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Background: At present, effective clinical therapies for myocardial ischemia-reperfusion

injury (MIRI) are lacking. We investigated if luteolin conferred cardioprotective effects

against MIRI and elucidated the potential underlying mechanisms.

Method: Four databases were searched for preclinical studies of luteolin for the

treatment of MIRI. The primary outcomes were myocardial infarct size (IS) and

intracardiac hemodynamics. The second outcomes were representative indicators of

apoptosis, oxidative stress, and inflammatory. The Stata and RevMan software packages

were utilized for data analysis.

Results: Luteolin administration was confirmed to reduce IS and ameliorate

hemodynamics as compared to the control groups (p < 0.01). IS had decreased by

2.50%, 2.14%, 2.54% in three subgroups. Amelioration of hemodynamics was apparent

in two different myocardial infarct models (model of left anterior descending branch

ligation and model of global heart ischemia), as left ventricular systolic pressure improved

by 21.62 and 35.40 mmHg respectively, left ventricular end-diastolic pressure decreased

by 7.79 and 4.73 mmHg respectively, maximum rate of left ventricular pressure rise

increased by 737.48 and 750.47 mmHg/s respectively, and maximum rate of left

ventricular pressure decrease increased by 605.66 and 790.64 mmHg/s respectively.

Apoptosis of cardiomyocytes also significantly decreased, as indicated by thelevels of

MDA, an oxidative stress product, and expression of the inflammatory factor TNF-α

(p < 0.001).

Conclusion: Pooling of the data demonstrated that luteolin exerts cardioprotective

effects against MIRI through different signaling pathways. As possible mechanisms,

luteolin exerts anti-apoptosis, anti-oxidation, and anti-inflammation effects against MIRI.
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INTRODUCTION

Myocardial infarction is an acute heart condition characterized
by decreased or complete cessation of blood flow to a portion of
the myocardium, resulting in an imbalance between the supply
and demand of oxygen to the myocardium and subsequent
death of myocardiocytes (1, 2). Ultrastructural changes and
mitochondrial abnormalities of cardiomyocytes are identified
as early as 10min after arterial occlusion (3, 4). However,
cardiomyocyte necrosis can be detected hours later (5). The
results of clinical studies have shown that appropriate and
timely myocardial reperfusion therapy can effectively reduce
ischemic injury (6, 7). Despite numerous benefits following
recanalization of the coronary artery, postoperative mortality
and morbidity remain significant (8). Moreover, the course of
myocardial reperfusion itself can exacerbate myocardial systolic
and diastolic function and expand myocardial infarct size (IS)–a
phenomenon known as myocardial ischemia-reperfusion injury
(MIRI) (9). Experimental studies have suggested that ∼50% of
the final IS is due to MIRI-induced cell death (10). From the
emergence of this phenomenon, massive experimental studies
of cardioprotective strategies against MIRI have been conducted
(11). However, turning the application of these sorts of laboratory
discoveries into treatments to improve patient outcomes have
encountered significant obstacles primarily because of the
multiple multi-factorial mechanisms underlying MIRI-induced
cardiomyocyte injury (12). Hence, there is a need to assess the
cardioprotective effects of potential strategies and elucidate the
underlying mechanisms.

Although the herbs used in Traditional Chinese Medicine
offer massive untapped potential for use in modern medicine,
the underlying mechanisms remain unclear (13). Growing
evidence suggests that dietary intake of flavonoids can reduce
the incidence of ischemic heart disease (14). Luteolin, a 3’,
4’, 5, 7 tetra hydroxyl flavonoid derived from various plant
sources, including broccoli, green pepper, and even peanut
hulls, possess anti-apoptosis, antioxidant, anti-inflammatory,
anti-tumor, and metabolic adjustment properties (15–18). So
far, a variety of mechanisms of luteolin against MIRI have
been identified. To accelerate the translation of cardioprotective
effects of luteolin to clinical research, the empirical evidence and
possible mechanisms of luteolin are summarized in this report.

Research on luteolin has been limited to preclinical trials,
as most findings have been obtained from animal studies.
However, the use of animal models has inherent flaws. For
example, animal models generally only imitate a specific disease
and cannot be implemented in adult animals without the
induction of some comorbidities. Also, animal models are
insufficient to reproduce the complicated pathophysiology in
older adults with additional risk factors of myocardial infarction
due to intrinsic heterogeneity. In addition, the conclusions of
animal experiments are generally obtained from relatively small
independent samples. Nonetheless, although animal studies
are still necessary prior to preclinical studies, a well-designed
quantitative meta-analysis with appropriate inclusion criteria
can provide convincing evidence while minimizing bias. Hence,
the aim of this review article was to summarize current

knowledge of the cardioprotective effects of luteolin for treatment
of MIRI.

METHODS

Search Strategy
Relevant articles published up to February 15, 2022 were
retrieved from the PubMed, Embase, Cochrane Library, and
Web of Sciencedatabases using the key words “luteolin” and
“myocardial ischemia” without limitations to the year of
publication, article type, or species. The PubMed database
was searched with the use of the following retrieval statement:
{[(Myocardial Ischemia) OR (Myocardial Ischemias) OR
(Ischemias, Myocardial) OR (Ischemia, Myocardial) OR
(Heart Disease, Ischemic) OR (Ischemic Heart Disease) OR
(Heart Diseases, Ischemic) OR (Diseases, Ischemic Heart) OR
(Disease, Ischemic Heart) OR (Ischemic Heart Diseases)] AND
[(Luteolin) OR (3′,4′,5,7-Tetrahydroxy-Flavone) OR (3′,4′,5,7-
Tetrahydroxyflavone) OR (Luteoline)]}. Quotations in eligible
articles were also traced to minimize the possibility of omission
as much as possible. The ID of PROSPERO is CRD42021226773.
The search strategy and exclusion criteria are presented in
Figure 1.

Inclusion Criteria
Articles regarding preclinical studies on the Post-infarction
cardioprotective effects of luteolin that met the following
inclusion criteria were included in the meta-analysis: (1) use
of an acute myocardial ischemia model induced by occlusion
of the left anterior descending artery (LAD) or global Non-
flow ischemia of the isolated heart; (2) the intervention group
received pretreatment with luteolin monotherapy, while the
MIRI group was administered normal saline, a vehicle, or no
treatment with no restriction on the route of administration,
time of pretreatment, or dosage; and (3) an experimental
study with the use of an animal model with no restriction
to the species, weight, or age, with the exception of sex. The
primary indicators for evaluation were IS and hemodynamics.
The hemodynamic indicators, as recorded with a pressure
sensor, included: (1) left ventricular systolic pressure (LVSP); (2)
left ventricular end-diastolic pressure (LVEDP); (3) maximum
rate of left ventricular pressure rise (+dp/dtmax); and (4)
maximum rate of left ventricular pressure decrease (-dp/dtmax).
Secondary indicators, which included cardiomyocyte apoptotic
rate, oxidative products, and inflammatory factors, reflected
possible mechanisms of luteolin for treatment of MIRI.

Exclusion Criteria
The exclusion criteria included the following: (1) no mention
of the process for reperfusion of the impaired myocardium;
(2) editorials, comments, conference abstracts, correspondences,
reviews, and case reports; (3) pretreatment with other flavonoids
or the other compound of luteolin; (4) in vitro studies; (5)
pronounced intrinsic cardiac effect of anesthetics; and (6)
clinical studies.
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FIGURE 1 | PRISMA flow chart of the search process.

Data Extraction
The data from the articles that met the inclusion criteria
were included in a table with the following categories: (1)
surname of the author and year of publication; (2) characteristics
of the experimental animals of each study, which included
sex, weight, and age; (3) establishment of an MIRI model
and time of ischemia/reperfusion process; (4) staining and
mode of identification of the infarcted myocardium; (5)
method of treatment, including the administration route,
dosage, and duration; (6) type of anesthetic; (7) outcome
measures; and (8) related signaling pathways and corresponding
inhibitors. The mean values and standard deviations of the
control and intervention groups were extracted. If the results
were indispensable but not explicitly shown, GetData Graph

Digitizer software (http://getdata-graph-digitizer.com/) was used
to assemble the data. When the luteolin dosages varied among
the intervention groups, the data of which will be merged
according the formula recommend by Cochrane Handbook (19).
The formula is shown in Supplementary Figure 1. The indices
detected by different methods in the same study were annotated
as 1, 2, 3, etc. Data from the eligible articles were extracted by
two independent authors and disputes were adjudicated by the
corresponding author.

Risk of Bias in Individual Studies
The checklist for animal data was rehashed as follows: (1)
sample size estimation; (2) generation of random sequence;
(3) no simulated myocardial ischemia; (4) blinding of outcome
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assessment; (5) appropriate animal model without comorbidities;
(6) no noticeable intrinsic cardiac effect of anesthetics; (7)
description of temperature control; (8) compliance with
guidelines regarding the welfare of animals used in scientific
testing and research; (9) publication after peer review; and (10)
statement of a potential conflict of interest. If an entry qualified,
the study received a score of 1 on a 10-point scale. Finally,
the total score of each study was calculated. Any dispute was
adjudicated by the corresponding author.

Statistical Analysis
When there were differences in units or testing methods, or
the presence of apparently exaggerated numbers, the extracted
outcomes were converted to standardized mean difference
(SMD) values with the 95% confidence interval (CI) to complete
the summary statistics. In other cases, the weighted mean
difference (WMD) and 95% CI were adopted. The sample size of
an experimental study is usually smaller than of a clinical study.
Therefore, Hedge’s g rather than Cohen’s d was implemented.
Statistical heterogeneity between studies was calculated using the
I squared (I2) statistic. Random effects were selected because of
the small sample size and prevalent statistical heterogeneity in
preclinical studies. To more accurately explore the effect of group
size, prespecified subgroups were assessed by different methods.
If heterogeneity was remarkable, subgroup analysis, sensitivity
analysis, and/or meta-regression analysis were conducted. If the
consistency of baseline data was poor, linear regression and
multiple regression were utilized. If the same outcome index
was reported by more than 10 articles, funnel plots and the
Egger’s test were used to assess publication bias. All quantitative
outcomes were analyzed using Stata/SE version 12 (StataCorp
LLC, College Station, TX, USA) and RevMan version 5.3 (The
Cochrane Collaboration, London, England). A probability value
of < 0.05 was considered statistically significant.

RESULTS

Study Inclusion
In total, 162 articles were harvested in accordance with the
search strategy and tracing of quotations. After the removal of
50 duplications, the remaining 112 studies were screened by
browsing the article type. In addition, 25 reviews, six conference
abstracts, two correspondences, and one editorial were also
excluded as Non-original articles. Of the remaining 78 articles,
58 were also excluded: 25 because luteolin was not the primary
focus or was mixed with other flavonoids, seven because of the
other compound forms of luteolin (luteolin-7-O-glucoside and
luteolin-7-beta-D-glucoside), eight due to the lack of a MIRI
model, one that lacked the reperfusion method, three because of
clinical trails and thirteen were not in vivo study. Finally, data
were pooled from 21 articles.

Study Characteristics and Baseline Data
Analysis
All 21 articles (20–40) were published within the past 10 years.
Sixteen studies (20–28, 30, 31, 35–38, 40) had healthy adult
murids for comparison, and 5 studies (29, 32–34, 39) had

comorbidities murids for comparison. Based on the construction
method, two types of ischemia models were used in the
included articles: ligation of LAD and Non-flow ischemia of
the global heart. Nineteen studies (20, 22, 24–40) used rats as
study subjects, while two articles (21, 23) used mice as study
subjects. Eventually, eighteen articles (20, 23–28, 30–40) were
included for quantitative analysis while two article (21, 23)
was excluded by species and one article (29) was excluded
to avoid the interference of comorbidity on the effect size.
Eighty comparisons with 415 animals were tracked to describe
amelioration of MIRI with luteolin, of which 263 were classified
as the intervention group while 152 were classified as the
control group. All of the animals were adult male rats, including
Wistar rats with a weight range of 220–250 g, and Sprague
Dawley rats with a weight range of 140–300 g. Anesthetics used
for surgery that had no pronounced intrinsic cardiac effect
included urethane, isoflurane, and pentobarbital sodium. Each
experimental group was pretreated with luteolin via intravenous
injection, intraperitoneal injection, gavage, or cardiac perfusion.
The dosages differed via the administration route. There was also
a dose-gradient design in some of the studies. The time of luteolin
pretreatment spanned from dozens of minutes to 2 weeks before
surgery. Nine articles (22, 24–26, 28, 30, 31, 35, 37) assessed IS
by staining with 2,3,7-triphenyl tetrazolium-chloride (TTC) or
Evans Blue/TTC. IS was assessed as the ratio of weight to area of
IS. Areas stained by Evans blue were defined as an area not at risk,
while the remaining area was defined as an area at risk (AAR),
which was theoretically an area of IS without recanalization
of the infarcted coronary artery. The AAR included the area
of viable myocardium stained by TTC and the area of IS that
negatively stained. The methods for calculation of the area
of IS included IS/AAR, IS/whole heart, and IS/left ventricle
(IS/LV). The duration of ischemia was 30min. The duration
of reperfusion was 24 h in five articles and 1–3 h, usually 2 h,
in the others. Quantitative analysis in only one article reported
the ejection fraction and fractional shortening. Consequently,
intracardiac hemodynamic parameters for evaluation of heart
function evaluation were included in 8 articles (20, 22, 27, 30, 31,
35–38). The fundamental characteristics of individual studies are
shown in Table 1, and the mechanisms are listed in Table 2.

In the group of LAD ligation, baseline data (i.e.,
administrations, dosages, pretreatment timing, and reperfusion
duration) were inconsistent. It has been reported that oral
bioavailability of luteolin was 26 ± 6% while intravenous
bioavailability was usually set at 100% (41). Although the
method of administration was different, the included studies
had explored the optimal dosage or quoted the dosage designed
by others. Regression analysis analysis by administration,
dosages, timing regimen of pretreatment or reperfusion duration
had no impact on the effect size of IS and hemodynamics
(Supplementary Table 1). The different Research Groups
have explored their optimal experimental conditions for the best
experimental results. Hence, the effect size did not be significantly
affected by baseline data. In the model of global ischemia, the
baseline data except for reperfusion duration was consistent.
Regression analysis by reperfusion duration had no impact on
the effect size of hemodynamics (Supplementary Table 1).
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TABLE 1 | Basic characteristics of the included studies.

Study Species, gender Week old, weight Model Anesthetic Method of treatment Comorbidity Performance I/R time Staining Measurement of IS

Luteolin Duration administration

Qin et al. (28) SD rats, male 8–10 weeks, 240–260 g MIRI Pentobarbital sodium 40 mg/kg 3 d po no ligation of LAD 4 h/12 h NR IS/ Whole Heart

Liu et al. (25) SD rats, male 220–250 g MIRI Pentobarbital sodium 40 mg/kg 7 d po no ligation of LAD 0.5 h/2 h TTC IS/ Whole Heart

Zhao et al. (38) SD rats, male 8 weeks, 250–300 g MIRI Urethane 20/40 mg/kg 7 d NR no ligation of LAD 0.5 h/2 h NR NR

Hu et al. (23) C57BL/6j rats, male Adult, 20–25 g MIRI Isoflurane 15 ug/kg 3 d iv no ligation of LAD 0.5 h/24 h EB/TTC IS/AAR

Wei et al. (30) SD rats, male 7–8 weeks, 200–250 g MIRI Pentobarbital sodium 5/10/20 mg/kg 15min ip no ligation of LAD 0.5 h/24 h EB/TTC IS/AAR

Du et al. (21) C57BL/6j rats, male NR, 20–25 g MIRI Pentobarbital sodium 15 ug/kg 3 d iv no ligation of LAD 0.5 h/24 h EB/TTC IS/AAR

Zhang et al. (37) SD rats, male Adult. 220–250 g MIRI Isoflurane 40/80/160 mg/kg 7 d po no ligation of LAD 0.5 h/24 h TTC IS/Whole Heart

Yu et al. (35) SD rats, male 6–8 weeks, 250–300 g MIRI Urethane 10/40/70 mg/kg 5 d po no ligation of LAD 0.5 h/1 h TTC IS/Whole Heart

Nai et al. (26) SD rats, male NR, 250–300 g MIRI Pentobarbital sodium 200 mg/kg 14 d po no ligation of LAD 0.5 h/24 h TTC IS/LV

Sun et al. (29) SD rats, male Adult, 200–220 g MIRI Isoflurane 10 ug/kg 3 d iv DM ligation of LAD 0.5 h/3 h EB/TTC IS/LV

Liao et al. (24) SD rats, male NR,250–300 g MIRI Urethane 10 ug/kg 15min iv no ligation of LAD 1 h/3 h EB/TTC IS/LV;IS/AAR

Zhou et al. (39) SD rats, male Adult,210–220 g MIRI Pentobarbital sodium 100 mg/kg 14 d po DM global ischemia of heart 0.5 h/2 h NR NR

Xiao et al. (32) SD rats, male NR, 210–230 g MIRI Pentobarbital sodium 100 mg/kg 14 d po DM global ischemia of heart 0.5 h/2 h NR NR

Yang et al. (34) SD rats, male NR, 140–180 g MIRI Pentobarbital sodium 100 mg/kg 14 d po hyperlipoidemia global ischemia of heart 0.5 h/2 h NR NR

Zhu et al. (40) Wistar rats, male NR, 220–250 g MIRI Pentobarbital sodium 40µM 30min perfusion no global ischemia of heart 0.5 h/2 h NR NR

Zhang et al. (36) SD rats, male NR,220–250 g MIRI Pentobarbital sodium 40µM 20min perfusion no global ischemia of heart 0.5 h/2 h NR NR

Yang et al. (33) SD rats, male NR, 220–240 g MIRI Pentobarbital sodium 100 mg/kg 14 d po DM global ischemia of heart 0.5 h/2 h NR NR

Bian et al. (20) SD rats, male NR,220–250 g MIRI Pentobarbital sodium 40µM 30min perfusion no global ischemia of heart 0.5 h/2 h NR NR

Wu et al. (31) Wistar rats, male NR,220–250 g MIRI Pentobarbital sodium 40µM 30min perfusion no global ischemia of heart 0.5 h/2 h TTC IS/LV

Qi et al. (27) SD rats, male NR,220–250 g MIRI Pentobarbital sodium 10µg/ml 10min perfusion no global ischemia of heart 0.5 h/2 h NR NR

Fang et al. (22) SD rats, male NR,220–250 g MIRI Pentobarbital sodium 40µM 30min perfusion no global ischemia of heart 0.5 h/2 h TTC IS/LV

SD, Sprague—Dawley; NR, not report; MIRI, myocardial ischemia/reperfusion injury; Duration, the duration of luteolin pretreatment; µM, µmol/L; d, day; h, hour; min, minute; DM, diabetes mellitus; po, intragastric administration; ip,

intraperitoneal injection; iv, intravenous injection; I/R, ischemia/reperfusion; LAD, left anterior descending branch; IS, infarct size; EB, Evans blue; TTC, 2,3,7-triphenytetrazolium-chloride; AAR, area at risk; LV, left ventricular.
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TABLE 2 | Summary of mechanisms of luteolin for MIRI.

References Outcome measure Intergroup

differences

Mechanisms Interventions of signal

pathways

Qin et al. (28) 1. Infarct size

2. Apoptotic index

3. Oxidative factor

1. p < 0.05

2. p < 0.05

3. p < 0.05

Wnt↑/β-catenin↑/ oxidative stress↓;

apoptosis↓

NR

Liu et al. (25) 1. Infarct size

2. Apoptotic index

3. Inflammatory factor

1. p < 0.05

2. p < 0.05

3. p < 0.05

SHP-1↓STAT3↑ /inflammatory reactions and

cell death↓

NR

Zhao et al. (38) 1. Hemodynamics

2. Cardiac enzyme

3. Inflammatory factor

1. p < 0.01

2. p < 0.01

3. p < 0.01

Siti1/NLRP3/NF-κB pathway↓ NR

Hu et al. (23) 1. Hemodynamics

2. Cardiac enzyme

3. Infarct size

4. Apoptotic index

1. p < 0.001

2. p < 0.001

3. p < 0.001

4. p < 0.001

Sp1↑/SERCA2a↑;apoptosis↓ Sp1 overexpression and

Sp1 knockdown

Wei et al. (30) 1. Infarct size

2. Cardiac enzyme

3. Oxidative factor

4. Hemodynamics

1. p < 0.05

2. p < 0.05

3. p < 0.05

4. p < 0.05

PRXII↑/oxidative stress↓/ apoptosis↓ Conoidin A

(a specific covalent inhibitor of

PRXII)

Du et al. (21) 1. Infarct size

2. Cardiac enzyme

3. Hemodynamics

4. Apoptotic index

1. p < 0.001

2. p < 0.001

3. p < 0.001

4. p < 0.001

SERCA2a↑via its Sumoylation at Lysine 585 NR

Zhang et al. (37) 1. Infarct size

2. Hemodynamics

3. Cardiac enzyme

4. Inflammatory factor

1. p < 0.05

2. p < 0.01

3. p < 0.01

4. p < 0.01

TLR4/NF-kB/NLRP3 inflammasome pathway↓ NR

Yu et al. (35) 1. Hemodynamics

2. Infarct size

3. Cardiac enzyme

4. Oxidative factor

5. Apoptotic index

1. p < 0.01

2. p < 0.01

3. p < 0.01

4. p < 0.01

5. p < 0.05

ROS-activated MAPK pathway↓/apoptosis↓ SB203580 (p38 MAPK inhibitor)

SP600125 (JNK MAPK inhibitor)

Nai et al. (26) 1. Infarct size

2. Cardiac enzyme

3. Apoptotic index

1. p < 0.01

2. p < 0.01

3. p < 0.01

PI3K/Akt signal pathway↑/SERCA2a↑ LY294002

(the Akt inhibitor)

Sun et al. (29) 1. Cardiac enzyme

2. Infarct size

3. Hemodynamics

4. Apoptotic index

5. Inflammatory factor

1. p < 0.05

2. p < 0.05

3. p < 0.05

4. p < 0.05

5. p < 0.05

FGFR2↑and LIF↑/ apoptosis↓; PI3K/Akt

pathway↑/inflammation↓; apoptosis↓

Wortmannin

(a specific PI3K inhibitor)

Zhou et al. (39) 1. Hemodynamics

2. Cardiac enzyme

3. Oxidative factor

1. p < 0.01

2. p < 0.01

3. p < 0.01

sestrin2-mediated removal of

Keap1/Nrf2↑/oxidative stress↓

Leucine (the sestrin2 inhibitor)

Brusatol (the Nrf2 inhibitor)

Liao et al. (24) 1. Cardiac enzyme

2. Infarct size

3. Oxidative factor

1. p < 0.05

2. p < 0.05

3. p < 0.05

reduction in iNOS production NR

Xiao et al. (32) 1. Hemodynamics

2. Cardiac enzyme

3. Oxidative factor

1. p < 0.01

2. p < 0.01

3. p < 0.01

eNOS-mediated S-nitrosylation of

Keap1↑/Nrf2↑/oxidative stress↓

L-NAME (the NOS inhibitor)

Brusatol (the Nrf2 inhibitor)

Yang et al. (34) 1. Hemodynamics

2. Cardiac enzyme

3. Oxidative factor

1. p < 0.01

2. p < 0.01

3. p < 0.01

enhancing Akt/GSK3β/Fyn-mediated Nrf2

antioxidative function

LY294002

(the Akt inhibitor)

Zhu et al. (40) 1. Apoptotic index 1. p < 0.01 p38MAPK pathway↓/apoptosis↓;SERCA2a↑ SB203580

(the p38 MAPK inhibitor)

Zhang et al. (36) 1. Oxidative factor

2. Hemodynamics

1. p < 0.01

2. p < 0.05

ROS↓/P38MAPK↓/apoptosis↓;

PI3K/AKT↑/oxidative injury↓

LY294002

(the Akt inhibitor)

Yang et al. (33) 1. Hemodynamics

2. Cardiac enzyme

3. Oxidative factor

1. p < 0.01

2. p < 0.01

3. p < 0.01

eNOS pathway↑/MnSOD↑ and

mPTP opening↓

L-NAME

(the NOS inhibitor)

(Continued)
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TABLE 2 | Continued

Study Outcome measure Intergroup

differences

Mechanisms Interventions of signal

pathways

Bian et al. (20) 1. Hemodynamics

2. Apoptotic index

1. p < 0.05

2. p < 0.05

miR-208b-3p↓/ Ets1↑/apoptosis↓ overexpression and knockdown

of miR-208b-3p

Wu et al. (31) 1. Hemodynamics

2. Infarct size

3. Apoptotic index

1. p < 0.05

2. p < 0.05

3. p < 0.05

ERK1/2↑and JNK↓/ apoptosis↓;

ERK1/2-PP1a signal pathway↑/SERCA2a↑

PD98059(ERK1/2 inhibitor)

SP600125(JNK inhibitor)

Qi et al. (27) 1. Apoptotic index

2. Hemodynamics

1. p < 0.01

2. p < 0.01

apoptosis↓;necrosis↓ NR

Fang et al. (22) 1. Hemodynamics

2. Infarct size

3. Apoptotic index

1. p < 0.05

2. p < 0.01

3. p < 0.01

PI3K/AKT pathway↑/apoptosis↓ LY294002

(the Akt inhibitor)

NR, no reported; NLRP3, NLR Family, Pyrin Domain-Containing 3 Protein; sp1, Specificity Protein 1 Transcription Factor; SERCA2a, Sarcoplasmic Reticulum Ca2+-ATPase; PRX II,

Peroxiredoxin II; TLR4, Toll-Like Receptor 4; MAPK, Mitogen-Activated Protein Kinase Kinases; PI3K, phosphoinositide 3-kinase; JNK, C-Jun N terminal kinase; ERKs, extracellular signal-

regulated kinases; FGFR2, fibroblast growth factor receptor 2; sestrin2, a highly conserved stress-inducible protein; LIF, leukemia inhibitory factor; iNOS, inducible nitric oxide synthase;

eNOS, endothelial nitric oxide synthase; GSK3β, Glycogen Synthase Kinase 3 beta; Nrf2, nuclear factor erythroid 2-related factor 2; MPTP, mitochondrial membrane permeability

transition pore.

Study Quality and Publication Bias
The lowest study quality score was 6 points on a 10-point scale,
while the highest was 9 points. Of the 21 completed studies,
19.05% were assigned a quality score of 6 points, 19.05% a score
of 7 points, 52.38% a score of 8 points, and 9.52% a score of 9
points. The majority of studies received relatively high scores. All
of the included studies were published in peer-reviewed journals.
Control of temperature and animal welfare were described in 21
studies. No study mentioned sample size estimation. The process
of randomly assigning animals to each group was described in
all 21 studies. Outcomes were assessed blindly in five studies
(22, 25, 27, 29, 30). A total of 16 studies (20–28, 30, 31, 35–38, 40)
included a control group comprised of healthy adult animals
without complications. The administration of anesthetics had
hardly any effect on heart function in 21 articles. All studies
declared potential conflicts of interest. The methodological
quality of individual studies is shown in Table 3. The Egger
test (P > 0.05) (Supplementary Figure 2) and the funnel plot
(Supplementary Figure 3) showed no significant publication
bias for all indicators except LVEDP (P = 0.014). However,
trim and filling method illustrates the better authenticity of
LVEDP results (Supplementary Figure 3C). The value of LVEDP
changes from −6.35 to −9.03 (95% CI = −11.20 to −6.86, P <

0.001) through trim and filling method. The new valuation does
not cross the invalid line.

Effectiveness
Myocardial IS
Subgroups were established based on IS measurements
(Figure 2). Within the subgroups, SMD with the 95% CI
was calculated to determine the coexistence of the area
ratio and weight ratio. There were three subgroups of IS.
Quantitative analysis of two studies (24, 30) showed that luteolin
administration led to a decrease in the IS/AAR ratio as compared
to that of the control group [Figure 2, SMD = −2.50, 95%
CI = −3.47 to −1.52, p < 0.00001; heterogeneity: χ² = 0.03,
df = 2 (p = 0.87); I² = 0%]. Quantitative analysis of four

studies (25, 28, 35, 37) showed that the IS/whole heart ratio
was significantly decreased as compared to that of the control
group [Figure 2, SMD = 2.14, 95% CI = 3.06 to −2.14, p <

0.0001; heterogeneity: χ² = 4.90, df = 3 (p = 0.18); I² = 39%].
Quantitative analysis of four studies (22, 24, 26, 31) showed that
luteolin administration reduced the IS/LV ratio as compared
to that of the control group [Figure 2, SMD = −2.54, 95% CI
= −3.82 to −1.26, p = 0.0001; heterogeneity: χ² = 4.66 df =
3 (p = 0.20); I² = 36%]. The subgroup analysis for the MIRI
model was also conducted. In regard to the LAD ligation model,
quantitative analysis of seven studies (24–26, 28, 30, 35, 37)
with eight comparisons showed that luteolin administration
reduced the IS as compared to that of the control group
[Supplementary Figure 4, SMD = −2.14, 95% CI = −2.68
to −1.59, p < 0.00001; heterogeneity: χ² = 7.94, df = 7 (p
= 0.34); I² = 12%]. In regard to the global ischemia model,
quantitative analysis of two studies (22, 31) showed that luteolin
administration reduced the IS as compared to that of the control
group [Supplementary Figure 4, SMD = −2.87, 95% CI =

−4.72 to −1.03, p= 0.002; heterogeneity: χ²= 1.89, df= 1 (p=
0.17); I²= 47%].

Hemodynamics

LVSP
In regard to the LAD ligation model, quantitative analysis of
four studies (30, 35, 37, 38) showed that LVSP was significantly
improved in the luteolin group as compared to that of the control
group [Figure 3A, WMD = 21.62, 95% CI = 18.24 to 25.00, p <

0.00001; heterogeneity: χ² = 2.75, df = 3 (p = 0.43); I² = 0%].
In regard to the global ischemia model, quantitative analysis of
five studies (20, 22, 27, 31, 36) with 10 comparisons showed
that LVSP was significantly improved in the intervention group
as compared to that of the control group [Figure 3A, WMD
= 38.82, 95% CI = 32.82 to 44.82, p < 0.00001; heterogeneity:
χ² = 26.14, df = 9 (p = 0.002); I² = 66%]. Here, sensitivity
analysis was performed to determine the source of heterogeneity
(Supplementary Figure 5). After the removal of one study (36),
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TABLE 3 | Risk of bias of included studies according to CAMARADES checklist.

References (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Total

Bian et al. (20) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Du et al. (21) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Fang et al. (22) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Hu et al. (23) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Liao et al. (24) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Liu et al. (25) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9

Nai et al. (26) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Qi et al. (27) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Qin et al. (28) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Sun et al. (29) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Wei et al. (30) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9

Wu et al. (31) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Xiao et al. (32) ✓ ✓ ✓ ✓ ✓ ✓ 6

Yang et al. (34) ✓ ✓ ✓ ✓ ✓ ✓ 6

Yang et al. (33) ✓ ✓ ✓ ✓ ✓ ✓ 6

Yu et al. (35) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Zhang et al. (37) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Zhang et al. (36) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Zhao et al. (38) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8

Zhou et al. (39) ✓ ✓ ✓ ✓ ✓ ✓ 6

Zhu et al. (40) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Studies fulfilling the criteria of: (1) sample size estimation; (2) the generating of random sequence; (3) no simulated myocardial ischemia; (4) blinding of outcome assessment; (5)

appropriate animal model without comorbidities; (6) no pronounced intrinsic cardiac effect of anesthetic; (7) description of temperature control; (8) comply with animal protection laws;

(9) the paper is published after peer review; (10) stated potential conflict of interest.

FIGURE 2 | Forest plot showing changes in myocardial infarct size. IS, infarct size; AAR, area at risk; LV, left ventricular.
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FIGURE 3 | Forest plots for effect of luteolin on hemodynamics including (A) LVSP, (B) LVEDP, (C) +dp/dtmax, (D) -dp/dtmax. LVSP, left ventricular systolic pressure;

LVEDP, left ventricular end-diastolic pressure; +dp/dtmax, maximum rate of left ventricular pressure rise; -dp/dtmax, maximum rate of left ventricular pressure decrease.
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quantitative analysis of four studies (20, 22, 27, 31) with eight
comparisons showed that LVSP was significantly improved as
compared to that of the control group [Figure 3A, WMD =

35.40, 95% CI = 29.94 to 40.86, p < 0.00001; heterogeneity:
χ²= 10.05, df= 7 (p= 0.19); I²= 30%].

LVEDP
In regard to the LAD ligation model, Quantitative analysis of
four studies (30, 35, 37, 38) showed that luteolin administration
reduced LVEDP as compared to that of the control group
[Figure 3B, WMD = −7.79, 95% CI = −12.97 to −2.61, p <

0.00001; heterogeneity: χ² = 108.15, df = 3 (p < 0.00001); I²
= 97%]. Sensitivity analysis had no pronounced effect on the I2

values (Supplementary Figure 6).
In regard to the global ischemia model, three articles (32–

34) that lacked a control group at the corresponding time point
during reperfusion of the isolated heart were excluded from
analysis. Thus, quantitative analysis of five studies (20, 22, 27,
31, 36) with 10 comparisons showed that luteolin administration
significantly reduced LVEDP as compared to that of the control
group [WMD = −5.85, 95% CI = −7.54 to −4.16, p <

0.00001; heterogeneity: χ² = 38.43, df = 9 (p < 0.01); I² =

77%]. After removal of one study (36) by sensitivity analysis
(Supplementary Figure 7), the heterogeneity was decreased,
indicating a meaningful change [Figure 3B, WMD=−4.73, 95%
CI=−5.90 to−3.56, p < 0.01; heterogeneity: χ²= 11.97, df= 7
(p= 0.10); I²= 41%].

+dp/dtmax

In regard to the LAD ligationmodel, quantitative analysis of three
(30, 35, 37) studiesshowed that luteolin administration increased
+dp/dtmax as compared to that of the control group [Figure 3C,
WMD = 737.48, 95% CI = 521.64 to 953.32, p < 0.00001;
heterogeneity: χ² = 1.52, df = 2 (p = 0.47); I² = 0%]. In regard
to the global ischemia model, quantitative analysis of five studies
(20, 22, 27, 31, 36) with 10 comparisons showed that luteolin
administration increased +dp/dtmax as compared to that of the
control group [Figure 3C, WMD = 750.47, 95% CI = 623.09 to
877.86, p < 0.01; heterogeneity: χ² = 12.82, df = 9 (p = 0.17); I²
= 30%].

-dp/dtmax

In regard to the LAD ligation model, quantitative analysis of
three studies (30, 35, 37) showed that luteolin administration
significantly increased -dp/dtmax as compared to that of the
control group [Figure 3D, WMD = 605.66, 95% CI = 298.47 to
912.84, p = 0.0001; heterogeneity: χ² = 2.70, df = 2 (p = 0.26);
I²= 26%].

In regard to the global ischemia model, quantitative
analysis of five studies (20, 22, 27, 31, 36) with 10
comparisons showed that luteolin administration significantly
increased -dp/dtmax as compared to that of the control
group [Figure 3D, WMD = 790.64, 95% CI = 685.78
to 895.49, p < 0.01; heterogeneity: χ² = 9.65, df = 9
(p= 0.38); I²= 7%].

Cardioprotective Mechanisms of Luteolin

Anti-apoptosis
Only one study (30) included in the group of LAD ligation
model. In regard to the global ischemia model, quantitative
analysis of four studies (22, 27, 31, 40) showed that luteolin
administration significantly decreased the proportion of
apoptotic cells (TUNEL-positive cells) in the intervention group
as compared to that of the control group [Figure 4A, WMD =

−11.76, 95% CI=−12.90 to−10.63, p< 0.00001; heterogeneity:
χ²= 2.65, df= 3 (p= 0.45); I²= 0%].

Anti-oxidation
Eight studies (24, 27, 30, 32–35, 39) showed that luteolin
administration was significant for decreasing MAD level
compared with the control group [Figure 4B, SMD=−2.43, 95%
CI = −3.35 to −1.51, p < 0.00001; heterogeneity: χ² = 20.97,
df = 7 (p = 0.0004); I² = 67%]. Subgroup analysis based on
the comorbidities was subsequently conducted, which showed a
more meaningful result [Non-comorbidity: SMD = −1.43, 95%
CI = −2.18 to −0.68, p = 0.0002; heterogeneity: χ² = 3.95, df =
3 (p = 0.27); I² = 24%; comorbidity: SMD = −3.37, 95% CI =
−4.28 to −2.46, p < 0.00001; heterogeneity: χ² = 3.46, df = 3 (p
= 0.33); I² = 13%]. Coincidentally, the two different subgroups
belonged to two different MIRI models.

Anti-inflammation
Quantitative analysis of three studies (25, 37, 38) showed that
luteolin administration significantly decreased TNF-α levels
[Figure 4C, SMD=−2.88, 95%CI=−3.60 to−2.16, p< 0.0001;
heterogeneity: χ²= 1.83, df= 2 (p= 0.40); I²= 0%].

DISCUSSION

Summary of Results
This meta-analysis is the first to assess the effects of luteolin
administration for treatment of MIRI. Comprehensive analysis
was conducted of 18 studies with 415 animals. According to
the checklist, the included studies were of relatively high quality
with a low risk of bias. All the included data were objective
response variables. The issues of comorbidities and different
MIRI models were addressed in advance. Baseline data (i.e.,
administrations, dosages, pretreatment timing, and reperfusion
duration) did not have a significant effect on effect size of
IS and hemodynamics. Preclinical evidence obtained from the
meta-analysis confirmed that pretreatment with luteolin reduced
IS and ameliorated hemodynamics in animal models. These
potential cardioprotective effects were primarily due to the
anti-apoptosis, anti-oxidation, and anti-inflammation properties
of luteolin.

Limitations
The amount of data from mice is too small for further analysis.
In regard to study quality, the included studies were credible
but only four referred to a blind evaluation. Holman et al. (42)
affirmed the necessity of blind outcome assessment while they
also stated that experiment with an objective response variable
did not need to be blind in animal researches. Hirst et al.
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FIGURE 4 | Forest plots for (A) apoptotic rate, (B) MDA, (C) TNF-α. LAD, left anterior descending branch; MDA, malondialdehyde; TNF-α, tumor necrosis factor alpha.

(43) included 119,597 animals to evaluate the effects of blind
outcome assessment which showed that subjective variable but
not objective variable significantly increased effect sizes in the
absence of blinding. In addition, there were notable differences
among the experimental groups, which is likely the main reason
for the absence of sample size calculation. As a result of the
inclusion of more positive studies, the efficacy of luteolin may
be overestimated. Besides, partial results were standardized by

SMD with the 95% CI, thus the results should be carefully
interpreted. The included studies employed multiple methods
for the calculation of IS, which led to a smaller sample size in
each subgroup.

Implications
Recent basic research studies have reported the superior efficacy
of flavonoids for the treatment of MIRI. Epidemiological
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investigations suggest that dietary intake of flavonoids could
effectively reduce the risk of cardiac events (44, 45). As compared
with other isolated flavonoids from Ixeris sonchifolia, luteolin
was reported as the best option against ischemia-induced injury
(46). Luteolin is mainly metabolized in the liver, and intestines
and the metabolites are absorbed in the gastrointestinal tract
(47). By oral administration, the highest plasma concentration of
luteolin, which has a half-life of about 5 h, occurs about 1 h later
(45). The anti-tumor properties of luteolin have been reported in
wide range of studies, although the focus of most current research
seems to be shifting to cardioprotective effects. The initial focus
of this meta-analysis was not only MIRI, but all Post-infarction
cardiac injuries. However, with the exception of one article (48),
most studies screened the effect of luteolin for treatment of MIRI
in accordance with stringent standards. However, the focus of the
present meta-analysis was the effect of luteolin administration
on MIRI.

Myocardial Infarction Size and Apoptosis of

Cardiomyocytes
From the included studies, AAR had no statistical significance in
any of the experimental groups. The goal of treatment is to reduce
reperfusion injury to the viable myocardium stained by TTC.
Apoptosis of cardiomyocytes was detected at the infarcted border
zone in the animal models, while reperfusion of the infarcted area
further induced apoptosis (49). In addition, clinical studies have
reported a close association of apoptosis with MIRI (50). With
the development and popularization of percutaneous coronary
intervention, more studies have attached great importance to
protecting cardiomyocytes at areas of greater risk. Luteolin was
reported to reduce IS to varying degrees in different models and
by different measurement methods.

The anti-apoptosis effect of luteolin as the end-stage outcome
of the physiological impact is regulated by various mechanisms.
Of these, the phosphoinositide 3-kinase (PI3K)/AKT pathway
is considered to participate in cell survival (51). Yet, the high
ratio of Bcl-2/Bax was negatively correlated with vulnerability to
activation of apoptosis pathways (52, 53). The phosphorylation
of AKT regulated by luteolin increased the ratio of Bcl-2/Bax
and decreased the proportion of TUNEL-positive cells (22, 27).
Luteolin also up-regulated the expression of the anti-apoptotic
proteins FGFR2 and LIF, which was related to the activation of
Akt signalling (29). The MIRI-induced decrease in sarcoplasmic
reticulum Ca2+-ATPase (SERCA2a) activity was facilitated by
luteolin partly through the PI3K/Akt signaling pathway. Luteolin
activation of the PI3K/Akt pathway was reported to exert
antioxidation effects in a simulated ischemia-reperfusion model
(32), while the cardioprotective effects of luteolin were partly
reversed by the PI3K inhibitors LY294002 and wortmannin (22,
26, 29).

C-Jun N terminal kinase (JNK), extracellular signal-
regulated kinases (ERKs), and P38 are downstream effectors
of the mitogen-activated protein kinase (MAPK) pathway
(54). Members of the MAPK family regulate apoptosis of
cardiomyocytes. Wu et al. (31) found that luteolin and the
JNK-inhibitor SP600125 both attenuated cardiomyocyte

apoptosis and that the JNK and ERK1/2 pathways have opposing
relationships, as luteolin-mediated down-regulation of JNK
and up-regulation of ERK1/2 had an anti-apoptotic effect
in an MIRI model. Activated ERK1/2 mediated SERCA2a
activity, while this positive effect was abolished by the ERK1/2
inhibitor PD98059 (31). During the reperfusion period, activated
P38 MAPK resulted in Ca2+ overload and an imbalance in
mitochondrial transmembrane potential. Then, the impaired
mitochondria released pro-apoptosis proteins, which led to
the loss of cardiomyocytes (40). Wei et al. (30) suggested that
luteolin enhanced peroxiredoxin II activation to ameliorate
mitochondrial dysfunction. Luteolin possesses an anti-apoptosis
effect and improves SERCA2a activity, equal to that of the
P38-inhibitor SB203580 (40). Yu et al. (35) demonstrated that
luteolin via reactive oxygen species (ROS) activation of the
MAPK pathways inhibited cardiomyocyte apoptosis in an
MIRI model.

The anti-apoptosis effects of luteolin are also involved other
mechanisms. For example, Bian et al. (20) suggested that
luteolin exerted apoptotic protective effects through miR-208b-
3p regulation of small interfering RNA Ets1 expression. SUMO1,
a SUMO isoform, was found to convey cardioprotective effects
in an MIRI model and luteolin improved SUMO1 expression
to reduce cardiomyocyte apoptosis (21), while upregulating
the expression of the transcription factor Sp1 to reduce
cardiomyocyte death (23).

Oxidative Stress and Ca2+ Overload
During myocardial infarct, myocardiocyte metabolism switches
to anaerobic respiration, which leads to the accumulation of
lactate and Ca2+ overload, while the opening of mitochondrial
membrane permeability transition pores (MPTPs) is Pre-vented
by the acidic condition. During reperfusion, ROS generated from
reactivation of the electron transport chain, xanthine oxidase,
and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase prompts the opening of MPTPs and causes sarcoplasmic
reticulum dysfunction. With the elimination of lactic acid,
restoration of the mitochondrial membrane potential results in
Ca2+ overload in the mitochondria, which further induces the
opening of the MPTPs (55). Reoxygenation of the heart inflicts
significantmyocardial injury throughout the ischemic region that
exceeds the damage caused by ischemia alone (56). SERCA2a,
an ATP-dependent enzyme, pumps Ca2+ into the sarcoplasmic
reticulum to prevent Ca2+ overload.

Superoxide radicals combined with NO produce
peroxynitrite, which results in myocardial dysfunction (57).
Liao et al. (24) found that luteolin down-regulates the expression
of inducible nitric oxide synthase (NOS), but had no effect on
the expression levels of endothelial NOS (eNOS) and neuronal
NOS. However, in a rat model of diabetes, eNOS was activated
by luteolin to diminish oxidative stress induced by MIRI (32, 33).
Xiao et al. (32) suggested that luteolin could activate eNOS
to trigger antioxidative effects mediated by nuclear factor
E2-associated factor 2 (Nrf2), which attenuated MIRI in diabetic
rats. Moreover, the anti-oxidative effect was abolished by the
NOS inhibitor L-NAME and the Nrf2 inhibitor brusatol. Nrf2,
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as the key molecule in redox balance, initiates the transcription
of downstream antioxidant enzymes (58). The antioxidative
function of Nrf2 was also improved by luteolin-mediated
activation of the PI3K/Akt pathway. With a similar mechanism,
Zhang et al. (36) revealed that luteolin attenuated oxidative
injury through the PI3K/Akt pathway. ROS activation of
members of the MAPK family was inhibited by luteolin to reduce
MIRI (32, 36). In addition, luteolin enhanced the expression of
the antioxidant protein peroxiredoxin II (30).

Inflammation and Hemodynamics
The release of ROS, cytokines, and complement results in
the accumulation of neutrophils after the onset of myocardial
reperfusion (55). The luteolin-mediated anti-inflammatory effect
focuses on the inflammasome NLRP3/NF-KB pathway. Luteolin
generally enhances the expression of various upstream binding
factors, such as sirt1 and Toll-like receptor 4, to reduce
inflammatory injury inMIRI (38). Hemodynamics can reflect the
systolic and diastolic functions of heart. Effective cardiomyocyte
contraction and relaxation can not be separated from calcium
recycling. SERCA2a modulate cardiac cytosolic Ca2+ levels,
SERCA Overexpression attenuates cardiac microvascular I/R
injury through mitochondrial quality control (59, 60). The
mitochondrial calcium uniporter (MCU) transports free Ca2+

into the mitochondrial matrix, maintaining Ca2+ homeostasis,
thus regulates the mitochondrial morphology and energy supply
(61). SERCA2a Overexpression inhibite the overactive MCU
to reduce MIRI (62). Luteolin enhances SERCA2a activity via
sumoylation of lysine 585 and Sp1 upregulation (21, 23) to
improve hemodynamics in MIRI.

CONCLUSIONS

The results of the present meta-analysis suggest that luteolin
can act on different signaling pathways to reduce MIRI in
animal models. As possible mechanisms, luteolin exerts anti-
apoptosis, anti-oxidation, and anti-inflammation effects against
MIRI. The main cardioprotective benefits of luteolin are the
reduction of myocardial IS and the amelioration of intracardiac
hemodynamics. There were some limitations to the methodology
and study quality that reduce the strength of this evidence.
Nonetheless, systematic inspection of these MIRI models
provides preclinical evidence of the benefits of luteolin for clinical
treatment of MIRI.
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Supplementary Figure 3 | 3.1:trim and filling. (A) IS, (B) LVSP, (C) LVEDP, (D)

+dp/dtmax, (E) -dp/dtmax, (F) apoptotic rate, (G) MDA, (H) TNF-α. 3.2: funnel
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(g) MDA, (h) TNF-α.

Supplementary Figure 4 | Pooled estimates of myocardial infarct size for luteolin

vs. vehicle in different MIRI models. Model of LAD ligation: the model was

constructed by the left anterior descending coronary artery ligation. Model of

global ischemia: heart was subjected to global no-flow ischemia without pacing.

Supplementary Figure 5 | Sensitivity analysis.

Supplementary Figure 6 | Sensitivity analysis.

Supplementary Figure 7 | Sensitivity analysis.

Supplementary Table 1 | Regression analysis in the model of LAD ligation and

global ischemia.
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