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Abstract: Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) regulates mitochon-
drial DNA replication and mitochondrial gene expression by interacting with several transcription
factors. White adipose tissue (WAT) mainly comprises adipocytes that store triglycerides as an
energy resource and secrete adipokines. The characteristics of WAT vary in response to systemic
and chronic metabolic alterations, including obesity or caloric restriction. Despite a small amount of
mitochondria in white adipocytes, accumulated evidence suggests that mitochondria are strongly
related to adipocyte-specific functions, such as adipogenesis and lipogenesis, as well as oxidative
metabolism for energy supply. Therefore, PGC-1α is expected to play an important role in WAT. In
this review, we provide an overview of the involvement of mitochondria and PGC-1α with obesity-
and caloric restriction-related physiological changes in adipocytes and WAT.
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1. Introduction

Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1 α (PGC-1α) is
a master transcriptional cofactor for mitochondrial biogenesis. PGC-1α was discovered
as a PPARγ-interacting protein that is expressed preferentially in brown adipose tissue
(BAT) [1,2]. PGC-1α binds to transcription factors, such as nuclear respiratory factor
(NRF)-1, NRF-2, and estrogen-related receptor α (ERRα), thereby coactivating downstream
genes [3–6]. NRF-1 and NRF-2 transcriptionally regulate various mitochondrial genes
involved in the respiratory chain, and replication and transcription of mitochondrial DNA
(mtDNA), which encodes part of proteins comprising respiratory chain complexes [5].
ERRα modulates β-oxidation and the tricarboxylic acid cycle, as well as mitochondrial
biogenesis [6–8]. Among the downstream mediators of PGC-1α, transcription factor A
mitochondria (TFAM) is a major factor responsible for mitochondrial biogenesis [9]. TFAM
coats and stabilizes individual mtDNA molecules and also binds to a specific site of mtDNA,
which in turn induces promoter activity during initiation of transcription [10]. Therefore,
TFAM is required for replication and transcription of mtDNA. In addition to mitochondrial
biogenesis, PGC-1α is involved in responses to oxidative stress via induction of sirtuin-
3 (SIRT3), which is a member of the SIRT family. SIRT3 is a deacetylase that localizes
within the mitochondrial matrix and plays a pivotal role in β-oxidation and antioxidative
reactions by modulating acetylation levels of mitochondrial enzymes (e.g., long-chain
acyl coenzyme A dehydrogenase and manganese superoxide dismutase) [11,12]. PGC-1α
activates transcription of the Sirt3 gene through binding of ERRα to the Sirt3 proximal
promoter [13]. These findings suggest that PGC-1α contributes to not only mitochondrial
biogenesis, but also to metabolic pathways and oxidative stress responses.
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Obesity, which is characterized by excess body weight or fat mass due to over-nutrition,
causes disturbances in the metabolic, endocrine, and immune systems in the whole body.
These obesity-induced abnormalities pose serious health problems, including type 2 dia-
betes mellitus (T2DM), non-alcoholic fatty liver disease, and cardio- and cerebrovascular
diseases [14–16]. Obesity induces many cellular stresses and inflammatory signaling
pathways by excess or ectopic accumulation of fat in various tissues, resulting in insulin
resistance and hepatic steatosis [16,17]. Moreover, emerging evidence has indicated a
relationship of mitochondrial dysfunction with oxidative stress and systemic inflammation
in the obese condition [18].

Caloric restriction (CR) is a reproducible and simple experimental manipulation that
delays onset of numerous age-associated pathophysiological changes and prolongs the
median and maximum lifespan in various laboratory models (e.g., yeast, worms, and
mammals) [19,20]. A recent report showed that CR exerted beneficial effects on non-
human primates, which suggested the effectiveness of CR in humans [21]. Therefore,
CR mimetics, which mimic the underlying mechanisms of the beneficial effects of CR,
have attracted attention [22]. Previous studies have described that beneficial effects of
CR including various physiological and molecular mechanisms [23]. These mechanisms
include enhancement of mitochondrial biogenesis, suppression of inflammation, mitigation
of oxidative stress, suppression of growth hormone/insulin-like growth factor (GH/IGF-1)
signaling, mechanistic target of rapamycin complex 1 activity, and activation of sirtuin. Of
note, several of these mechanisms are directly or indirectly relevant to mitochondria. In fact,
we have shown that mitochondrial regulation in white adipose tissue (WAT) contributes to
the beneficial effects of CR [24,25].

WAT largely comprises adipocytes, but also comprises adipose-derived stem cells
(ADSC), fibroblasts, macrophages, and other immune cells [26]. Adipocytes store excess en-
ergy in the form of triglycerides (TG). Adipocytes are endocrine cells that secrete adipokines,
such as adiponectin, leptin, and pro-inflammatory cytokines [26,27]. Adiponectin is a rep-
resentative beneficial adipokine with the ability to improve insulin resistance by activating
AMP-activated protein kinase (AMPK) in skeletal muscle and the liver [26,28]. Leptin
participates in diverse physiological processes, including energy homeostasis, reproduc-
tion, angiogenesis, and the immune system [29]. Pro-inflammatory adipokines, such as
interleukin-6, tumor necrosis factor α (TNFα), serpin family E member 1, and monocyte
chemoattractant protein-1, cause inflammatory reactions and insulin resistance [30–33]. The
secretory profile and characteristics of WAT vary depending on the size of adipocytes. Hy-
pertrophic adipocytes with a large amount of TG, which are observed in obese individuals,
preferentially secrete pro-inflammatory adipokines, thereby inducing local inflammation
and insulin resistance [34,35]. In contrast, small adipocytes with a modest amount of TG,
which are frequently observed in CR models, secrete more adiponectin and less monocyte
chemoattractant protein-1 and TNFα, leading to improved insulin sensitivity in the whole
body [36]. The findings mentioned above suggest that obesity- or CR-associated differences
in the characteristics of WAT greatly contribute to systemic metabolism.

As mentioned above, mitochondrial regulation is closely implicated in obesity-related
pathology and the effects of CR, supporting the relationship between PGC-1α and metabolic
states in WAT. Despite many reviews of PGC-1α, few papers currently focus on and
comprehensively highlight its link with metabolic states. Therefore, to provide novel
insights into the physiological significance of PGC-1α, this review outlines the functions of
mitochondria and the involvement of PGC-1α with obesity- and CR-related physiological
changes in WAT, which is a tissue involved in whole-body metabolism.

2. Mitochondria and PGC-1α in WAT during Obesity or CR
2.1. Overview of Mitochondrial Roles in WAT

Adipocytes in WAT contain small and elongated mitochondria in the narrow cy-
toplasmic space, resulting from a large, unilocular lipid droplet formed by TG [37,38].
White adipocytes have been typically suspected to have a small number of mitochon-
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dria [37]. Some previous reports and reviews have described the relationship between
mitochondria and white adipocyte-specific functions, such as adipocyte differentiation
(or adipogenesis), lipid homeostasis, and insulin sensitivity [39,40]. Wilson-Fritch and
colleagues showed that in 3T3-L1 cells (mouse fibroblasts with the ability to differentiate
into adipocytes under specific conditions), mitochondrial capacity is activated depending
on differentiation of adipocytes [41]. This finding could be explained by the requirement
of a large amount of energy for the differentiation process of adipocytes [41]. During
differentiation of adipocytes, transcriptional factors, including CCAAT/enhancer binding
proteins, ERRα, and PPARγ, are sequentially induced, which in turn promote maturation
of adipocytes [42–44]. Interestingly, PGC-1α is also upregulated in fully differentiated
3T3-L1 adipocytes, indicating an association between adipogenesis and mitochondrial
biogenesis [44]. This is supported by the finding that some mouse models with adipose
tissue-specific deletion of mitochondria-related factors show lipoatrophy or lipodystrophy,
which represent loss of WAT [45].

Mitochondria generally contribute to the regulation of lipid metabolism via β-oxidation
as follows: Fatty acid (FA) is transported into mitochondria through carnitine palmitoyl
transferases in the form of acyl-coenzyme A (acyl-CoA) [46]. In the mitochondrial ma-
trix, acyl-CoAs are oxidized into acetyl-CoAs, which are eventually metabolized in the
tricarboxylic acid (TCA) cycle [46]. Furthermore, mitochondria reportedly provide the key
factors for de novo synthesis of both FA and TG, including citrate, glycerol 3-phosphate
(G3P), and nicotinamide adenine dinucleotide phosphate (NADPH) [47,48]. In nutrient-rich
conditions, citrate, which is an intermediate of the TCA cycle in mitochondria, is shuttled
into the cytosol through the citrate carrier [49]. Citrate is then converted into oxaloacetate
and acetyl-coenzyme A by ATP-citrate lyase [50]. Subsequently, acetyl-CoA is used for FA
synthesis [50]. In fact, PGC-1α reportedly induces lipogenesis by the production of citrate
in tumors, thereby promoting tumor growth [51]. In addition, oxaloacetate in the cytosol is
converted into phosphoenolpyruvate (PEP) by PEP carboxykinase (PEPCK), resulting in
G3P formation [52,53]. G3P is dephosphorylated into glycerol, which is esterified with FA
to form TG [52]. In addition to citrate and oxaloacetate, malate is an intermediate of the
TCA cycle, which is important for lipogenesis. Malate is transported into the cytosol and
converted into pyruvate by malic enzyme [54]. In this process, NADPH, a coenzyme for
FA synthesis, is generated [55]. These findings underscore that mitochondria regulate both
lipid metabolism and lipogenesis.

Insulin sensitivity is closely involved in lipogenesis via transcriptional regulation of
FA synthesis-related factors in white adipocytes [56,57]. The following studies are exam-
ples indicating the association between mitochondria and insulin sensitivity. Wang and
colleagues showed that inhibitors of mitochondrial respiratory complexes or knockdown
of Tfam attenuate insulin signaling in WAT [58]. However, primary adipocytes established
from subcutaneous WAT of obese patients have been shown to exhibit increased mito-
chondrial respiration despite their insulin resistance [59]. The authors described that this
increase is a compensatory reaction for attenuated glucose metabolism due to insulin
resistance [59]. Therefore, although it remains to be determined whether mitochondria are
directly or indirectly associated with insulin sensitivity, mitochondria may participate in
lipogenesis via the regulation of insulin signaling in addition to the supply of metabolic
intermediates.

2.2. Function and Regulation of PGC-1α in Obese WAT

Obesity impairs mitochondrial biogenesis and oxidative metabolism in WAT [41].
White adipocytes isolated from ob/ob mice or db/db mice (genetic obesity models) show
a comprehensive decrease in the expression of genes encoding mitochondrial proteins and
a decline in oxygen consumption and citrate synthase activity [42,60,61]. In agreement
with the results of experimental animal models, several studies have provided evidence
that WAT in humans with obesity shows low levels of mtDNA and proteins comprising
mitochondrial respiratory complexes [41,62–64]. A study showed that PGC-1α was de-
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creased in WAT of obese rodents, and Nrf1 and Tfam mRNA expression, protein abundance
of cytochrome c oxidase subunit IV, mtDNA levels, and mitochondrial density were also
downregulated [65]. This study also identified TNFα as a cause of obesity-induced de-
crease in PGC-1α expression and mitochondrial dysfunction [65]. Similarly, human studies
have shown that obesity attenuates PGC-1α expression in WAT [63,64,66,67]. Furthermore,
Kleiner and colleagues found that adipose tissue-specific Pgc-1α knockout (KO) mice fed a
high-fat diet displayed decreased levels of genes involved in oxidative phosphorylation
and β-oxidation, impaired glucose tolerance, and insulin resistance [68]. These findings
suggest that downregulation of PGC-1α in WAT is associated with obesity-related distur-
bance of whole-body metabolism, although PGC-1α is endogenously expressed at low
levels in WAT [2].

Adipocytes observed in obese WAT generally show an increased cell size (hyper-
trophy), rather than cell number (hyperplasia) [41]. As described above, hypertrophic
adipocytes trigger insulin resistance. Conversely, hyperplasia of WAT represents the
presence of many small adipocytes, which is associated with improvement of insulin
sensitivity [69]. Hyperplasia is associated with the induction of adipocyte differentiation,
namely adipogenesis [41]. Because of the relationship between adipogenesis and mitochon-
drial biogenesis, mitochondrial regulation by PGC-1α is predicted to be involved in the
pathology of obesity via morphological changes in white adipocytes. However, markers of
white adipocyte differentiation remain unchanged in WAT of adipose tissue-specific Pgc-1α
KO mice [68]. Hypertrophy and hyperplasia are known to be regulated by a complicated
paracrine mechanism between ADSCs and mature adipocytes [70]. Additionally, to the best
of our knowledge, no study has shown direct participation of PGC-1α in white adipocyte
differentiation. PGC-1α is widely accepted as a marker of transdifferentiation of white
into brown adipocytes (known as “beiging”) [71]. Therefore, mitochondrial biogenesis
regulated by PGC-1α may play an important, but not necessary, role in the differentiation
of white adipocytes.

Negative regulators of PGC-1α, including receptor-interacting protein 140 (RIP140),
p53, DNA methyltransferase 3 (DNMT3), and MYB binding protein (p160) 1a (MYBBP1a)
and Parkin interacting substrate (PARIS), are considered to be responsible for obesity-
induced downregulation of PGC-1α [72]. Hence, we explain the relationship between each
negative regulator and PGC-1α in the following paragraphs.

RIP140 is a coregulator of a number of nuclear receptors and several other transcrip-
tion factors in various tissues and organs [73,74]. RIP140 interacts with PGC-1α and
negatively regulates its transcriptional activity [74]. Leonardsson and colleagues showed
that Rip140 expression was increased in relation to differentiation into adipocytes in 3T3-L1
cells [75]. Subsequently, Powelka and colleagues reported that RIP140 suppressed oxidative
metabolism and mitochondrial biogenesis in adipocytes [76]. Moreover, RIP140 depletion
has been shown to prevent obesity-induced glucose intolerance and insulin resistance in
mice [75,76]. These findings indicate the substantial contribution of RIP140 to the pathology
of obesity via downregulated PGC-1α in WAT.

The tumor suppressor p53 is responsive to various stresses, and accumulated evidence
has also strongly suggested that p53 greatly contributes to mitochondrial regulation [77,78].
Our laboratory has identified a suppressive effect of p53 on PGC-1α expression levels and
mtDNA content in 3T3-L1 adipocytes, but not in C2C12 myocytes [79]. Additionally, Maser
and colleagues found that telomere dysfunction-induced p53 repressed PGC-1α expression,
which led to mitochondrial dysfunction [80]. Several p53-deficient mouse models have been
reported to be resistant to obesity and show upregulated PGC-1α expression. Fat-specific
p53 KO mice show improved insulin sensitivity by preventing senescence-like features
in WAT [81]. A research group described that PGC-1α and mitochondrial genes were
increased in subcutaneous WAT of systemic p53 KO mice, which showed low WAT weight
and improved glucose tolerance [82]. Similarly, in vivo transient repression of p53 by the
CreERT2/loxP system or administration of pifithrin-α (inhibitor of p53 transcriptional
activity) induce PGC-1α expression in WAT, and reduce the respiratory exchange ratio [83].
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DNMT3 plays a central role in epigenetic modifications of the genome via DNA methy-
lation [84]. Barrès and colleagues showed that, in skeletal muscle from patients with T2DM,
DNMT3-related non-CpG hypermethylation occurred in the PGC-1α promoter, which re-
sulted in decreased PGC-1α gene expression and mtDNA levels [85]. Furthermore, DNMTs
are increased in WAT in patients with obesity, thereby inducing the methylation rate of
the promoter region of the Krüppel-like factor 4 (KLF4) gene (an anti-inflammatory factor)
and suppressing this expression [86]. These studies suggest that DNMT3 is associated
with obesity-related downregulation of PGC-1α expression and mitochondrial function in
adipocytes or WAT, despite no direct evidence. MYBBP1a represses transcriptional activity
of PGC-1α by direct interaction in skeletal muscle [87]. PARIS, which is a transcriptional
factor known as zinc-finger protein 746, attenuates PGC-1α expression by binding to insulin
responsive sequences in the PGC-1α promoter region [88]. Whether MYBBP1a and PARIS
are expressed in adipocytes or WAT remains to be evaluated. However, these reports raise
the possibility of the contribution of MYBBP1a or PARIS to a decrease in PGC-1α in obese
WAT.

2.3. Function and Regulation of PGC-1α in WAT during CR

Studies that have analyzed involvement of CR with mitochondria or PGC-1α in WAT
are currently limited. In fact, many studies have addressed the effects of CR on mitochon-
drial biogenesis and efficiency in skeletal muscle, brain, or BAT in rodent models [89].
However, our proteome analysis showed that CR enhanced mitochondrial biogenesis in
WAT, but not in BAT [90]. In agreement with our result, a microarray study performed
by Linford and colleagues showed CR-induced upregulation of genes involved in mito-
chondrial oxidative phosphorylation in WAT [91]. Nisoli and colleagues reported that CR
increased Pgc-1α and mtDNA levels in WAT [92]. Similarly, Pardo and colleagues showed
that CR-induced upregulation of mitochondrial genes in WAT depended on PGC-1α and
PGC-1β using double-KO mice [93]. Another study also showed that CR was more likely to
upregulate mRNA levels of thermogenic genes and Pgc-1α in WAT than in BAT, which rep-
resented induction of beiging [94]. These studies suggest the importance of mitochondrial
regulation and PGC-1α in WAT for the effects of CR.

The suppression of negative regulators of PGC-1α is likely to be a mechanism involved
in CR-upregulated PGC-1α expression. For example, CR reduced TNFα gene expression
levels in WAT [95]. Likewise, transcriptome analysis of WAT from CR mice showed
p53 gene expression was suppressed by CR [96]. Additionally, Wang and colleagues
demonstrated that aging induced RIP140 expression, while CR prevented this induction
in WAT [97]. The authors also revealed that Rip140 KO female mice exhibit an extended
lifespan [97]. These studies support the proposal that the suppression of negative regulators
can contribute to CR-upregulated PGC-1α expression and mitochondrial biogenesis in
WAT.

Among the positive regulators of PGC-1α, SIRT1 and AMPK are representative CR-
related mediators [98,99]. AMPK is activated in response to an energy expenditure-induced
increase in the AMP/ATP ratio, thereby assisting in catabolic processes to supply en-
ergy [100]. AMPK enhances the transcriptional activity of PGC-1α by promoting its
phosphorylation, and also upregulates Pgc-1α, resulting in activation of mitochondrial
metabolism and biogenesis [101,102]. SIRT1 is an NAD-dependent deacetylase that greatly
contributes to the beneficial effects of CR [103,104]. SIRT1 is involved in mitochondrial bio-
genesis by stimulating activity of PGC-1α via its deacetylation, despite the controversy over
whether this involvement is critical for regulation of PGC-1α [105–108]. SIRT1-induced
deacetylation of PGC-1α is also regulated by AMPK [109]. The AMPK/SIRT1/PGC-1α
axis plays a central role in CR-related regulation of mitochondrial biogenesis in various
organs and tissues, and is accepted as a main target of CR mimetics [22]. Resveratrol,
which is a natural polyphenol with the ability to activate SIRT1, exerts beneficial effects on
metabolic disorders as shown by some clinical trials [110]. Notably, resveratrol fails to in-
crease mitochondrial gene levels in skeletal muscle of muscle-specific Pgc-1α KO mice, but
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there are systemic effects of this compound on energy expenditure [111]. Resveratrol also
upregulates Pgc-1α expression and lipid metabolism-related genes in WAT [111]. Moreover,
several reviews have described that natural polyphenols induce beiging of WAT [112–114].
Taken together, these studies suggest that activation of the AMPK/SIRT1/PGC-1α axis in
WAT is likely to be involved in the systemic metabolic effects of CR.

In addition to the AMPK/SIRT1/PGC-1α axis, we have recently identified sterol
regulatory element-binding protein 1c (SREBP1c) and fibroblast growth factor 21 (FGF21)
as WAT-specific mediators of CR-induced mitochondrial biogenesis [25,115]. Suppression
of GH/IGF-1 signaling is a well-known and major mechanism of the beneficial effects
of CR [116]. Although animal models with suppressed GH/IGF-1 signaling generally
live longer, interestingly, CR can further extend longevity in these animals [117,118]. This
finding indicates that GH/IGF-1 signaling-independent mechanisms are involved in the
effects of CR [117,118]. Our microarray analysis of WAT in ad libitum-fed rats, CR rats, and
dwarf rats with suppressed GH/IGF-1 signaling showed that CR induced expression of
genes involved in FA synthesis and SREBP1c [119]. SREBP1c is a master transcriptional
factor of these genes. To evaluate the contribution of SREBP1c to the effects of CR, we
examined the phenotypes of Srebp-1c KO mice. In CR conditions, Srebp-1c KO mice showed
loss of upregulation of genes involved in FA synthesis in WAT and suppression of extension
of the lifespan [24]. In this study, we discovered that CR-induced upregulation of Pgc-1α
and mtDNA levels were suppressed in WAT of Srebp-1c KO mice. Consistently, Srebp-1c
KO mouse embryonic fibroblasts show decreased Pgc-1α and mtDNA levels, suggesting
SREBP-1c-dependent regulation of Pgc-1α [24]. Furthermore, we found that SREBP-1c
directly bound to the Pgc-1α promoter region, thereby activating its gene expression [24].
Our recent study also showed increased levels of PGC-1α in Srebp-1c-overexpressing 3T3-
L1 adipocytes [120]. These findings suggest that SREBP-1c is a direct inducer of PGC-1α
expression and mitochondrial biogenesis.

FGF21 is a member of the endocrine FGF superfamily of which expression is highest
in the liver [121]. However, Fgf21 is expressed in other tissues or organs, such as WAT,
BAT, and skeletal muscle [122]. Circulating FGF21, which is mostly secreted from the liver,
binds to FGF receptor (FGFR) and the beta-klotho (KLB) receptor complex in target tissues,
which in turn regulates glucose and lipid metabolism [123]. Notably, FGF21 signaling
induces Pgc-1α expression in adipocytes [124]. We recently reported that CR upregulated
Fgf21 and Klb expression, as well as glucose transporter 1 and Pgc-1α expression, which
are downstream genes of FGF21 signaling, in rat WATs [115]. These genes were also
increased in Fgf21-overexpressing adipocytes [115]. Subsequently, we showed a decrease
in Pgc-1α levels in Fgf21 KO mouse embryonic fibroblasts [120]. These results suggest
that FGF21 contributes to CR-induced upregulation of Pgc-1α in WAT probably via an
autocrine mechanism. Additionally, we found that Fgf21 levels were upregulated in Srebp-
1c-overexpressing adipocytes and downregulated in WAT of Srebp-1c KO mice [120]. This
observation is consistent with a study of Véniant and colleagues who found that fat-specific
SREBP-1c transgenic mice showed an increase of Fgf21 in WAT [125]. Therefore, SREBP-1c
likely increases PGC-1α expression not only directly, but indirectly, via FGF21.

3. Discussion

Accumulated evidence has shown functional changes of mitochondria in WAT in
relation to the systemic metabolic state, including obesity and CR. The cause-and-effect
relationship between PGC-1α and the influence of obesity or CR on WAT is complicated.
We aimed to provide insight into the physiological significance of alterations in PGC-1α in
WAT as follows.

Obesity is regarded as an over-nutrition-induced state. In the early phase of obesity,
adipogenesis and lipid anabolism need to be extremely induced to metabolize excess
nutrition, probably resulting in over-activation of mitochondria in WAT. The persistence
of such a condition in mitochondria is generally considered to trigger production of more
reactive oxygen species (ROS), which are byproducts of oxidative phosphorylation. In
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fact, several studies have shown that obesity upregulates mitochondrial ROS levels in
WAT [126,127]. At low levels, ROS play an important role in insulin signal transduction
and differentiation of adipocytes [128,129]. In contrast, higher ROS levels cause oxidative
stress, mitochondrial dysfunction, and inflammation [130]. Therefore, mitochondria are
damaged by being exposed to accumulated ROS depending on the progress of obese
conditions. ROS also induce mutations in mtDNA [131]. Although PGC-1α is involved in
not only mitochondrial biogenesis, but improvement of oxidative stress, obesity-induced
downregulation of PGC-1α may represent a defensive reaction to accumulation of abnormal
mtDNA that is likely to further exacerbate mitochondrial function.

CR is regarded as a chronic and mild energy shortage condition. CR significantly en-
hances lipid catabolism in the whole body, which allows more efficient systemic metabolism
to compensate for an energy shortage [132]. A previous study and our study suggest that
WAT contributes to this metabolic shift by promoting de novo synthesis of lipids, which
are a more efficient source of energy than carbohydrates [25,132]. Considering that mito-
chondria play an important role in lipogenesis as mentioned above, CR-induced PGC-1α
in WAT may represent enhanced de novo lipogenesis, rather than lipid catabolism by β-
oxidation. This notion is supported by the fact that SREBP-1c, which is a master regulator
of FA synthesis, positively regulates Pgc-1α expression in WAT [24,25].

At present, the above-mentioned topics remain to be fully clarified. In this manuscript,
we review findings mainly based on studies that focus on the physiological changes from
normal conditions to obese or CR conditions. However, there are many studies that
demonstrate CR-related changes in obese conditions [133–137]. Investigation of the effects
of CR on obesity physiology is important for evaluating the clinical significance of CR.
Thus, further accumulation of relevant findings will aid in addressing the cause-and-effect
relationship between PGC-1α and obesity or CR.

Methodological limitations of the current research mentioned in this review include
phenotypic differences between systemic and conditional KO mice. It is conceivable that
metabolic alterations are especially susceptible to these differences. For instance, fat-specific
conditional KO mice may provide experimental models suitable for more accurate analysis
of targeted genes. Currently, the general fat-specific KO mice are not WAT-specific deficient
models, because adiponectin-Cre, the transgene usually used to generate fat-specific KO
models, works in both WAT and BAT [138]. Hence, the development of a technical method
that allows conditional gene deletion to specifically target WAT is desired.

Regulation of mitochondrial dynamics is attributed to not only mitochondrial biogen-
esis, which is enhanced by PGC-1α, but also mitochondrial degradation by autophagic
clearance, namely “mitophagy” [139]. Mitophagy is implicated in alterations in characteris-
tics of adipocytes, especially beiging [139]. Therefore, a balance of mitochondrial biogenesis
and mitophagy is probably important for maintenance of mitochondrial function in WAT,
and regulation of PGC-1α may be involved in this balance.

In conclusion, much of the evidence introduced in this review strongly indicates that
PGC-1α is a major player in regulating mitochondrial biogenesis or function in WAT in
response to a systemic metabolic state (Figure 1). Further investigation of WAT- or white
adipocyte-specific function of PGC-1α will lead to identification of the novel mechanisms
underlying the relationship between mitochondria and obesity- or CR-related physiological
changes.
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This triggers a decrease in the amount of mtDNA and expression of mitochondrial genes in WAT, resulting in obesity-
related pathology (e.g., insulin resistance and glucose intolerance). In WAT, during caloric restriction (CR), PGC-1α is 
transcriptionally upregulated by sterol regulatory element-binding protein 1c (SREBP-1c) and via the SREBP-1c-fibroblast 
growth factor 21 (FGF21) axis, and post-translationally activated by AMP-activated protein kinase (AMPK) and Sirtuin 1 
(SIRT1). This induces fatty acid (FA) synthesis, in addition to increasing mtDNA and mitochondrial gene expression in 
WAT, resulting in efficient energy metabolism in the whole body. 
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Figure 1. Regulation of PGC-1α in white adipose tissue (WAT) and its impact on whole-body
metabolism. In obese WAT, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)
is transcriptionally silenced by p53 and tumor necrosis factor α (TNFα), and suppressed at the
activity level by interacting with receptor-interacting protein 140 (RIP140). This triggers a decrease in
the amount of mtDNA and expression of mitochondrial genes in WAT, resulting in obesity-related
pathology (e.g., insulin resistance and glucose intolerance). In WAT, during caloric restriction (CR),
PGC-1α is transcriptionally upregulated by sterol regulatory element-binding protein 1c (SREBP-1c)
and via the SREBP-1c-fibroblast growth factor 21 (FGF21) axis, and post-translationally activated by
AMP-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1). This induces fatty acid (FA) synthesis,
in addition to increasing mtDNA and mitochondrial gene expression in WAT, resulting in efficient
energy metabolism in the whole body.
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