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Abstract: Skin cutaneous melanoma (SCM) is a common malignant tumor of the skin and its
pathogenesis still needs to be studied. In this work, we constructed a co-expression network and
screened for hub genes by weighted gene co-expression network analysis (WGCNA) using the
GSE98394 dataset. The relationship between the mRNA expression of hub genes and the prognosis of
patients with melanoma was validated by Gene Expression Profiling Interactive Analysis (GEPIA)
database. Furthermore, immunohistochemistry in the Human Protein Atlas was used to validate hub
genes and grayscale analysis was performed using ImageJ software. It was found that the yellow
module was most significantly associated with the difference between common nevus and SCM, and
13 genes whose expression correlation >0.9 were candidate hub genes. The expression of three genes
(STK26, KCNT2, CASP12) was correlated with the prognosis of SCM. STK26 (P = 0.0024) and KCNT2
(P < 0.0001) were significantly different between normal skin and SCM. These three hub genes have
potential value as predictors for accurate diagnosis and prognosis of SCM in the future.

Keywords: skin cutaneous melanoma; common nevus; GSE98394; weighted gene co-expression
network analysis (WGCNA); prognostic genes

1. Introduction

Skin cutaneous melanoma (SCM) is a highly aggressive malignant tumor that originates from
neural crest melanocytes and is triggered by hyperplasia of abnormal melanocytes. According to data
released by GLOBOCAN online database (gco.iarc.fr), in 2018, there were 287,723 new cases (1.6% of
the total cases) of SCM in the world, and 60,712 of these patients (0.6% of total cancer deaths) died [1].
SCM is characterized by a high metastasis rate, high mortality, and strong drug resistance. The main
causes of death include extensive metastasis of the lung, liver, bone, or brain [2]. Patients with SCM
potentially lose 20.4 years of their lifespan, which is significantly higher than the 16.6 years for all other
malignant tumors [3]. Therefore, SCM has become one of the malignant tumors that seriously threaten
human health. For patients with stage I and II melanoma, the 10-year melanoma-specific survival
ranged from 98% to 75% [4], so early diagnosis and treatment of SCM are necessary. The phenotypic
predispositions in the risk factors of SCM included atypical mole or dysplastic nevus pattern [5] and
increased mole count (particularly large nevi) [6]. However, the transformation mechanism of nevus
into SCM is still unclear, and further research is urgently needed.
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The weighted gene co-expression network analysis (WGCNA) is a systematic biological method
to describe the pattern of gene association between different samples. It can be used to identify
highly synergistic gene sets and to identify candidate biomarker genes or therapeutic targets based
on the coherence of gene sets and the association between gene sets and phenotypes. Therefore, it is
widely used in the association analysis between gene sets and disease or clinical features of patients
and to identify candidate hub genes by calculating co-expression modules and analyzing gene and
phenotypic correlations in modules [7–10]. The WGCNA is a systemic and powerful technique that
uses gene expression data to construct a scale-free network, which requires a power operation on
the correlation value and that defines as soft threshold. This power operation strengthens strong
correlation, weakens weak correlation or negative correlation, makes the correlation value more in line
with the characteristics of scale-free network, and gives the results biological significance. In present
study, we described the key modules and hub genes with significant differences between nevus and
SCM based on WGCNA and identified novel biomarkers associated with SCM prognosis through the
prognosis association with Gene Expression Profiling Interactive Analysis (GEPIA) database.

2. Materials and Methods

2.1. Raw Data and Procession

We downloaded the count data for the human SCM dataset GSE98394 [11] from the Gene
Expression Omnibus (GEO) database, which uses the Illumina HiSeq 2500 GPL16791 platform for
high-throughput sequencing of 27 patients with common required nevus and 51 patients with primary
melanoma. Of these, 44 patients with SCM had prognostic information.

First, we removed more than half of the genes that were not expressed in the sample of the
expression profile and normalized the original data using log2 conversion and the preprocess Core
package [12] in R 3.6.0. After background correction and quantile normalization, 18,673 genes were
finally screened for WGCNA. The ENSG-ID of genes were converted to official gene symbols by the
BioMart database (http://asia.ensembl.org/biomart/martview) [13].

2.2. Gene Co-Expression Network and Modules

We constructed a gene co-expression network through the WGCNA package [14]. First,
we obtained the expression data and the phenotypic data matrix, removed the genes that were
not expressed according to the expression profile, calculated the variance of each gene in each sample,
screened the genes with the standard deviation >1.2, and further clustered all the samples. Some
samples were far away, and outliers were excluded based on cluster distance. In order to filter outlier
samples, the default value of −1 was applied, indicating that the program automatically removed
outlier samples and selected the largest set of samples for subsequent analysis.

After constructing the scale-free network, the expression matrix was transformed into the adjacency
matrix and converted into a topological matrix. Based on the topological overlap measure (TOM),
we used the average-linkage hierarchical clustering method to cluster the genes and set the minimum
base number of each gene network module to 30. When merging modules, a threshold for the
combination of similar genes or modules needed to be set, which was called the module merge
height threshold. The larger the threshold, the fewer modules were merged and the general value of
this threshold could be 0.25. Therefore, after using the dynamic shear to identify the gene module,
we calculated the eigengenes of each module one by one, then clustered the modules and merged the
closer modules into new modules according to height = 0.25.

The correlation between modules and phenotypes was calculated according to the feature vector
of each module. According to the expression level of each gene in each sample, the correlation between
the genes in these modules and each phenotype was calculated to measure the gene significance (GS).
The larger the value of the GS, the more biologically significant. In other words, GS = 0 indicates that
the gene is not related to the phenotype.

http://asia.ensembl.org/biomart/martview
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2.3. Hub Gene Identification and Validation

Based on the eigenvectors of each module, we calculated the correlation of the expression of the
genes in each module, and the genes with a correlation >0.9 were candidate hub genes. The expression
levels of these genes were heat mapped using TBtool software [15].

Next, we divided the GSE98394 dataset into a nevus group and a melanoma group, and screened
for the differentially expressed genes between the two groups by edgeR package [16,17]. The screening
conditions were |log2FC| > 2, false discovery rate (FDR) < 0.05. The prognostic value genes were
screened according to the prognostic information in this dataset. The patients were stratified into a
high-level group and a low-level group according to median expression and the Kaplan–Meier method
was used for survival analyses by GraphPad Prism version 8.0.0 for Windows. The log-rank test was
used to compare the survival curves of patients in different subgroups and P < 0.05 was considered to
indicate a statistically significant difference. Then, verification was performed by the GEPIA database
(http://gepia.cancer-pku.cn) [18] to identify hub genes.

Finally, we analyzed the protein expression of hub genes in normal skin and in melanoma tissues by
Human Protein Atlas (http://www.proteinatlas.org) [19]. The direct link to these images in the Human
Protein Atlas are as follows: https://www.proteinatlas.org/ENSG00000134602-STK26/tissue/skin#img
(STK26 in skin); https://www.proteinatlas.org/ENSG00000134602-STK26/ Pathology/tissue/melanoma#img
(STK26 in melanoma); https://www.proteinatlas.org/ENSG00000162687-KCNT2/tissue/skin#img (KCNT2 in
skin); https://www.proteinatlas.org/ENSG00000162687-KCNT2/pathology/tissue/melanoma#img (KCNT2
in melanoma).

Immunohistochemical images were measured by ImageJ software [20] and analyzed by
GraphPad Prism version 8.0.0 for Windows (San Diego, CA, USA, www.graphpad.com). Difference
analysis between the two groups was performed by Student’s t test and P < 0.05 was considered
statistically significant.

3. Results

3.1. Gene Expression Data

After data processing, the expression profile data and phenotypic data matrix were obtained from
the GSE98394 dataset, which contained 78 samples, 18,673 genes, and 7 phenotypes. The before and
after normalizations are shown in Figure 1. As the figure shows, the average RNA expression of each
sample was consistent after normalization and could be used for subsequent analysis.
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3.2. Clinically Significant Modules

After cluster analysis, a new data expression profile was obtained from the GSE98394 dataset,
which contained 74 samples and 4863 genes. The clustering results with sample characteristics are
shown in Figure 2A, where the red color indicates the samples marked as non-zero in the phenotypes.

In this study, in order to ensure that the network was a scale-free network, we chose a soft
threshold of β = 6. As shown in Figure 2B, R2 > 0.8 and mean connectivity <100 was reached after this
power operation, indicating that the network has the characteristics of scale-free topology. A total of
11 modules were identified via the average linkage hierarchical clustering, as shown in Figure 2C. The
yellow module was found to have the highest association with tissue types, as shown in Figure 3A–C.
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Figure 2. Gene co-expression network and modules. (A) Clustering dendrogram of 78 samples.
(B) Determination of soft-thresholding power in the weighted gene co-expression network analysis
(WGCNA). When β = 6, R2 > 0.8 and mean connectivity < 100, indicating that the network has the
characteristics of scale-free topology. (C) Dendrogram of all differentially expressed genes clustered
based on a dissimilarity measure. The cluster analysis result is shown above, and module identification
is shown below.
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Figure 3. Identification of modules associated with tissue types. (A) Heatmap of the correlation
between module eigengenes and clinical traits. Red means positive correlation, blue means negative
correlation, and the darker the color, the close the absolute value is to 1, and the stronger the correlation.
(B) Distribution of average gene significance and errors in the modules associated with tissue type.
The x-axis indicates the module, the y-axis indicates the significance of overrepresentation. (C) Scatter
plots of the degree and P-value of Cox regression in dataset. The x-axis indicates the degree of regression,
the y-axis indicates the gene significant. Each circle represents a gene.

3.3. Hub Genes

By calculating the expression correlation of genes in the yellow module, those with a correlation
>0.9 were considered candidate hub genes (Table 1). We heat mapped the expression of the 13 candidate
hub genes, which showed that the 13 genes were all upregulated in nevus compared to melanoma
(Figure 4A).
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Table 1. Candidate hub genes in the yellow module. Genes with a correlation (R) > 0.9 were candidate
hub genes.

Genes Symbol Full Name R P-Value

ADAMTS19 Disintegrin and Metalloprotease Domain (ADAM)
Metallopeptidase with Thrombospondin Type 1 Motif 19 0.96 6.68 × 10−40

KCNT2 Potassium Sodium-Activated Channel Subfamily T Member 2 0.95 1.50 × 10−39

CASP12 Caspase 12 0.94 4.48 × 10−39

ADD3-AS1 Adducin 3 Antisense RNA 1 0.93 2.78 × 10−33

DISP1 Dispatched RND Transporter Family Member 1 0.93 1.57 × 10−32

PTN Pleiotrophin 0.92 8.81 × 10−32

CNTN1 Contactin 1 0.92 1.94 × 10−31

TMEM108 Transmembrane Protein 108 0.92 1.61 × 10−30

HPSE2 Heparanase 2 0.92 2.14 × 10−30

GRIA1 Glutamate Ionotropic Receptor AMPA Type Subunit 1 0.91 6.86 × 10−30

HKDC1 Hexokinase Domain Containing 1 0.91 1.58 × 10−29

STK26 Serine/Threonine Kinase 26 0.91 1.36 × 10−28

CYP39A1 Cytochrome P450 Family 39 Subfamily A Member 1 0.90 3.26 × 10−28
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Figure 4. Candidate hub genes. (A) The heatmap of 13 candidate hub genes. The 13 genes were all
upregulated in nevus compared to melanoma. (B) The volcano plot of 1276 differentially expressed
genes. The 13 candidate hub genes are highlighted, and all were differentially expressed genes. (C) Gene
expression levels of the 13 candidate hub genes between nevus and primary melanoma based on the
GSE98394 datasets. Student’s t test was used to evaluate the statistical significance of differences.

After screening by the edgeR package, 1276 differentially expressed genes were obtained
(Figure 4B), and the 13 candidate genes were found to be differentially expressed genes. The mRNA
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levels of these 13 candidate genes showed statistically significant differences between nevus and
primary melanoma based on the GSE98394 datasets (Figure 4C).

We then analyzed the overall survival of patients in the GSE98394 datasets and stratified them
into high-level and low-level groups according to the median expression of these 13 candidate genes
for screening prognostic genes, and found that the low expression of the three genes STK26, KCNT2,
and CASP12 was associated with poor prognosis of patients with primary melanoma (Figure 5A).
In addition, we verified this using the GEPIA database (Figure 5B). Therefore, these three genes were
considered to be hub genes.

Based on the Human Protein Atlas database, we examined the expression of these three hub genes in
normal tissues and primary melanoma and found that STK26 and KCNT2 had immunohistochemistry
(IHC) images of normal tissues and melanoma tissues. We selected representative images for display
(Figure 5C). In addition, gray-scale analysis revealed statistically significant differences in the protein
expression of STK26 (P = 0.0024) and KCNT2 (P < 0.0001) between normal skin and melanoma (Figure 5D).
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Figure 5. Hub gene identification and validation. (A) Overall survival of the three hub genes in skin
cutaneous melanoma based on the GSE98394 datasets. The patients were stratified into high-level
group and low-level group according to median expression. (B) To identify hub genes by the GEPIA
database. The patients were stratified into high-level group and low-level group according to median
expression. (C) Immunohistochemistry of STK26 and KCNT2 based on the Human Protein Atlas.
(D) Gray-scale analysis revealed statistically significant differences in the protein expression of STK26
(P = 0.0024) and KCNT2 (P < 0.0001) between normal skin and melanoma.
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4. Discussion

Before targeted immunotherapy for SCM, advanced patients have limited treatment and poor
prognosis, with a median survival of only 6–9 months and a 1-year survival rate of only 25% [21]. Since
2011, with the continuous approval of immunotherapy and targeted therapeutic drugs, the treatment
of advanced melanoma has made a breakthrough. Similar to all solid malignancies, the prognosis
of SCM depends on the stage of the visit. Usually, patients with localized disease and thickness of
primary tumor ≤1.0 mm have a good prognosis, with a 5-year survival rate of over 90% [22]. Therefore,
early diagnosis and early screening of SCM is quite necessary.

The development of diagnostic or prognostic gene detection techniques for SCM play a
certain role in predicting the biological behavior of unknown histopathological features of atypical
melanocyte-like lesions (such as atypical melanocyte hyperplasia, Spitz tumors with unclear malignant
potential, etc.) [23]. There is a huge clinical demand for this technology, but the development of a
true differential detection technology still faces challenges. Therefore, it is very important to explore
specific biomarkers for distinguishing SCM from nevus. In this study, we used the gene expression
dataset GSE98394 in the GEO database to screen for potential biomarkers associated with this process.
The prognostic value of these biomarkers was verified by the prognostic information in this dataset
and the GEPIA database, which was integrated with the TCGA and GTEx data.

WGCNA is an algorithm for searching module information from chip data. In this method,
a module is defined as a group of genes with similar expression profiles. If some genes always have
similar expression changes in a physiological process or in different tissues, these functionally related
genes can be defined as a module. Candidate hub genes or therapeutic targets are identified based on
the connectivity of the module and the association between the module and the phenotype. Compared
to genes that only focus on differential expression, WGCNA uses thousands or nearly 10,000 of the most
variable genes or all of the genes to identify modules of interest and conduct significant association
analyses with phenotypes. One of the advantages is to make full use of information, and the other is to
convert thousands of genes and phenotypes into several modules and phenotypes, eliminating the
need for multiple hypothesis testing [7,8,24,25].

WGCNA was performed to explore gene co-expression modules associated with nevus and
primary melanoma. A total of 18,673 genes and 7 phenotypes were used to constructed by a
co-expression network and 11 modules were obtained. The yellow module was associated with
the tissue type. In this module, there were 13 genes with a correlation >0.9. Among them, the low
expression of the three genes (STK26, KCNT2, and CASP12) was associated with poor prognosis in
patients with SCM.

STK26, serine/threonine kinase 26, also known as mammalian STE20-like protein kinase 4
(MST4), is a protein-coding gene. Early in vitro experiments showed that STK26 had biological
effects in activating the MEK/ERK pathway, mediating cell growth, transformation, and regulating
apoptosis [26,27]. In addition, in association with STK24, STK26 negatively regulated Golgi reorientation
in polarized cell migration upon RHO activation [28]. Subsequent studies showed that STK26 was a
cancer-promoting gene in prostate cancer, liver cancer, and glioblastoma. In prostate cancer, STK26
expression was upregulated, and it might be a good indicator for identifying prostate cancer because
STK26 expression was not detected in patients with benign prostatic hyperplasia [29]. In hepatocellular
carcinoma (HCC), the high expression of STK26 was associated with large tumor size, microvascular
invasion, intrahepatic metastasis, and TNM grading of patients with advanced HCC, which was
independent prognostic factor of the overall survival rate (P = 0.004) and time to recurrence (P = 0.001)
of patients after hepatectomy [30]. In addition, the inhibition of STK26 suppressed autophagy and the
tumorigenicity of glioblastoma cells, while its therapeutic targeting enhanced the antitumor effects of
radiotherapy [31]. In breast cancer, in vitro experiments showed that knocking out STK26 led to an
enhanced vascular invasion of breast cancer cells [32]. Therefore, STK26 might play a role as a tumor
suppressor gene in breast cancer. To the best of our knowledge, there were no reports of STK26 in the
melanoma. Our results indicated that STK26 was downregulated in SCM compared to nevus, and its
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low expression was associated with poor prognosis of primary melanoma. Further research is needed
to uncover the mechanism and role of STK26 in the transformation process of nevus into SCM.

Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis [33].
Diseases associated with potassium sodium-activated channel subfamily T member 2 (KCNT2) include
early infantile epileptic encephalopathies [34]. To the best of our knowledge, there are few studies on
KCNT2 in cancer research. Gunnarsson et al. [35] found that seven pediatric B-cell precursor acute
lymphoblastic leukemia with dup (1q) revealed non-synonymous somatic single nucleotide variants in
KCNT2 by sequencing the breakpoint regions and all exons on 1q. There were no reports related to
KCNT2 in melanoma. The expression of KCNT2 in melanoma was more downregulated than that of
normal tissues at both the transcriptional and the protein level. Therefore, the expression of KCNT2
may be an indicator of the identification of nevus and melanoma, but further research and large-scale
clinical data should be carried out to confirm these hypotheses.

Caspases are cysteine proteases, which play a very important role in the regulation of inflammatory
response and apoptosis. Among them, CASP12, also known as caspase-12, is usually classified as
inflammatory caspase, which inhibits the activation of caspase-1, the production of pro-inflammatory
cytokines IL-1b and IL-18, and the overall response to sepsis in inflammatory complexes, which
results in negative regulation in inflammatory response [36]. Most studies have also focused on
infection-related diseases and seldom on cancer. In vitro experiments showed that Casp12-deficient
mice were more sensitive to drug-induced colon cancer [37]. Similarly, the Casp12 degraded IκBα
protein and enhanced MMP-9 expression in human nasopharyngeal carcinoma (hNC) cell invasion [38].
Interestingly, it was found that knockdown of CASP12 diminished trans-resveratrol-mediated apoptosis
in hNC cells [39]. Our results showed that, similarly to STK26 and KCNT2, the transcription of CASP12
in melanoma was reduced relative to nevus, which might mediate the process of the conversion of
nevus to melanoma. Unfortunately, there were no IHC results of Casp12 in the Human Protein Atlas
database, so we could not analyze the difference in the protein expressions of CASP12 between nevus
and melanoma, which is worth further investigation.

5. Conclusions

In cancer research, co-expression analysis, as a powerful technical tool for analyzing multigenes
and large-scale datasets, has been used in the analysis of a variety of cancers. In this work, we used
WGCNA to screen out one module and three prognostic genes with a strong correlation in the difference
between common nevus and SCM. Through the literature review, it was found that these three genes
were not reported in the melanoma, although they were all related to apoptosis. Apoptosis is the basis
of immunotherapy, which is an effective treatment for melanoma. Therefore, these three genes have
further research value. In addition, after verification by the GEPIA database and IHC data from the
Human Protein Atlas database, it was indicated that these three genes may have potential value as
novel biomarkers in the early diagnosis and prognosis of SCM.
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