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ABSTRACT

Background. Extensive knowledge on the genetic characterization of marine organisms
has been assembled, mainly concerning the spatial distribution and structuring of
populations. Temporal monitoring assesses not only the stability in genetic composition
but also its trajectory over time, providing critical information for the accurate forecast
of changes in genetic diversity of marine populations, particularly important for both
fisheries and endangered species management. We assessed fluctuations in genetic
composition among different sampling periods in the western Portuguese shore in
three fish species.

Methods. White seabream Diplodus sargus, sand smelt Atherina presbyter and shanny
Lipophrys pholis were chosen, because of their genetic patterns in distinct ecological
environments, insight into historical and contemporary factors influencing population
effective size (N, ), and degree of commercial exploitation. Samples were obtained near
Lisbon between 2003 and 2014 and screened for genetic variation with mitochondrial
and nuclear markers. Analyses included genealogies, genetic diversities, temporal
structures and contemporary N,.

Results. For mtDNA no temporal structure was detected, while for nDNA significant
differences were recorded between some sampling periods for the shanny and the
sand smelt. Haplotype networks revealed deep genealogies, with various levels of
diversification. The shanny revealed a smaller N,/generation when compared to
the other species, which, in turn, revealed no evidence of genetic drift for most
study periods. These results highlight the fact that temporal variations in genetic
pool composition should be considered when evaluating the population structure of
fish species with long distance dispersal, which are more vulnerable to recruitment
fluctuations.

Subjects Aquaculture, Fisheries and Fish Science, Evolutionary Studies, Marine Biology,
Population Biology

Keywords Effective population size , mtDNA, nDNA, Temporal structure, Temporal stability,
Temporal method

INTRODUCTION

Over the last four decades, we have assembled extensive knowledge on the genetic
characterization of marine organisms, mainly concerning the spatial distribution and
structuring of populations (e.g., Knutsen et al., 2007; Plank et al., 2010; Robalo et al., 2013;
Riginos et al., 2019; Verry et al., 2020). With this information, it is now possible and relevant
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to understand how these patterns behave through time. Temporal monitoring assesses the
genetic composition’s stability and trajectories over time, providing critical information
for the accurate forecast of changes in the genetic diversity of marine populations. This
is increasingly important for both endangered and commercially exploited species,
particularly in a context of severe broad-based anthropogenic influences and climate
change (Schwartz, Luikart & Waples, 2007; Cuveliers et al., 2011; Goldstien et al., 2013).

Temporally replicated sampling also allows the estimate of N,—effective population
size, one of the most important parameters in both conservation and evolutionary biology
(Waples & Do, 20105 Hare et al., 2011). From a genetic perspective, N, is defined as the
size of an ideal population that has the same rate of change in allele frequencies and
heterozygosity as the observed population (Wright, 1931). Estimates of N, may be used to
assess the loss of genetic variation, increases in inbreeding, accumulation of mutations, and
effectiveness of selection (Waples ¢~ Do, 2010; Hare et al., 2011). In the short to medium
term, potential reductions in N, may lead to inbreeding depression and/or drastic loss
of genetic diversity (Frankham, Bradshaw & Brook, 2014), particularly in commercially
overexploited populations, populations inhabiting highly degraded ecosystems or located
near the margins of the species distribution. Loss of genetic diversity may take a long
time to recover through mutation, thus limiting or impeding the adaptive response to
environmental changes (Lynch & Lande, 1998).

Several approaches have been developed in the past decades to overcome difficulties
in directly measuring N, in the marine realm (e.g., Wang, 2005; Luikart et al., 2010; Hare
et al., 2011; Wang, Santiago ¢ Caballero, 2016 for a review). Traditional demographic
estimators based on Capture-Mark-Recapture (e.g., Jolly-Seber Model (Jolly, 1965; Seber,
1965), and multinomial approach in open populations (Crosbie ¢» Manly, 1985)) have
been complemented with genetic methods: single-sample N, estimators (e.g., linkage
disequilibrium method (Hill, 1981), heterozygote-excess method (Pudovkin, Zaykin &
Hedgecock, 1996), sibship frequency (Wang, 2009), molecular coancestry (Nomiura, 2008))
and two-sample N, estimators (temporal change in allele frequencies (Waples, 1989; Wang,
2001)).

A frequently used genetic approach to measure contemporary changes in N, has been
the Temporal Method (Nei ¢ Tajima, 1981). This method depends on estimates of allelic
frequencies in two or more points in time, assuming that the observed genetic drift between
two sampling moments will be more pronounced in small populations. Jorde ¢ Ryman
(1995) adjusted the method to incorporate the effects of age structure, demonstrating that
the magnitude of changes in allelic frequencies was also determined by age-specific birth
and survival rates, in addition to the actual size and the sampling interval. Later, these
authors presented a direct extension of the previous model, allowing its application to
temporal samplings of single cohorts born within a given number of years (Jorde ¢~ Ryman,
2007; Jorde, 2012).

Temporal genetic changes in coastal species have been linked to the stochastic
nature of oceanographic conditions, including upwelling systems, fronts, eddies and
sharp discontinuities in physicochemical variables (Selkoe et al., 2006; White et al., 2010).
Moreover, the stability of allele frequencies in natural populations can be deeply influenced
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by extreme events (anthropogenic and/or natural disturbing factors) (Allison et al., 2003).
Additionally, intrinsic biological and ecological factors associated with the species life cycle,
also shape the genetic pattern of marine organisms, namely inshore-offshore spawning,
pelagic larval duration and other early life-history traits (Riginos ¢ Victor, 20015 Galarza et
al., 2009).

Genetic monitoring through time, specifically, the temporal method, has been
successfully employed to evaluate the temporal stability and estimate N, in several
species, including some stocks with high economic significance such as the European
hake Merluccius merluccius (Pita et al., 2017), the brown trout Salmo trutta (Serbezov et
al., 2012) and the Atlantic cod Gadus morhua (Therkildsen et al., 2010). In the present
study, three coastal fishes were chosen to cover a wide range of contrasting environmental
and ecological traits: the white seabream Diplodus sargus L. 1758 (Pisces: Sparidae); the
sand-smelt Atherina presbyter Cuvier 1829 (Pisces: Atherinidae); and the shanny Lipophrys
pholis L. 1758 (Pisces: Blenniidae).

Although they are not threatened—the three species are listed as least concerned—their
population trend is unknown, and they can be locally vulnerable due to various reasons.
The white-seabream is a commercially important species throughout European shores,
wide-spread and locally abundant (Pollard et al., 2014) and, although no major threats have
been identified, some local overfishing may occur and lead to reduction in population size.
The sand-smelt is commercially exploited as life bait for tuna and local coastal development
can be a threat (Gon, 2015). In the long-term, climate change could be a problem for this
temperate species. Finally, no major threats are found across the shanny’s distribution
range (Williams & Craig, 2014). This species can be used as an indicator for pollution
monitoring due to several of its characteristics, including restricted home range and high
sensitiveness to organic contaminants (Lima et al., 2008).

These target species provide crucial insight into historical and present factors influencing
effective population sizes and genetic patterns in distinct ecological environments and
degrees of commercial interest. In this study, we assessed the changes in genetic composition
in different points in time in the western Portuguese shore, using a mitochondrial and
a nuclear marker (chosen due to their extensive use in the past decade). The specific
objectives were: (1) to compare the inter-annual variation in genetic composition and
structure of coastal species with contrasting traits, and (2) to test the temporal model and

its potential for N, estimation in populations with overlapping generations.

MATERIALS & METHODS

Target species

The white seabream Diplodus sargus is a coastal species in the north-eastern Atlantic
ranging from Senegal to the Bay of Biscay, including the archipelagos of Canaries, Madeira
and Azores, Mediterranean and Black Sea (Bauchot ¢~ Hureau, 1986). Eggs are planktonic,
hatching after 3 days at 15-17 °C (Morato et al., 2003). Larvae are also planktonic, settling
after a pelagic larval duration (PLD) of 14-19 days (Di Franco et al., 2011). Adults have
considerable swimming ability and tend to remain near the coast. This is a commercially
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exploited fish, with increasing landings per year in the last 40 years (FAO, 2019). Some
degree of overfishing can be empirically inferred, even if stocks show no evidence of
decline, since larger D. sargus are mainly spotted within Marine Protected Areas. Previous
studies on the genetic structure of the white seabream revealed isolation-by-distance (IBD),
suggesting genetic isolation over large geographic distances (e.g., Domingues et al., 2007).
In contrast, allozyme studies reported significant divergences in cohorts sampled over a
6-month period in a Mediterranean population (Lenfant ¢» Planes, 2002; Planes ¢ Lenfant,
2002).

The sand smelt Atherina presbyter is an inshore marine species, also present in estuaries
and coastal lagoons. Its distribution area comprises the British Isles and southern North
Sea to the Canary Islands and Mauritania (Quignard & Pras, 1986), and has also been
reported in the Azores (Santos, Porteiro ¢ Barreiros, 1997). This species spawns in shallow
waters, the eggs are demersal and attached to vegetation, and larvae hatch after 15-16 days
with 6.7-7.5 mm TL at a temperature of 15 °C (Bamber, Henderson ¢ Turnpenny, 1985).
The larval stage is very short (the hatching larvae are well developed and ready to start
exogenous feeding), which likely restricts passive dispersal. Migratory movements of adult
sand-smelts along exposed shores are probably difficult, although they are active swimmers
in the water column. Our current understanding of gene flow in A. presbyter indicates a
structured population across its range, also showing IBD (Francisco et al., 2009). A previous
mtDNA study revealed temporal stability in the genetic composition of the sand-smelt
from the Portuguese west coast (Francisco ¢ Robalo, 2015).

The shanny Lipophrys pholis is a rocky intertidal resident fish, very common in western
European shores, ranging from Norway to Mauritania and from the Azores and Madeira to
the entrance of the Mediterranean (Zander, 1986). The eggs are demersal, guarded by the
male, and hatch after 16 days with 5.0 mm total length at a temperature of 17 °C (Almada
et al., 1992; Faria et al., 2002). The larvae hatch in a well-developed stage and settle at
13-14 mm TL after a PLD of ca. 29 days at a temperature of 15.5-17.5 °C (Faria et al.,
2002). Juveniles and adults show weak swimming capabilities and, consequently, restricted
movements within the same rocky stretch (Faria, Almada & Goncalves, 1996). Previous
molecular work on the shanny, using both nuclear and mitochondrial markers, strongly
suggests panmixia across its distribution (Frarncisco, Vieira & Almada, 2006; Stefanni et al.,
2006; Francisco et al., 2011). Contrary to A. presbyter, the mtDNA study of L. pholis detected
significant genetic differentiation between some sampling years (Francisco ¢ Robalo, 2015).

Sampling scheme

Individuals of L. pholis, D. sargus and A. presbyter were sampled near Lisbon, in S. Pedro
do Estoril (38°42'N, 9°22'W) and Fonte-da-Telha (38°34'N, 9°11'W) (Table 1) between
2003 and 2014. Both sampling locations are in the vicinity of marine protected areas and
present heterogeneous rocky habitats mixed with sandy patches (e.g., Henriques, Gongalves
& Almada, 1999; Faria & Almada, 2001). They are known to harbour a relevant number
of post-larvae and juveniles for several taxa, being important settlement and recruitment
areas (e.g., Borges et al., 2009; Vinagre et al., 2018). Juveniles of each year were collected in
intertidal rocky pools (L. pholis) and beach channels (D. sargus and A. presbyter). A small
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Table 1 Diversity measures for sampling periods of Diplodus sargus, Atherina presbyter and Lipophrys pholis based on the control region of the
mitochondria: number of sequences (N), number of haplotypes (Nh), percentage of private haplotypes (%Ph), haplotype richness (R), private
allelic richness (pR), haplotype diversity (h), nucleotide diversity () and mean number of pairwise differences (k).

Species Sampling N N, 9%Ph R PR h T k
period

Diplodus sargus 2006 20 19 68.42 20.000 16.008 0.995 0.034 13.058
2009 39 30 70.00 16.441 11.55 0.974 0.032 12.093
2011 27 22 59.09 15.379 9.476 0.983 0.033 12.479
2014 95 73 79.45 16.431 11.643 0.993 0.029 11.135
All 181 120 - - - 0.990 0.031 11.690

Atherina presbyter 2005 34 29 68.96 20.235 12.423 0.986 0.022 8.012
2012 91 63 69.84 17.640 9.352 0.984 0.021 7.780
2013 61 48 68.08 17.973 9.396 0.992 0.021 7.866
2014 95 56 62.50 16.541 7.922 0.975 0.022 8.054
All 281 155 - - - 0.984 0.021 7.931

Lipophrys pholis 2003 30 26 69.23 21.634 13.211 0.991 0.031 11.614
2013 97 73 87.61 23.708 15.291 0.988 0.028 10.844
2014 99 88 93.18 26.240 18.034 0.997 0.031 11.977
All 226 171 - - - 0.995 0.030 11.522

sample of fin clip was collected, preserved in 96° ethanol and deposited in ISPA-TU/MARE
collections. All sampling and handling of fish were conducted according to established
animal welfare guidelines (ORBEA-ISPA, Animal Welfare Body) and following the relevant
legislation, as none of the sampled species are endangered or protected in Portugal.

DNA extraction, amplification and sequencing

Total genomic DNA was extracted from about 20 mg of tissue with REDEXtract-N-mp kit
(Sigma-Aldrich) following manufacturer’s instructions. Polymerase Chain Reaction (PCR)
amplification was performed for two fragments, the mitochondrial control region (CR)
and an intron of the nuclear S7 ribosomal protein gene (S7), with the primer pairs: LProl
(5’-ACT CTC ACC CCT AGC TCC CAA AG-3") and HDL1 (5'-CCT GAA GTA GGA ACC
AGA TGC CAG-3') (CR for the three species) (Ostellari et al., 1996), STRPEX1F (5'-TGG
CCT CTT CCT TGG CCG TC-3') and S7RPEX2R (5'-AAC TCG TCT GGC TTT TCG
CC-3') (first intron of the S7 for the shanny and the white seabream), STRPEX2F (5'-AGC
GCC AAA ATA GTG AAG CC-3') and S7TRPEX3R (5'-GCC TTC AGG TCA GAG TTC
AT-3') (second intron of the S7 for the sand-smelt) (Chow ¢» Hazama, 1998). The PCR
protocol was performed in a 20 pl total reaction volume with 10 ] of REDExtract-N-ampl
PCR mix (Sigma-Aldrich), 0.8 ul of each primer (10 wM), 4.4 pl of Sigma water and 4 pl
of template DNA. An initial denaturation at 94 °C for 3 min was followed by 35 cycles
(denaturation at 94 °C for 30/45 s, annealing at 55/58 °C for 30/45 s, and extension at 72 °C
for 1 min; values CR/S7, respectively) and a final extension at 72 °C for 10 min on a Bio-Rad
MyCycler thermal cycler. The same primers were used for the sequencing reaction and PCR
products were purified and sequenced at STABVIDA (Portugal, http://www.stabvida.net)
and GATC (Germany, http://www.gatc-biotech.com).
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Sequences were edited with Codon Code Aligner (http://www.codoncode.com/index.
htm) and aligned with Clustal X2 (Larkin et al., 2007). For S7 both strands of the same
specimen were recovered, whenever possible, following the approach of Sousa-Santos
et al. (2005). This approach takes advantage of the presence of indels in each nuclear
marker and uses them to accurately reconstruct the individual haplotypes without the need
for probabilistic estimation. Sequences were deposited in GenBank (Accession numbers
MG992598-MG992888, MH024090-MH024357, MH030878—-MH031272). Additional
sequences from previous work (Francisco et al., 2006; Francisco, Vieira & Almada, 2006;
Domingues et al., 2007; Francisco et al., 2008; Francisco ¢ Robalo, 2015) were retrieved
from GenBank (Tables S1-S3 in Data S1).

DNA analyses

The appropriate model of sequence evolution for the CR and S7 of each species was
determined using the software jModeltest v.2.1.10 (Guindon ¢ Gascuel, 2003; Darriba et
al., 2012), under the Akaike Information Criterion (AIC) (Nei ¢» Kumar, 2000). Parsimony
networks estimated with TCS version 1.21 (Clement, Posada ¢» Crandall, 2000) were used
to analyse relationships among haplotypes and to compute outgroup weights, based on
parsimony methods (Templeton, Crandall & Sing, 1992). Visualization and network layout
were edited with tcsBU (Miirias dos Santos et al., 2016).

ARLEQUIN software package v.3.5 (Excoffier ¢ Lischer, 2010) was used to estimate the
genetic diversity (k—mean number of pairwise differences (Tajima, 1983); - nucleotide
diversity; and h—haplotype diversity (Nei, 1987)) within each sampling period, to perform
analyses of molecular variance (AMOVA) (Excoffier, Smouse ¢ Quattro, 1992) and to
compute pairwise FST's. The x 2 test (Salicru et al., 1993) was used to access the significance
of differences in haplotype diversity among temporal samples. The software HP-Rare
(Kalinowski, 2005) was used to estimate allelic richness R and private allelic richness pR,
using rarefaction to correct for sample-size bias. Principal Coordinate Analysis (PCoA)
was performed with GenAlEx 6.5 (Peakall ¢» Smouse, 20065 Peakall ¢~ Smouse, 2012) to
visualize the patterns of temporal genetic structure in a bi-dimensional space. The analyses
of the S7 intron were also run in ARLEQUIN, after allowing the program to reconstruct
the haplotypes present, using the ELB algorithm (Excoffier, Laval ¢ Balding, 2003). The
same software was used to perform the exact probability tests for deviations from the
Hardy—Weinberg equilibrium (HWE) (Guo ¢ Thompson, 1992).

Contemporary effective population size (N, ) and genetic drift (Fs) were estimated using
TempoFs (Jorde ¢ Ryman, 2007), under the temporal method of allele frequency shifts.
The program reports Fs' (genetic drift corrected for sampling plan) and Ne per generation.
For this approach, we used sampling plan II (individuals sampled before reproduction and
not returned to the population; Waples, 1989) and a generation time of 2 yr for L. pholis
(Milton, 1983; Faria, Almada & Goncalves, 1996), 2 yr for D. sargus (Morato et al., 2003)
and 1 yr for A. presbyter (Turnpenny, Bamber ¢» Henderson, 1981).
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RESULTS

Mitochondrial data

For D. sargus, a total of 181 CR sequences were obtained, comprising 120 haplotypes
and 119 polymorphic sites (117 transitions, 15 transversions and two indels) (Table S1).
For the seabream CRs, 16.67% of haplotypes were shared between sampling periods. For
A. presbyter, 281 CR sequences were obtained corresponding to 155 haplotypes (368bp
long fragment). Differences among haplotypes corresponded to 70 polymorphic sites (63
transitions, 19 transversions and six indels) (Table S2). For the sand-smelt, 16.13% of
haplotypes were shared between sampling periods. A total of 226 shannies were sequenced
for the CR (380 bp), corresponding to 171 distinct haplotypes (Table 53). A total of 108
polymorphic sites were found, corresponding to 105 transitions, 26 transversions and eight
indels. Only 7.02% of haplotypes were shared among sampling periods. The generalized
time-reversible (GTR) + invariable sites (I) (Tavare, 1986) was estimated as the optimal
molecular evolutionary model for the CR of the three species.

The statistical parsimony networks constructed with the CR datasets revealed multiple
levels of diversification and deep genealogies, seemingly without temporal structure (Fig. 1).
The inferred ancestral haplotype for the CR of D. sargus included specimens collected in
2009, 2011 and 2014 (outgroup weight: 0.071). In this network, most of the haplotypes
were not arranged in a star-like pattern, and some of the branches reached a maximum
of 46 mutational steps, and 18 steps from the ancestral haplotype. For A. presbyter, the
network built with the CR dataset presented several star-like patterns around haplotypes,
including the haplotype inferred as ancestral (outgroup weight: 0.051), which comprised
individuals from every sampling period. The network was dominated by two haplotypes
shared by most sampling periods. In this network, also deep but with less diversification,
some of the haplotypes differed 16 mutational steps from ancestor. For L. pholis, the CR
network displayed several haplotypes, including the estimated ancestor, in the centre
of star-like patterns. This ancestral haplotype included specimens collected in the three
sampling periods (outgroup weight: 0.053), and some haplotypes differed as many as 17
mutations (Fig. 1). Interestingly, for all three species, haplotypes that initially had been
merely inferred were sampled in more recent periods.

For the CR, genetic diversity indices were generally high and similar across years
(Table 1). Salicru tests revealed non-significantly different levels of haplotype diversity
among sampling years: 2 =1.557 (p = 0.816), x> =4.342 (p = 0.362) and x> =3.022 (p
= 0.388), for D. sargus, A. presbyter and L. pholis respectively. The CR allelic richness and
private allelic richness yielded distinct results for the three species, with no pattern for the
seabream, increasing over sampling time in the shanny, and decreasing in the sand-smelt
(Table 1).

Global genetic differentiation among sampling years was not significant for CR in
any of the analysed species—AMOVA results (white seabream: FST = 0.003, p = 0.250;
sand-smelt: FST = 0.002, p = 0.312; shanny: FST = 0.009, p = 0.074). Comparisons
between periods were not significant in D. sargus and A. presbyter. However, for L. pholis,
significant differentiation was detected between 2013 and 2014 samples (FST = 0.013, p
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Figure 1 Haplotype network for the CR of (A) Diplodus sargus, (B) Atherina presbyter and (C)
Lipophrys pholis. The haplotype with the highest out group probability is displayed as a square, other
haplotypes as circles. The area of the circles is proportional to each haplotype frequency. Colours refer
to the year of sampling. In the case where haplotypes are shared among sampling periods, shading is
proportional to the frequency of the haplotype in each period.

Full-size Gl DOI: 10.7717/peer;j.9098/fig-1
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Table 2 Estimates of contemporary effective population size and genetic drift for Diplodus sargus,
Atherina presbyter and Lipophrys pholis. Mitochondrial control region (CR), nuclear S7 ribosomal pro-
tein gene (S7), estimated drift (Fs'), estimated effective population size per generation (N, /gen).

Species Marker Sampling Es N, /gen
interval
Diplodus sargus CR 2006-2009 0.029 102
2009-2011 —0.005 00
2011-2014 0.005 426
S7 2006-2009 0.022 68
2009-2011 —0.008 00
2011-2014 —0.005 00
Atherina presbyter CR 2005-2012 —0.001 00
2012-2013 —0.001 o]
2013-2014 0.001 1,282
S7 2005-2012 0.352 10
2012-2013 0.015 34
2013-2014 —0.006 00
Lipophrys pholis CR 2003-2013 0.008 612
2013-2014 0.010 94
S7 2003-2013 0.534 5
2013-2014 0.010 53

= 0.028). No species showed marked patterns of temporal genetic structure in CR and,
therefore, the PCoA was not performed.

Estimates of effective population size based on the CR of the three species are given on
Table 2, after correction for haploid data. L. pholis revealed a smaller N,/generation when
compared to the other species and A. presbyter showed no evidence of genetic drift for some
of the study periods (negative values of Fs'), which resulted in much higher N,./generation

(~inf).

Nuclear data

For D. sargus, 302 sequences of S7 were obtained with 308bp (corresponding to 151
individuals), comprising 99 haplotypes and 50 polymorphic sites (29 transitions, 21
transversions and 2 indels) (Table S1). Only 12.12% of haplotypes of S7 were shared between
sampling periods for the seabream. The amplification of S7 (N = 286,572 sequences) in
A. presbyter resulted in a 201bp fragment, corresponding to 35 haplotypes (Table S2). A
total of 25 polymorphic sites (6 transitions, 12 transversions and 7 indels) were found, and
57.14% of the haplotypes were shared between sampling periods. For the S7 of the shanny,
a total of 360 sequences (180 individuals) were obtained (576 bp), comprising 24 distinct
haplotypes (26.09% shared between sampling periods) (Table S3). The fragment yielded
20 polymorphic sites, corresponding to 9 transitions, 8 transversions and 3 indels. The
unequal transitional substitution (TIM3) + invariable sites (I) 4 rate variation among sites
(G) (Posada, 2003) was estimated as the optimal molecular evolutionary model for the S7
of the seabream. For the S7 of the sand-smelt, the selected model was the equal transitional
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Table 3 Diversity measures for sampling periods of Diplodus sargus, Atherina presbyter and Lipophrys pholis based on the S7: number of se-
quences (N), number of haplotypes (Nh), percentage of private haplotypes (%Ph), haplotype richness (R), private allelic richness (pR), haplo-
type diversity (h), nucleotide diversity (), mean number of pairwise differences (k) and test of deviations from the Hardy—Weinberg equilib-
rium observed/expected heterozygosity (Ho/He).

Species Sampling N Ny, %Ph R PR h T k Ho/He
period

Diplodus sargus 2006 20 20 90.00 24.961 15.461 0.963 0.012 3.709 1.000/0.963
2009 35 33 69.70 20.583 8.081 0.942 0.013 3.968 0.943/0.942
2011 19 19 78.95 19.000 8.052 0.953 0.012 3.863 0.895/0.953
2014 77 67 86.57 24.368 11.301 0.961 0.013 4.006 0.961/0.962
All 151 125 - - - 0.981 0.013 3.948 -

Atherina presbyter 2005 38 4 50.00 4.000 2.070 0.242 0.002 0.380 0.034/0.033
2012 90 17 17.65 14.334 2.082 0.816 0.001 1.990 0.129/0.142
2013 64 19 21.05 16.223 4.262 0.743 0.009 1.772 0.099/0.099
2014 94 26 26.92 17.830 4.605 0.770 0.010 2.063 0.102/0.115
All 286 42 - - - 0.734 0.009 1.779 -

Lipophrys pholis 2003 20 7 51.71 7.000 4.637 0.360 0.002 1.121 0.400/0.360
2013 76 13 53.85 7.162 2.608 0.757 0.004 2.534 0.750/0.757°
2014 84 12 50.00 6.225 1.489 0.721 0.004 2.327 0.655/0.721°
All 180 23 - - - 0.734 0.004 2.380 -

Notes.

*Significant values of probability p.

substitution model (TIM1ef) 4 invariable sites (I) (Posada, 2003), and for the shanny was
the unequal transitional substitution model (TIM3) + invariable sites (I) (Posada, 2003).

The S7 haplotype networks of the three species revealed shallower genealogies comparing
to the CR (Fig. 2). The networks showed star-like patterns dominated by 2-3 very frequent
haplotypes and no temporal structure was evident. The inferred ancestral haplotypes were
shared among sampling periods, yielding outgroup weights of 0.067, 0.117 and 0.190, for
D. sargus, A. presbyter and L. pholis, respectively.

The S7 genetic diversity indices of the three species are summarized in Table 3. The
pattern of haplotypic diversity stability across years registered for the CR was only recovered
for the S7 of D. sargus (x> = 1.289, p = 0.863). Salicru tests yielded significant differences
for the haplotype diversity between sampling year for both A. presbyter (x* = 73.080,

p <0.001) and L. pholis (x> = 17.864, p < 0.001). Similarly, the Markov chain tests yielded
significant deviations from the HWE for some years of the sand-smelt and shanny datasets
(p <0.001) (Table 3).

For the S7 of the white seabream, the AMOVA results revealed no significant temporal
structure among sampling years (FST = 0.003, p = 0.204). Pairwise FST comparisons were
also non-significant. A different pattern was recovered for the S7 of the sand-smelt and the
shanny, as significant global genetic differentiation was yielded (FST = 0.020 p < 0.001 and
FEST = 0.067 p < 0.001, respectively). For A. presbyter significant differences were found
between 2005 and every other period (p < 0.001). For L. pholis pairwise FST was significant
between 2003 and the more recent sampling times (p < 0.001). The PCoA corroborated
these patterns of temporal genetic structure, with the first axis explaining 94% and 99% of
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the observed variance, for the S7 of A. presbyter and L. pholis, respectively, and suggesting
two groups associated with older vs recent sampling periods (Fig. 3).

For the S7 fragment, TempoFs yielded lower N,/generation estimates for the shanny
(Table 2). Both the white seabream and the sand-smelt revealed negative values of Fs'
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for some of the more recent sampling intervals, i.e., no evidence of genetic drift and,
conversely, very high N,/generation values (~inf) (Table 2).

DISCUSSION

Temporal genetic stability
Traditionally population genetic and phylogeographic studies have disregarded the
temporal dimension, pooling samples based on their geographical origin and ignoring their
collecting period (Visias, Alvarado-Bremer & Pla, 2004; Charrier et al., 2006; Luttikhuizen
et al., 2008; Gonzalez-Wanguemert et al., 2011; Stefanni et al., 2015). One of our main result
is the subsequent appearance of inferred haplotypes, clearly reinforcing the importance
of temporal evaluations. Similar results were also found using mitochondrial markers
in several other species (e.g., Genypterus capensis (Henriques et al., 2017), Prionace glauca
(Verissimo et al., 2017), Seriola lalandi in the Pacific Ocean (Sepiilveda ¢ Gonzilez, 2017)).
Another important finding was the stability across years in these three ecologically
distinct species, reinforcing the preliminary work by Francisco & Robalo (2015). This
high degree of similarity was found in (a) the high genetic diversity, with little variation
between sampling periods, especially true for the mitochondrial data (Table 1); (b) the
deep genealogies with several diversification levels (Fig. 2); and (c) the absence of temporal
structure for the mitochondrial data. In contrast, we detected temporal structure and some
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marked differences among sampling years in both the shanny and the sand-smelt for S7
(Fig. 3). In fact, this differentiation between sampling periods was also detected for the CR
of L. pholis, notwithstanding the absence of temporal genetic structure.

Stochasticity in larval survival and transport, due to variation in oceanographic
conditions, and genetic differentiation among temporal samples are broadly documented
in the literature (e.g., Selkoe et al., 2006; Selkoe et al., 2010). Lipohrys pholis lays fewer eggs
and has a longer planktonic larval stage when compared to both A. presbyter and D.
sargus. Therefore, while its male-guarding behaviour can promote larval retention near
rocky coasts, this is easily disrupted by atypical or severe events, when larvae may be
transported very large distances if storm conditions prevail. Thus, the shanny’s higher
differentiation (marked differences among sampling periods in both markers and temporal
structure for S7) might be closely related with its greater vulnerability to recruitment
fluctuations. Conversely, the white seabream revealed a greater degree of temporal
stability for both molecular markers. In contrast, allozyme studies in D. sargus in the
Mediterranean found rapid genetic change within a population, assumed to be driven
by genetic drift (Lenfant ¢ Planes, 2002; Planes ¢~ Lenfant, 2002). We suggest that these
apparently contradictory findings may be due to the type of molecular marker. Planes ¢
Lenfant (2002) associated the large variation in the white seabream’s reproductive success
with linkage disequilibrium and genetic relatedness shown in their allozyme data. In our
study (mtDNA and nDNA) the absence of temporal structure is probably associated with D.
sargus’ higher fecundity (Goncalves ¢ Erzini, 20005 Mouine et al., 2007), longer spawning
season (Dias et al., 2016) and relatively short PLD (Di Franco et al., 2011). Temporal
stability has been described in several other marine species, such as Solea solea (Cuveliers et
al., 2011), Pagrus auratus (Bernal-Ramirez et al., 2003), Meganyctiphanes norvegica (Papetti
et al., 2005) and Ammodytes marinus (Jiménez-Mena et al., 2019).

Also noteworthy is the significant deviation from HWE in the sand-smelt and the shanny,
the two species with most contrasting early life-history traits. Although unexpected for a
relatively long PLD species like L. pholis, this result was previously reported in other marine
organisms (e.g., Chapman, Ball & Mash, 2002; Karlsson & Mork, 2005; Pérez-Portela et al.,
2019). Departure from HWE has been ascribed to natural selection, migration, Wahlund
effect, null alleles, inbreeding and/or phenotypic assortative mating (e.g., Addison ¢
Hart, 2005; Karlsson & Mork, 2005; Gonzalez, Beerli & Zardoya, 2008; Garnier-Géré ¢
Chikhi, 2013). Although we were not able to explain these results, we are aware that
HW disequilibrium violates the assumptions behind temporal N, estimation (e.g., Nei &
Tajima, 1981; Serbezov et al., 2012; Wang, Santiago ¢ Caballero, 2016).

Estimates of contemporary effective population size

In the present work, the estimated population effective size per generation was smaller for
the shanny than the other two species, corroborating preliminary findings by Francisco ¢»
Robalo (2015). The negative Fs' found for some of the more recent sampling intervals, for
both white seabream and sand-smelt, evidenced no genetic drift (CR and S7). Conversely,
the N./generation values for these species were very high (~inf) (Table 2). Genetic
stochasticity is most likely weaker in marine organisms with such large Ne (Palstra ¢
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Ruzzante, 2008), as found in fish species like S. solea (Cuveliers et al., 2011) and G. morhua
(Therkildsen et al., 2010) (see Marandel et al. (2019) for a review). Lower N,/generation was
found in fish species such as the herring Clupea harengus (Larsson et al., 2010), the silver
seabream P. auratus (Hauser et al., 2002) and the thornback ray Raja clavata (Chevolot et
al., 2008). The extremely low N,/generation found in the first sampling interval of L. pholis
and A. presbyter (S7) (Table 2) might be an underestimation due to statistical artefacts,
immigration from other populations, or other factors (e.g., Palstra ¢ Ruzzante, 2008).

Considering the target species and sampling scheme, the adjusted temporal method
was, in our opinion, the best choice for estimating contemporary N,. Not only is this
method considered the least biased for species with overlapping generations (e.g., Jorde
& Ryman, 2007; Waples ¢ Yokota, 2007), the analysis of consecutive cohorts is also the
best way to reduce N, estimation bias (e.g., Jorde ¢ Ryman, 1995; Luikart et al., 2010).
Nevertheless, several factors can confound N, estimates, including the aforementioned
departure from HWE. For instance, temporal estimates of N, may be biased by potential
migratory movements within metapopulations that can override the effects of genetic
drift (e.g., Palstra ¢ Ruzzante, 2008; Waples & Do, 2010; Ryman et al., 2014). In fact, the
assumption of complete isolation of the study population is frequently violated, and
the resulting bias is generally of unknown magnitude (e.g., Ryman et al., 2014). In this
study, this might result in biased N, estimates for the sand-smelt and white seabream,
for which IBD patterns have been recorded (Domingues et al., 2007; Francisco et al., 2009).
Sampling strategy is another potential source of bias (e.g., Jorde & Ryman, 2007; Waples ¢
Yokota, 2007; Luikart et al., 2010), including low sample size and sex-biased or age-biased
sampling. In the present work, uneven sample size between years (considerably lower
N for the first sampling point) likely affected our N, estimates. Species life-history and
reproductive strategy can also hamper interpretation of N, estimates (e.g., Waples ¢
Yokota, 2007). Sequential hermaphrodites, such like the protandrous D. sargus (Bauchot
¢ Hureau, 1986), present sex ratios skewed towards the initial sex (Charnov ¢ Bull, 1989).
According to standard fixed-sex theory, this results in reduced N, (Wright, 1938) due to
greater genetic drift (Charlesworth, 2009). The very high N,/generation values obtained for
the white seabream seemingly contradict this prediction (Table 2). This expected lower N,
was also challenged in recent studies with protogynous species over historical timescales
(Coscia et al., 2016), and in analysis of an eco-evolutionary model with ten hypothetical
species (Waples, Mariani ¢ Benvenuto, 2018).

Recently, the reliability of contemporary estimates of N, has been challenged and
questioned (e.g., Wang, Santiago & Caballero, 2016; Marandel et al., 2019). However, these
reviews focused on single-point estimation approaches (Linkage-Disequilibrium methods),
assuming discrete generations and, implicitly, reduced population sizes. Marandel et al.
(2019) found significantly biased estimates in simulations of large populations of fish and
therefore a need for extra-large sampling sizes (impracticable in most sampling schemes).
Unlike the criticized studies, our work used a temporal method comprising extensions to
estimate N, in age-structured species (Jorde, 2012).

While the present study used only one geographical location and two genetic markers,
these apparent limitations allowed a rigorous comparison with data from several species
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collected in the same area over the past fifteen years and using the same two markers
(mitochondrial control region and nuclear S7) (e.g., Domingues et al., 2006; Almada et
al., 2012; Robalo et al., 2013; Francisco et al., 2014; Stefanni et al., 2015; Almada et al., 2017;
Pappalardo et al., 2017), which facilitated comparison and calibration of genetic diversity
results. Thus, it was possible to observe the high genetic diversity pattern found in several
coastal fish populations in western Portugal (e.g., D. vulgaris (Stefanni et al., 2015) and
Labrus bergylta (Almada et al., 2017)).

CONCLUSIONS

Genetic monitoring through time seeks to disentangle life-trait patterns affecting marine
organisms, while deepening our ability to forecast changes in both genetic composition and
diversity. This study assessed fluctuations in genetic composition among different sampling
periods in the western Portuguese shore using a comparative approach in three species with
distinct ecological and life-history characteristics. No temporal structure was detected for
the mitochondrial marker, while for nDNA significant differences were recorded among
some sampling periods for the shanny and the sand-smelt. The haplotype networks revealed
deep genealogies, and one of our major findings was the repeated appearance of previously
inferred haplotypes. The shanny revealed a smaller N,/generation when compared to the
other species but revealed no evidence of genetic drift for most study periods. These results
clearly underline that temporal variation in gene pool composition should be considered
when evaluating population structure of long larval dispersion fish species, which are
more vulnerable to recruitment fluctuations. Comparison between the commercially and
non-commercially explored species yielded no conclusive results.

Previous authors suggested increasing the number of time-point estimates (e.g., from
pre-harvest and postharvest times around an overexploitation event) to circumvent
difficulties in short-term prediction of N, (Pita et al., 2017). Future studies with additional
time-points covering a longer time span, additional sampling locations covering the
species geographical distribution and additional markers would greatly improve the
reliability of the present paper’s results. Available tools include a combination of methods
of demographic inference and large genomic datasets generated with RAD-seq (restriction
site-associated DNA sequencing) (e.g., Barbato et al., 2015), as recently reported in critically
endangered species (e.g., Carcharias taurus in Reid-Anderson, Bilgmann & Stow, 2019) and
commercially important species (e.g., Oncorhynchus kisutch in Barria et al., 2019; Solea solea
in Le Moan et al., 2019). These genomic approaches, with their high-throughput sequencing
methods, will likely improve our understanding of recent population demography (Waples,
2016). Applying and extending this framework to species with distinct features (e.g., life-
history traits), conservation status and commercial importance would be of paramount
importance to detect global patterns and predict the ability of species to adapt to future
changes.
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