underlying data models differ. After data are returned, users can

quickly create and populate custom REDCap projects through the
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Leaf interface in both an identified and de-identified fashion. Leaf

also employs an administrator-defined row export limit to ensure

smooth operations and prevent large dataset exports without proper

oversight.

RESULTS

Since being released as a production tool at the University of

Washington in February 2018, 302 users have run 18 791 queries

against our EDW and created 854 REDCap projects populated

with data by Leaf. During this time, our research informatics team

has noted a relative increase in complex data extraction requests

as usage of Leaf has grown, with a corresponding decrease in

requests for simpler queries which we believe are likely being ac-

complished by clinicians and researchers using Leaf, though this is

difficult to directly measure. Information on user roles and usage

is listed in Table 1.

Information on Leaf is available within our institution on the In-

stitute of Translational Health Science’s website, internal intranet

sites at the University of Washington, and through introductory pre-

sentations we have conducted. Many users continue to learn of Leaf

by word of mouth, however, as we’ve pursued a “soft” production

Figure 4. Visual representation of a single-panel query with the user interface on the left and corresponding compiled SQL representation on the right using the

MIMIC-III (Medical Information Mart for Intensive Care-III) database. The example demonstrates the use of OR, same encounter, and temporal range logic.

Figure 5. Visual representation of a 2-panel query with the user interface on the left and corresponding compiled SQL representation on the right. The second

panel is used as an exclusion criteria and executed using a SQL EXCEPT statement.
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release to estimate informatics resources to support a growing user

base going forward.

To assess impact, in spring 2019 a brief REDCap-based user

feedback survey was sent to 232 Leaf users (excluding IT staff, users

with access <3 months, and those believed to have left the institu-

tion), with a total response rate of 25.8% (60 of 232). Of the

respondents, 48.3% (29 of 60) had at least 1 abstract, manuscript,

poster, or presentation prepared using Leaf in some fashion, for a to-

tal of 68 abstracts and manuscripts (mean 1.1 per user) and 35 post-

ers and presentations (mean 0.6 per user). Citations were voluntarily

provided for 11 abstracts and manuscripts22–32 and 3 presenta-

tions,33–35 and there were links to usage for a summer internship re-

search program36 and providing local context to national

studies.37,38 Responses to the question “What purposes or projects

have you used Leaf for?” are shown in Table 2.

A total of 50% (30 of 60) responded using an open-ended com-

ment field regarding their thoughts on Leaf in general. A total of

16.6% (6 of 30) mentioned the need for increased granularity of

data and availability of historical data, and are specific to the data

available in our EDW. A total of 63.3% (19 of 30) commented posi-

tively on Leaf’s value as a tool for research:

“I’m involved with several projects that use Leaf in a variety of

ways. . . including all of our grant submissions and understanding

how patients “flow” between EMS and trauma facilities in King

County. For one recent successful grant proposal I think I was us-

ing Leaf every day for two months. . . It would have been incredi-

bly difficult to get all the preliminary data if it wasn’t for Leaf.”

“The Leaf enterprise [query tool] is incredibly helpful in terms

of determining number of patients in the EMR for particular re-

search or QI queries and helping to extract variables that could

be relevant to research. It has changed the way that I create and

hypothesize my research projects.”

Figure 6. Screenshot of the Leaf user interface showing synthetic demographic and laboratory result data for a cohort from multiple Leaf instances, querying Ob-

servational Medical Outcomes Partnership and Informatics for Integrating Biology and the Bedside databases simultaneously. The Leaf client application auto-

matically generates summary statistics for each patient. Granular row-level data can be accessed by clicking on a patient row in the table, and is directly

exportable to REDCap via the REDCap application programming interface.

Table 1 Leaf usage by role/position

Role/position Total users Total queries

Attending physician or faculty 80 (26.4) 5250 (27.9)

Resident physician 60 (19.8) 4522 (24)

Research Coordinator or Scientist 40 (13.2) 4670 (24.8)

Central IT staff 40 (13.2) 429 (2.2)

Other or unknown 27 (8.9) 301 (1.6)

Departmental staff 21 (6.9) 1833 (9.7)

Student 17 (5.6) 937 (4.9)

Physician fellow 8 (2.6) 591 (3.1)

Nurse 7 (2.3) 135 (0.7)

Pharmacist 2 (0.6) 123 (0.6)

Values are n (%).

IT: information technology.

Table 2 Leaf usage by stated purpose(s)

Purposes of use Answered yes

IRB-approved research 32 (53.3)

Data exploration 25 (41.6)

Prep to research 21 (35)

Hypothesis generation 20 (33.3)

Quality improvement 17 (28.3)

Testing 11 (18.3)

Grant submissions 9 (15)

Other 1 (2.4)

Values are n (%).

IRB: Institutional Review Board.
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“I think Leaf is the most useful software to access [data gener-

ated by] the EHR [electronic health record]. I use it for resident

projects, for case findings, for sample size estimates for grants,

and to collect outcomes for IRB research projects.”

3.3% (1/30) mentioned confusion in using the user interface, and

10% (3/30) mentioned difficulty in validating data returned by Leaf

queries:

“Stopped trying to use because of difficulty determining who is

really in the cohort as intended.”

In terms of performance, using our central EDW production

reporting database server with over 60 TB data, 144 cores, and

4194 GB memory, 97.5% of Leaf queries completed successfully

with a mean execution time of 26.2 seconds, returning a mean

48 858 patients, and using a mean 9.1 concepts. The remaining

2.5% of queries failed largely due timeout issues (configured at 180

seconds). A total of 47.9% (9002 of 18 791) of queries utilized diag-

nosis or procedure code tables with over 320 million rows each. In

general, we’ve found relatively simple queries to return results

within 30 seconds, while more complex queries (ie, using more than

10 concepts or with temporal constraints) typically take 1-3 minutes

to complete. We leave a more detailed examination of query perfor-

mance and scalability to future work, but note that to date Leaf

queries have been demonstrated to perform well using traditional re-

lational database indexing methods on an EDW with nearly 5 mil-

lion patients and over 2 decades of data.

DISCUSSION

Leaf represents a significant advancement in data-driven self-service

cohort discovery tools by allowing CTSAs, large clinical research

projects and enterprises to leverage existing clinical databases while

reducing the burdens of data extraction and query construction on

informatics teams. Because Leaf is a self-service tool, it removes the

“informatics barrier” that many clinicians, trainees, and students

face when trying to launch observational research or quality im-

provement initiatives and uncorks the potential of these faculty, fel-

lows, residents, and students to implement their ideas.

Since becoming a formal project within the Center for Data to

Health, we have refined Leaf to be readily accessible and valuable to

the broader CTSA community. We are currently working with a

growing number of CTSA sites to assist in piloting Leaf at other

institutions.

Limitations
Despite its strengths, Leaf has a number of limitations that should

be recognized. In terms of federated queries to multiple Leaf instan-

ces, the UniversalId model as a means of cross-institutional que-

rying can require significant curation by administrators to ensure

that the concept UniversalIds at each site match exactly, though

this saves the costly effort of transforming and aligning data models.

Also, while designed to be intuitive, the Leaf user interface requires

some training to become proficient; many University of Washington

users have requested assistance in crafting queries, even after receiv-

ing training. We suspect this is caused by the complexity of the un-

derlying clinical data instead of the complexity of Leaf. While Leaf

allows for highly flexible SQL queries, it is not designed to clean, in-

tegrate, or ensure semantic alignment among data, and is not a sub-

stitute for proper database maintenance, data quality testing, and

refinement.

Last, while Leaf aims to securely de-identify patient data using

current best practices, guaranteed prevention of patient

reidentification remains elusive for data discovery tools like Leaf

and an ongoing challenge in health care in general.39,40 To further

tighten privacy protections, future Leaf development can focus on

implementing greater configurability over date-shift increments, ob-

fuscation, and anonymization algorithms to institutions deploying

Leaf.

CONCLUSION

Leaf represents a successful example of a flexible, user-friendly co-

hort estimation and data extraction tool that can adapt to nearly

any clinical data model. In this article, we describe how Leaf can be

incorporated into existing enterprise workflows and infrastructure,

allowing clinicians and researchers a window into clinical data while

simultaneously reducing the informatics burden of supporting simi-

lar tools. As Leaf is now an open-source software project, we wel-

come discussion and collaboration and encourage other members of

the CTSA community to join us in using and improving the tool.

FUNDING

This work was funded by the National Institutes of Health (NIH),

the National Center for Advancing Translational Sciences (NCATS),

NIH/NCATS UW-CTSA grant number UL1 TR002319, and NIH/

NCATS CD2H grant number U24TR002306.

AUTHOR CONTRIBUTIONS

NJD wrote the majority of the article and is the creator and lead de-

veloper of Leaf. CS is the co-developer of Leaf and wrote the de-

identification methods section. RB, JM, and BB led planning for

data access, user management, and deployment at UW. BdV planned

and advised on REDCap import and export functionality and user

support tiers. EZ manages project feature requests and development

plans. RH serves as faculty champion and has driven adoption and

feature refinement. KS contributed to overall design and feature

planning. AW and PT-H advise and provide implementation over-

sight. SDM directs overall development efforts and leads strategic

planning.

ACKNOWLEDGMENTS

We gratefully acknowledge: our clinical and research users at the University

of Washington for their suggestions and patience in testing Leaf; Robert Mei-

zlik and Xiyao Yang for their development work on early versions of Leaf;

Matthew Bartek (University of Washington); Nora Disis, Carlos De La Pe~na,

Jennifer Sprecher, Marissa Konstadt (Institute of Translational Health Scien-

ces); Sarah Biber and Melissa Haendel (Oregon Health and Science Univer-

sity, Center for Data to Health); and Shawn Murphy, Isaac Kohane, Diane

Keogh, Douglas MacFadden, Griffin Weber, and other members of the i2b2

and SHRINE teams whose groundbreaking work we have been inspired by

and remain indebted to.

CONFLICT OF INTEREST STATEMENT

None declared.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 1 117



REFERENCES

1. Berner ES, Moss J. Informatics challenges for the impending patient infor-

mation explosion. J Am Med Inform Assoc 2005; 12 (6): 614–7.

2. Shameer K, Badgeley MA, Miotto R, et al. Translational bioinformatics in

the era of real-time biomedical, health care and wellness data streams.

Brief Bioinform 2017; 18 (1): 105–24.

3. McCarty CA, Chisholm RL, Chute CG, et al. The eMERGE Network: a

consortium of biorepositories linked to electronic medical records data for

conducting genomic studies. BMC Med Genomics 2011; 4 (1): 13.

4. Harris PA, Taylor R, Thielke R, et al. Research electronic data capture

(REDCap)—a metadata-driven methodology and workflow process for

providing translational research informatics support. J Biomed Inform

2009; 42 (2): 377–81.

5. Norman DA, Draper SW. User Centered System DesignjNew Perspectives

on Human-Computer Interaction. Abingdon, United Kingdom: Taylor &

Francis; 1986. https://www.taylorfrancis.com/books/e/9781482229639

Accessed April 6, 2019.

6. Murphy SN, Weber G, Mendis M, et al. Serving the enterprise and beyond

with informatics for integrating biology and the bedside (i2b2). J Am Med

Inform Assoc 2010; 17 (2): 124–30.

7. Ferranti JM, Gilbert W, McCall J, et al. The design and implementation of

an open-source, data-driven cohort recruitment system: the Duke inte-

grated subject cohort and enrollment research network (DISCERN). J Am

Med Inform Assoc 2012; 19 (e1): e68–75.

8. Penberthy L, Brown R, Puma F, Dahman B. Automated matching soft-

ware for clinical trials eligibility: measuring efficiency and flexibility. Con-

temp Clin Trials 2010; 31 (3): 207–17 .

9. Anderson N, Abend A, Mandel A, et al. Implementation of a deidentified

federated data network for population-based cohort discovery. J Am Med

Inform Assoc 2012; 19 (e1): e60–7.

10. TriNetX. https://www.trinetx.com/ Accessed April 30, 2019.
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