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Abstract: Selection of the optimal users to maximize the quality of the collected sensing data within a
certain budget range is a crucial issue that affects the effectiveness of mobile crowdsensing (MCS).
The coverage of mobile users (MUs) in a target area is relevant to the accuracy of sensing data.
Furthermore, the historical reputation of MUs can reflect their previous behavior. Therefore, this study
proposes a coverage and reputation joint constraint incentive mechanism algorithm (CRJC-IMA)
based on Stackelberg game theory for MCS. First, the location information and the historical reputation
of mobile users are used to select the optimal users, and the information quality requirement will be
satisfied consequently. Second, a two-stage Stackelberg game is applied to analyze the sensing level of
the mobile users and obtain the optimal incentive mechanism of the server center (SC). The existence
of the Nash equilibrium is analyzed and verified on the basis of the optimal response strategy of
mobile users. In addition, mobile users will adjust the priority of the tasks in time series to enable
the total utility of all their tasks to reach a maximum. Finally, the EM algorithm is used to evaluate
the data quality of the task, and the historical reputation of each user will be updated accordingly.
Simulation experiments show that the coverage of the CRJC-IMA is higher than that of the CTSIA.
The utility of mobile users and SC is higher than that in STD algorithms. Furthermore, the utility of
mobile users with the adjusted task priority is greater than that without a priority order.

Keywords: mobile crowdsensing; coverage; historical reputation; Stackelberg game theory;
incentive mechanism

1. Introduction

Mobile crowdsensing (MCS), as a new and rapidly emerging information collection paradigm,
has aroused extensive concerns for solving complex sensing problems [1,2]. Complex sensors
(e.g., cameras, GPS, and microphones) in mobile smart devices provide superior tools for acquiring
sensing data in MCS network systems. At present, MCS has been widely used in water pollution [3],
environmental monitoring [4], health services [5], intelligent transportation [6], and other fields.
In MCS, mobile users (MUs) consume limited resources to complete sensing tasks in their spare
time, and they may face potential threats of privacy disclosure (e.g., geographic location). Therefore,
designing a reasonable incentive mechanism to encourage more MUs to participate in the sensing task
and maximize the quality of the sensing data in MCS is a hot issue.

To collect high-quality sensing data, scholars have proposed numerous incentive mechanisms for
MCS network systems [7–10]. The incentive mechanism is the core of the MCS network [11]. Existing
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incentive mechanisms can be roughly divided into monetary [12–19] and non-monetary incentive
mechanisms [20,21]. Compared with the non-monetary incentive mechanism, the monetary one is
a more flexible reward method. The monetary incentive mechanism often works better than the
non-monetary incentive mechanism in [22].

Game theory can provide an excellent mathematical model to solve the balance problem
of utility between the SC and the MUs in the monetary incentive mechanism. Different game
models are used to simulate and solve various problems in diverse scenarios. A RADP incentive
mechanism based on the reverse auction, in which users can sell sensing data to a service provider,
is designed [12]. VCG auction policy is proposed for online sensor selection [13], and the sensor
selection problem is considered a general time-dependent and location-aware participatory sensing
system. Two optimization models are proposed to solve the problem of heterogeneous costs across the
sensing area in [14]. The platform-centric model is constructed as a Stackelberg game, which executes
only one sensing task in [15]. The incentive mechanism based on the Stackelberg game is applied to
spectrum sensing in [16]. The incentive mechanism based on the Stackelberg game is also used to build
a model of the novel rumor control framework in the mobile social network in [17]. A new incentive
mechanism of QUOIN based on the Stackelberg game is investigated to combine the MCS network
and big data in [18]. The authors of [19] proposed discriminatory and uniform incentive mechanisms,
which considered the social network underlying the mobile social domain.

However, the coverage of MUs in the target area is always ignored, especially being absent in
the above papers. The coverage rate of the collected sensing data is related to the accuracy of sensing
data in the target area. The entire sensing region is divided into several equal-sized blocks, which
are mentioned in [23,24], and sensing data are collected from different blocks and are profiled for
the entire region accurately [25]. Optimal MUs are selected using the coverage as an indicator in the
literature [26,27]. Nevertheless, the quality of the sensing data uploaded cannot be guaranteed during
the task. The historical reputation of an MU reflects its previous behavior [28], which is used as a
parameter for selecting the optimal MUs to minimize the threat from dishonest users. Therefore, this
study aims to find optimal MUs whose data can meet the information quality requirements of the SC
and task publisher (TP) better. The optimal MUs are selected on the basis of the historical reputation of
MUs. Thus, the unbelievable behavior of MUs is restricted to protect the benefits of the SC and task
publisher (TP) [28].

This study aims to design an incentive mechanism for maximizing the utility of MUs and the SC,
and the MUs with a high reputation will be encouraged to participate and collect high-quality sensing
data in the sensing task. The primary contributions of this study are summarized as follows:

• An optimal MU selecting algorithm (OMUS) is proposed to select the optimal MUs according to
the location information and historical reputation of MUs. Thus, the collected sensing data will be
more accurate and credible;

• A two-stage Stackelberg game model is proposed to solve the balance problem between the lowest
rewards of the SC and the optimal strategy of the MUs in the MCS system, and the existence of
the Nash equilibrium is proven in the Stackelberg game;

• A task priority time series method is proposed to maximize the total utility of the MUs’ tasks;
• A reputation update and reward allocation method for the MUs is proposed. After the MUs

upload the sensing data, the EM algorithm is used to evaluate the quality of sensing data, and SC
evaluates the reputation of MUs according to the quality of sensing data and updates the historical
reputation of each MU. Then, the reward is allocated to MUs who have completed the tasks
according to the selected optimal strategy.

2. System Model and Game Formulation

The MCS network system includes the TP, the SC, and the MUs in this paper. MUs are equipped
with various mobile smart devices (e.g., smartphones, tablets). This work describes a procedure in
which MUs receive and accomplish the sensing task when the TP publishes a task to the SC. In Figure 1,
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the SC will broadcast the task to MUs located in the target area when the TP uploads the sensing task
to the SC. The set of MUs that have signed up for the sensing task is U = {u1, u2, . . . , un}, and the
SC selects the optimal MUs to participate in the task. MUs perform the sensing task and upload the
sensing data to the SC. Finally, the EM algorithm is used to evaluate the quality of the sensing data,
and the SC updates the reputation of MUs. Meanwhile, the SC allocates reward to MUs for the task,
and the SC sends the sensing data to the TP.
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Figure 1. System model of crowdsensing.

The detailed process is presented as follows.

(1) TP publishes a sensing task and the target area to the SC;
(2) If the MUs with a mobile smart device sensor are interested in the sensing task, then they will

sign up to participate in the sensing task. The MU set is U = {u1, u2, . . . , un};
(3) The SC uses the OMUS algorithm to select the optimal users W = {w1, w2, . . . , wm} (m ≤ n);
(4) The SC and the selected MUs choose their optimal strategies by using the coverage and reputation

joint constraint incentive mechanism algorithm (CRJC-IMA). When the SC determines the total
reward R, MUs choose the optimal bandwidth strategy to maximize the utility of the SC and MUs;

(5) Each MU sorts the tasks in time series according to the allocated reward to maximize the total
utility of the MUs;

(6) MUs upload sensing data to the SC, and MUs receive the reward allocated by the SC;
(7) The SC evaluates the quality of the sensing data, and the SC updates the reputation of MUs.

The main parameter definitions in this work are shown in Table 1.

Table 1. Definitions of notations.

Symbol Definition Symbol Definition

U = {u1, u2, . . . , un} Registered users set dij Distance between MUi and point j
W = {w1, w2, . . . , wm} Optimal MUs Crei0 The historical reputation of MUi

m Choose the number of optimal MUs fij The objective value of MUi and point j
R Total reward ui MUi chooses the utility of the task
r Sensing range u0

il Utility after MUi chooses priority
ρ(·) Payoff of SC h Number of the tasks for MU
Bi Bandwidth strategy MUi selected pil Priority for MUi to perform task l
Ei Energy used by MUi t′il Time for MUi to perform task l
u′0 Utility of SC Eelect Radio electronic energy
fi Payoff of MUi εfs Radio amplifier energy
gi Cost of MUi εamp Radio amplifier energy
d0 Threshold k Packet size

The TP publishes a sensing task and allocates the total reward R to the MUs who perform the
sensing task, where R > 0. When the MUs participate in the task, the SC will acquire the payoff, which
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can be expressed as a function ρ(·). The payoff function ρ(·) increases with the MUs’ sensing level and
decreases with the increase in the sensing rate.

ρ(Sc) = λ1 ln

1 +
m∑

i=1

ln(1 + Bi)

+ λ2ln

1 +
m∑

i=1

ln(1 + Ei)

 (1)

where λ1 and λ2 are system parameters; and Bi and Ei are the bandwidth strategy selected by MUi
and the energy consumed by MUi for transmitting data, respectively. The utility of the SC can be
expressed as

u′0 = ρ(Sc) −R (2)

To maximize the utility of MUs, they will not participate in sensing tasks unless incentives are
sufficient. The payoff and cost functions of MUs in this work are determined by the energy consumption
and bandwidth used by MUs to perform the task. The payoff function fi and cost function gi of each
MU can be defined as

fi =
(

Bi∑m
i=1 Bi

+
Ei∑m

i=1 Ei

)
∗

R
2

(3)

gi = αiEi + βiBi (4)

The utility of MUi can be defined as

ui = fi − gi (5)

The utility of each MU is composed of payoff and cost functions. The payoff function fi is formed
by the bandwidth and energy consumed by MUi. Bandwidth Bi is the strategy selected by MUi. Energy
Ei is determined by the distance from the SC to MUi when the sensing data are transmitted between
them. The function gi is determined by the energy and bandwidth cost. αi > 0 and βi > 0 are the unit
cost of the energy and bandwidth of MUi, respectively.

The energy consumption of MUi mainly includes the energy consumption of sending and
receiving data during the sensing task, and other energy consumption used by MUs can be ignored [29].
Equation (6) represents the energy consumption of transmitting and receiving data.

E(k, d) =
{

k ∗ Eelect + k ∗ ε f s ∗ d2, d ≤ d0

k ∗ Eelect + k ∗ εamp ∗ d4, d > d0
(6)

where Eelect represents the energy consumption of sending and receiving k bit data, d is the transmission
distance between the SC and each MU, d0 is the distance threshold equal to 87 m, and fs and amp are the
amplifier power consumption of the free space model and multipath attenuation model, respectively.
When the distance between MUi and SC is less than d0, the free space model is adopted, and the
transmission power is attenuated to d2. Otherwise, the multipath attenuation model is adopted, and the
transmission power is set as d4.

In this work, the number of sensing tasks performed by each MU is greater than or equal to 1.
When the published tasks and determined rewards by the SC vary, the MU acquires payoff, and utility
is distinct after performing the tasks. Suppose h tasks are needed to be completed by MUi, and a
device can only perform one task during the execution of the task. The required time for each task is
{ti1, ti2, . . . , tih}. The corresponding utility of hi tasks are {ui1, ui2, . . . , uih}. Therefore, the priority of h
tasks performed by MUi is {pi1, pi2, . . . , pih}. Then, the total required time that MUi executes task l is
t′il =

∑h=l−1
h=1 tih + tl. To maximize the total utility of MUi, the priority of task l performed by MUi is

pil s.t. max
l=h∑
l=1

uil (7)
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The utility of MUi with task priority considered can be defined as

u0
il = uil − γit′il (8)

where γi is the unit time MUi costs to accomplish the sensing tasks. Each MUi spends different times
on distinct tasks. Thus, various utilities for each MUi in different tasks can be defined as Equation (8).
The tasks performed by MUi will be sorted in descending order according to the utility of the tasks.
Therefore, the task with the maximum utility will be executed first.

3. CRJC-IMA

In this work, the whole CRJC-IMA consists of four phases. The first phase selects the optimal
MUs. In the second phase, the follower and leader games are applied to analyze the sensing level of
the MUs and the optimal incentive mechanism of the SC, respectively. The third phase includes the
quality evaluation process in which the MUs upload sensing data and the historical reputation value
update process. The fourth stage performs the incentive allocation process. The game process will be
described in the next section.

3.1. OMUS

The selection of optimal MUs for completing the task is a challenge for the MCS network system.
The MUs with a higher reputation and wider coverage are superior to collect high-quality sensing data
for the TP than other MUs. The number of selected m MUs is related to the total reward R of the TP
and the cost of registered MUs. The registered MUs are MUs signed up to participate in the sensing
task. The number of users m can be determined as follows.

m =
R

2
(
µ1αsumE + µ2βsumB

) (9)

where αsum is the energy unit cost sum of the registered Mus, βsum is the bandwidth unit cost sum
of the registered Mus, E is the mean value of the maximum and minimum consumption energy of
registered MUs in the process of data transmission, B is the average of the maximum and minimum
bandwidth selected by registered Mus, and µ1 and µ2 are system parameters.

αsum =
n∑

i=1

αi, βsum =
n∑

i=1

βi, E =
Emax + Emin

2
, B =

Bmax + Bmin
2

(10)

After the SC publishes a sensing task, the MUs in set U = {u1, u2, ..., un} sign up to complete the
published task in the MCS network. First, the SC selects the optimal virtual points in the target area. Then,
the SC determines the optimal MUs based on geographic location information and the historical reputation
of the MUs according to virtual points. The selected virtual points and MUs are shown in Figure 2.
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3.1.1. Virtual Point Selection (VPS)

The PSO [30] has the characteristics of fast search speed and high efficiency. Therefore, the PSO is
applied to select m virtual points with maximum coverage in the target area randomly.

Definition 1. Area coverage. It is the ratio of the sensing area s to the target area S perceived by MUs.

The fitness of PSO is the coverage rate f = s1/S. s1 is the area covered by the virtual points, and S
is the target area.

The specific process of PSO is presented as follows.

Step 1: Parameter setting. Initializing the speed and position of the m virtual points randomly in the
target area;

Step 2: Calculating the coverage of m virtual points and finding the individual extremum and group
extremum. The individual extremum is the coverage rate of the virtual point’s optimal
position, and the group extremum is the optimal position of the virtual point corresponding
to the maximum coverage among the individual extremes of all virtual points;

Step 3: Updating the speed and position of each virtual point in the virtual points set;
Step 4: Calculating the coverage of the m virtual points;
Step 5: Updating the individual extremum and group extremum of the m virtual points;
Step 6: If the maximum number of iterations has been reached, then the global optimal position will

be determined, otherwise skip to the second step.

According to the above steps, m virtual points are randomly selected.

3.1.2. MU Selection Process

Through the above proposed VPS algorithm, m virtual points are selected in the target area of the
MCS. Then, m MUs are selected to perform the task from the n MUs signed up for the task according to
m virtual points. The objective function between the virtual point j and each MUi can be defined as

fi j = a ∗Crei0 + b ∗
(
1/di j

)
(11)

where a and b are the weighting factors and a + b = 1, Crei0 is the historical reputation of MUi, and dij
is the Euclidean distance between MUi and virtual point j. The SC selects an optimal MU with the
largest objective function value according to a virtual point. Thus, the SC will select m optimal MUs
according to m virtual points to perform the sensing task. Therefore, the quality of the collected sensing
data can be guaranteed. If a new MU participates in the sensing task, then their reputation will set the
highest reputation, which is set as 5 in this work. Thus, the new MU with the highest reputation can be
selected preferentially to perform the sensing task, and its reputation value will be accumulated when
it participates in other sensing tasks in the future.

3.2. Update Reputation of MUs

Reputation is an important index to select optimal MUs in the CRJC-IMA. MUs with high
reputation will be selected preferentially by the SC to collect sensing data. In this section, the EM
algorithm [31] is applied to evaluate the quality of sensing data in a task, and then the SC updates the
historical reputation of each MU according to the completion quality of the task.

3.2.1. Quality Evaluation

The quality of the MUs’ sensing data reflects the quality of tasks completed by MUs. For example,
the MUs collect urban noise sensing data [32]. Each MU wi estimates a quality evaluation matrix ewi ,
which is a m×m matrix with elements ewi

rs ∈ [0, 1], r = 1, 2, . . . , m; s = 1, 2, . . . , m, and the calculation of
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the quality evaluation matrix ewi will be given in detail in the following specific steps. The quality
evaluation matrix is mapped to the quality of the sensing data by the function qi = g(ewi). Therefore,
the spans of the sensing data are divided into {d1, d2, . . . , dm} intervals, which represent the sensing
levels of the collected data. The EM algorithm is applied to estimate the quality evaluation matrix ewi of
each MU. The converged estimation of an MU’s evaluation matrix indicates the quality of the sensing
data, whereas the noise interval distribution suggests the urban noise pollution level. The specific
steps are as follows:

Step 1. For each task, t ∈ T, the index function I
(
dk

t = d j
)
= 1 when the MU’s sensing data dk

t fall
into the real interval d j, and the probability distribution of the real noise interval are initialized as

pt
j = p

(
d0

t = d j
)
=

∑
wi∈Wl

I
(
dk

t = d j
)

|Wl|
(12)

Step 2. Estimate the likelihood function of the perception probability matrix, and êwi
rg represents

the value after t iterations.

êwi
rg =

∑
t∈Twi pwi

r I
(
dwi

t = dg
)

∑
t∈Twi pwi

r
, g = 1, 2, . . . , m (13)

The true noise interval distribution is estimated as

π̂r =

∑
pt

r

|T|
, r = 1, 2, . . . , m (14)

Step 3. Estimate the real noise interval. Given the sensing data G, the quality evaluation matrix
E, and noise interval distribution Π, Bayesian inference is used to estimate the true noise interval P.
Calculate the true noise interval distribution according to the following formula.

Pt
r =

πr
∏

wi∈Wt

∏
g

(
ek

rg

)
I
(
dk

t = ds
)

∑
q πq

∏
wi∈Wt

∏
g

(
ek

qg

)
I
(
dk

t = ds
) , r = 1, 2, . . . , m (15)

Step 4. Convergence. Steps 2–3 are iterated until the two estimates converge (i.e., |Êt+1
− Êt
| < ε,

|P̂t+1
− P̂t
| < η, ε > 0, η > 0). According to the estimation of the quality evaluation matrix ewi , a mapping

function g(·) can be used to obtain the quality of wi’s sensing data. Thus, the quality of wi’s sensing
data is qi, that is

qi = g(ewi) =
∑

r
ewi

rr /m (16)

3.2.2. Reputation Updated

Through the above quality evaluation of the sensing data process, the sensing data quality of MUi
is qi. Then, the reputation value of MUi will perform the normalization process and be converted to
[0,5], that is,

Crei = 5 ∗ qi/qmax (17)

where qmax is the highest data quality value of an MU who participates in the task. The SC updates the
historical reputation of each MU after the task reputation is estimated, that is,

Cre′i = (o ∗Crei0 + Crei)/(o + 1) (18)

where o is the number of historical tasks in which MUi participated, and Crei0 is the historical reputation
value of MUi.
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3.3. Incentive Allocation

When the SC determines the total reward R, MUs select the optimal bandwidth strategy to perform
the task according to the incentive mechanism algorithm based on the Stackelberg game. After MUs
upload the sensing data, the SC will allocate the reward to MUs based on the optimal strategy selected
by the MUs. Therefore, the final reward for each MUi is

rewardi = fi =

 B∗i∑m
i=1 B∗i

+
Ei∑m

i=1 Ei

 ∗ R
2

, B∗i , 0 (19)

If the MUs participate in the sensing task, then the SC allocates the reward to each MU according
to the payoff function. When MUi selects the optimal bandwidth B∗i = 0, MUi does not participate in
completing the task. Thus, rewardi = fi = 0.

4. Designing the Incentive Mechanism Based on Stackelberg Game

This study aims to design an incentive mechanism for maximizing the utility of MUs and SCs,
where the MUs with a high reputation will be encouraged to complete the task. Thus, the relationship
between the SC and MUs is modeled as a Stackelberg game [33]. The SC is the leader, and the SC
will provide the total reward R for the task. MUs are the followers, and all MUs select their optimal
bandwidth to maximize their utility according to the SC strategy. Then, the SC will adjust its strategy
accordingly. The selected optimal bandwidth by MUs in the follower game can be considered a
non-cooperative game [15], which is named as the optimal bandwidth determination (OBD) game.
However, the sensing task received by MUs is greater than or equal to one. Therefore, according to the
utility of the sensing task, MUs should determine the priority of tasks to maximize the total utility.

4.1. Follower Game

The SC allocates rewards to each MU based on its energy consumption and bandwidth strategy,
and MUs’ energy and bandwidth payoffs account for half of the total reward given by the SC. Once MUs
participate in the sensing task, half of the reward R will be allocated to MUs according to the energy
consumed by the MUs, and the more energy consumed by the MUs, the more reward MUs will obtain.
The remaining reward can get more payoff by adjusting the bandwidth. All of the MUs participating
in the sensing task are W={w1,w2, . . . ,wm}, and the bandwidth strategy set of MUs is B=(B1,B2, . . . ,Bm),
and B-i=(B1,B2, . . . ,Bi-1,Bi+1, . . . , Bm) represents the strategy excluding MUi. Therefore, B can be
expressed as B=(Bi, B-i).

ui =

 Bi

Bi +
∑m

j=1, j,i B j
+

Ei∑m
i=1 Ei

 ∗ R
2
− αiEi − βiBi (20)

MUi will choose the optimal bandwidth strategy to maximize the utility of the task and then
choose the priority of the task to maximize the total utility of all tasks. The number of each MUi’s
tasks is greater than or equal to one, and the unit time cost of MUi is a determined value. Therefore,
the utility function of MUi is

u0
il =

 Bi

Bi +
∑m

j=1, j,i B j
+

Ei∑m
i=1 Ei

 ∗ R
2
− αiEi − βiBi − γit

′

il (21)

Assume that MUi receives l-1 tasks, the published task by the TP is l, which forms the
set Ti= {T1, T2, . . . , Tl} with other l-1 tasks. The corresponding priority set of each task is
P= {pi1, pi2, . . . , pil}. MUi selects the priority of the task to maximize the total utility of all received tasks.
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4.1.1. Related Definitions

Definition 2. The Nash equilibrium. A set profile B∗ =
(
B∗i , B∗

−i

)
is a Nash equilibrium of the OBD game if

each MUi satisfies ui
(
B∗i , B∗

−i

)
≥ ui(Bi, B−i), for any Bi ≥ 0, where ui is defined in (20).

Definition 3. Optimal response strategy. Given B−i, a strategy is MUi’s optimal response strategy, denoted by
ρ(B−i), if it is maximized ui(Bi, B−i) over all Bi ≥ 0.

The Nash equilibrium ensures the stability of the OBD game algorithm, and each MU chooses the optimal
bandwidth strategy according to other MUs.

4.1.2. Proofs for Properties

Property 1: Follower game of the OBD has a unique Nash equilibrium given a total reward R
published by the SC.

Proof. To certify the optimal bandwidth strategy of MUi, the utility ui of MUi is calculated for the
first and second derivatives with respect to its bandwidth strategy Bi, which can be obtained by
Equation (20).

∂ui
∂Bi

=
−BiR

2
(∑m

i=1 Bi
)2 +

R
2
∑m

i=1 Bi
− βi (22)

∂2ui

∂2Bi
=
−R

(∑m
i=1 Bi − Bi

)
(∑m

i=1 Bi
)3 < 0 (23)

The utility function in Equation (23) is concave with respect to the bandwidth strategy of MUs.
Therefore, the optimal strategy is unique when the total reward is fixed.

By setting the first derivative to zero

−BiR

2
(∑m

i=1 Bi
)2 +

R
2
∑m

i=1 Bi
− βi = 0 (24)

Solved by Equation (24)

ρ(Bi) = B∗i =
√

R
∑

j∈W\{i}

B j/2βi −
∑

j∈W\{i}

B j (25)

When B∗i is positive in Equation (25), this bandwidth is the optimal strategy for MUi. If B∗i is
negative, then MUi will not participate in the sensing task and B∗i = 0. �

4.2. Leader Game

All participating MUs have a unique Stackelberg equilibrium bandwidth strategy when the SC
gives the total reward R in the above section. In the leader game, the SC can maximize its utility by
adjusting R.

Property 2: A unique Stackelberg equilibrium (R∗, B*) exists in the leader game.

Proof. From Equation (24), we can obtain

−BiR

2
(∑m

i=1 Bi
)2 +

R
2
∑m

i=1 Bi
− βi = 0 (26)
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We sum all participating MUs in W for Equation (26) and obtain the following formula:

(m− 1)R/2 =
∑
i∈W

Bi·

m∑
i=1

βi (27)

∑
i∈W

Bi = (m− 1)R/2
m∑

i=1

βi (28)

Substituting Equation (28) into Equation (26) yields

Bi =

(m− 1)R/2
m∑

i=1

βi

·
1− (m− 1)βi/

m∑
i=1

βi

 (29)

Substituting Equation (29) into the SC utility function yields

u′0 = λ1 ln

1 +
m∑

i=1

ln

1 +
(m− 1)R/2

m∑
i=1

βi

·
1− (m− 1)βi/

m∑
i=1

βi



+ λ2h′0(Ei) −R (30)

h′0(Ei) = ln

1 +
m∑

i=1

ln(1 + Ei)

 (31)

Solving the second derivative of the SC utility function obtains

∂2u′0
∂R2 = −λ1

 m∑
i=1

(
F2

i ·Ki
)
/(1 + FiR)

2 +

 m∑
i=1

Fi/(1 + FiR)

2/K2
i < 0 (32)

where

Ki = 1 +
m∑

i=1

ln

1 +
(m− 1)R/2

m∑
i=1

βi

·
1− (m− 1)βi/

m∑
i=1

βi


 (33)

Fi =

(m− 1)/2
m∑

i=1

βi

·
1− (m− 1)βi/

m∑
i=1

βi

 (34)

Therefore, the proposed algorithm obtained from Equation (32) is strictly concave, and a unique
Stackelberg equilibrium (R∗, B*) exists in the leader game. A unique maximizer R∗ can be computed
efficiently using Newton’s method [34]. �

5. Simulation Results and Analysis

Simulation experiments are conducted using MATLAB R2016a to evaluate the effectiveness of the
CRJC-IMA. A total of 1 TP, 1 SC, and 1000 MUs are distributed randomly in the target area with the
range of 1 × 1 km, and each MU’s sensing range is 60 m. The TP can successfully publish tasks to the
SC. The parameters and experimental values of this paper are listed in Table 2.

5.1. Performance Evaluation of Selecting the Optimal Users

This section evaluates the optimal number of MUs, coverage rate, and reputation in the OMUS.
The CRJC-IMA is proposed in the MCS scenario, and the reputation and the coverage of the MUs are
important indicators for selecting the optimal MUs. The CTSIA [27] is an incentive mechanism based
on reverse auctions under total reward constraints, which have a good coverage ratio in the target area.
Therefore, the CRJC-IMA has compared the coverage ratio with the CTSIA under a certain reward.
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Table 2. The value of the simulation parameters.

Parameter Value

the target area 1000 m × 1000 m
n 1000
λ1 220
λ2 300
Bi [1,5]
αi [2,10]
βi [1,5]/3
ki [1,5]
γi [0.5,1]
r 60 m

1. The number of optimal users: Figure 3 shows the relationship between the optimal number of
MUs m and the total rewards R given by the SC in the CRJC-IMA. As the rewards increase to
2000, an increasing number of MUs are selected as the collectors to sense the data and the number
of selected MUs rises linearly. This phenomenon indicates that the CRJC-IMA performs well
relative to the reward.
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2. Coverage: Figure 4 shows the relationship between the total reward R given by the SC and the
coverage rate of the CRJC-IMA and CTSIA algorithms. The coverage rate in the target area is
increasing in both algorithms as the reward R rises. When the total reward R is greater than 800,
the coverage of the CRJC-IMA reaches 90%. When R is greater than 1600, the coverage rate of
both algorithms will not increase significantly, and both reach 90%. However, more reward will
increase the cost of the SC and cause excessive data redundancy. The experimental results of the
two algorithms show that the coverage rate of the CRJC-IMA is superior to that of the CTSIA.Sensors 2020, 20, x FOR PEER REVIEW 12 of 18 
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3. Reputation: Figure 5 shows the influence of different weights on reputation and coverage when
selecting the optimal users using Equation (11). The horizontal axis represents a and b, whose
domains are between 0 and 1. When the horizontal axis represents the reputation weight a,
the vertical axis that corresponds to the left represents the reputation value. The vertical axis that
corresponds to the right represents the coverage value when the horizontal axis represents the
coverage weight b. The sum of the reputation weight a and coverage weight b is 1. For example,
the coverage weight b is 0.9 when the reputation weight a is 0.1. The experimental result shows
that the reputation value of the selected MUs is a non-decreasing trend with the increase in
reputation weight. When the weight of reputation is greater than 0.1, the average reputation
value of the users will reach 4. The coverage of the selected MUs is related to the number of users.
Thus, the coverage ratio and weight have a weak coupling relationship.
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5.2. Performance Evaluation of Incentive Mechanism

The SC will select optimal MUs in the target area when the SC publishes the total reward R to
the MUs for completing the task. Figure 5 shows that the weights of the optimal MUs’ reputation
and coverage are set as 0.2 and 0.8, respectively. Figures 6–11 analyze the MUs’ energy payoff and
bandwidth payoff, the utility of MUs selection priority, the bandwidth strategy selected by MUs,
the utility and payoff of MUs and the SC, and evaluation of the reputation of MUs, respectively.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 18 

 

bandwidth payoff increases with the total reward R. This phenomenon shows that the gap 

among MUs’ energy payoff, bandwidth payoff, and the average payoff increases with R. The 

mean square deviation of the energy payoff is greater than that of the bandwidth payoff when 

R is fixed because energy is determined by the distance of MUs, and the bandwidth is selected 

between zero and five. Thus, the stability of each MU's energy payoff is worse than that of the 

bandwidth payoff. 

 

Figure 6. Variation in the mean square of MUs' energy payoff and bandwidth payoff with R. 

 

Figure 7. Changes in total utility and R of MUs whether choosing priority. 

5. The utility of priority: Figure 7 shows the relationship between the utility of MUs whether 

choosing priority and the total reward R of the task. The task has the utility when MUs choose 

the optimal bandwidth strategy. However, if MUs need to perform other tasks, then the utility 

of each task will vary because the total rewards of the MU’s every task are diverse. Figure 7 

illustrates that as the total reward R of the task increases, the total utility obtained by MUs also 

rises. After the priority ranking is performed, the total utility obtained by MUs will be greater 

than that without prioritization. This finding shows that the total utility will increase after each 

MU selects the priority of the task, and the MU can perform tasks better to avoid time conflicts. 

Figure 6. Variation in the mean square of MUs’ energy payoff and bandwidth payoff with R.



Sensors 2020, 20, 4478 13 of 17

Sensors 2020, 20, x FOR PEER REVIEW 13 of 18 

 

bandwidth payoff increases with the total reward R. This phenomenon shows that the gap 

among MUs’ energy payoff, bandwidth payoff, and the average payoff increases with R. The 

mean square deviation of the energy payoff is greater than that of the bandwidth payoff when 

R is fixed because energy is determined by the distance of MUs, and the bandwidth is selected 

between zero and five. Thus, the stability of each MU's energy payoff is worse than that of the 

bandwidth payoff. 

 

Figure 6. Variation in the mean square of MUs' energy payoff and bandwidth payoff with R. 

 

Figure 7. Changes in total utility and R of MUs whether choosing priority. 

5. The utility of priority: Figure 7 shows the relationship between the utility of MUs whether 

choosing priority and the total reward R of the task. The task has the utility when MUs choose 

the optimal bandwidth strategy. However, if MUs need to perform other tasks, then the utility 

of each task will vary because the total rewards of the MU’s every task are diverse. Figure 7 

illustrates that as the total reward R of the task increases, the total utility obtained by MUs also 

rises. After the priority ranking is performed, the total utility obtained by MUs will be greater 

than that without prioritization. This finding shows that the total utility will increase after each 

MU selects the priority of the task, and the MU can perform tasks better to avoid time conflicts. 

Figure 7. Changes in total utility and R of MUs whether choosing priority.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 18 

 

6. Bandwidth strategy: Figure 8 analyzes the relationship between the bandwidth selected by MUs 

and the total reward R of the task. In Figure 8, the average bandwidth selected by MUs increases 

with the total reward R. When the total reward is less than 1000, the average bandwidth selected 

by the MU is less than 2.5. However, MUs choose the average bandwidth value to exceed 4 when 

the total reward is greater than 3000. 

 

Figure 8. Average bandwidth selected by MUs when R changes. 

7. Utility and payoff: Figure 9 shows the utility and payoff of MUs in the follower game and the 

utility and payoff of the SC in the leader game when the MUs have been selected to perform the 

task. The horizontal axis represents the total reward. In Figure 9a, the utility of the SC is declined 

when the total reward R increases from 1000 to 2000, and the payoff of the SC remained 

unchanged. Considering the selected MUs are certain, the utility of the SC will decrease when 

the total reward paid by the SC increases. In Figure 9b, the average utility and payoff of MUs 

are growing with the increase in R. Moreover, the total rewards paid by the SC are linearly 

related to the average utility and payoff of MUs. This indicates that under the condition of a 

certain number of users, the more rewards the SC has, the less utility the SC has, however, the 

users will have more utility. 

  

(a) (b) 

Figure 9. (a) Change in server center (SC) utility and payoff with total reward R; (b) change in average 

utility and payoff of MUs with total reward R. 

8. Figure 10 shows the utility of the SC and MUs of the CRJC-IMA and STD algorithm [15]. The 

STD algorithm is a non-cooperative game based on the Stackelberg game, and the total reward 

Figure 8. Average bandwidth selected by MUs when R changes.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 18 

 

6. Bandwidth strategy: Figure 8 analyzes the relationship between the bandwidth selected by MUs 

and the total reward R of the task. In Figure 8, the average bandwidth selected by MUs increases 

with the total reward R. When the total reward is less than 1000, the average bandwidth selected 

by the MU is less than 2.5. However, MUs choose the average bandwidth value to exceed 4 when 

the total reward is greater than 3000. 

 

Figure 8. Average bandwidth selected by MUs when R changes. 

7. Utility and payoff: Figure 9 shows the utility and payoff of MUs in the follower game and the 

utility and payoff of the SC in the leader game when the MUs have been selected to perform the 

task. The horizontal axis represents the total reward. In Figure 9a, the utility of the SC is declined 

when the total reward R increases from 1000 to 2000, and the payoff of the SC remained 

unchanged. Considering the selected MUs are certain, the utility of the SC will decrease when 

the total reward paid by the SC increases. In Figure 9b, the average utility and payoff of MUs 

are growing with the increase in R. Moreover, the total rewards paid by the SC are linearly 

related to the average utility and payoff of MUs. This indicates that under the condition of a 

certain number of users, the more rewards the SC has, the less utility the SC has, however, the 

users will have more utility. 

  

(a) (b) 

Figure 9. (a) Change in server center (SC) utility and payoff with total reward R; (b) change in average 

utility and payoff of MUs with total reward R. 

8. Figure 10 shows the utility of the SC and MUs of the CRJC-IMA and STD algorithm [15]. The 

STD algorithm is a non-cooperative game based on the Stackelberg game, and the total reward 

Figure 9. (a) Change in server center (SC) utility and payoff with total reward R; (b) change in average
utility and payoff of MUs with total reward R.



Sensors 2020, 20, 4478 14 of 17

Sensors 2020, 20, x FOR PEER REVIEW 15 of 18 

 

and sensing time of a task are used as the parameters of the utility function in the proposed game 

formula. With the increase in the total reward R paid by the SC to MUs, the utility of the SC in 

both algorithms declines (Figure 10a). As R grows, the optimal number of MUs increases, and 

the average utility of the two algorithms will no longer increase significantly (Figure 10b). 

However, MUs have more average utility when the total reward R and the optimal number of 

users are constant in the CRJC-IMA. The reason is that the cost is determined by the bandwidth 

of MUs when performing the task in the CRJC-IMA, and the cost of MUs will be lower than that 

of the STD algorithm. 

  

(a) (b) 

Figure 10. (a) Utility of the SC changes with R; (b) average utility of MUs changes with R. 

9. Reputation evaluation: Figure 11 shows the relationship between the reputation of MUs and the 

quality evaluation matrix (effort level eii) of the sensing data collected by MU wi. For the quality 

evaluation matrix eii of the sensing data, the majority of MUs uploaded follow the same normal 

distribution in [32], where μ = 0.75 and σ = 0.125. Figure 11 shows a linear relationship between 

the effort level (eii) and the reputation. The MU’s reputation is lower when the MU uploads the 

sensing data with a small evaluation matrix. However, the MUs’ reputation will be higher if the 

evaluation matrix of the MUs is larger. 

 

Figure 11. Number and reputation of MUs change with the effort level. 

6. Conclusions 

In this work, an incentive mechanism is proposed on the basis of the Stackelberg game that 

considers coverage and reputation for MCS. The overall mechanism includes the OMUS algorithm, 

Figure 10. (a) Utility of the SC changes with R; (b) average utility of MUs changes with R.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 18 

 

and sensing time of a task are used as the parameters of the utility function in the proposed game 

formula. With the increase in the total reward R paid by the SC to MUs, the utility of the SC in 

both algorithms declines (Figure 10a). As R grows, the optimal number of MUs increases, and 

the average utility of the two algorithms will no longer increase significantly (Figure 10b). 

However, MUs have more average utility when the total reward R and the optimal number of 

users are constant in the CRJC-IMA. The reason is that the cost is determined by the bandwidth 

of MUs when performing the task in the CRJC-IMA, and the cost of MUs will be lower than that 

of the STD algorithm. 

  

(a) (b) 

Figure 10. (a) Utility of the SC changes with R; (b) average utility of MUs changes with R. 

9. Reputation evaluation: Figure 11 shows the relationship between the reputation of MUs and the 

quality evaluation matrix (effort level eii) of the sensing data collected by MU wi. For the quality 

evaluation matrix eii of the sensing data, the majority of MUs uploaded follow the same normal 

distribution in [32], where μ = 0.75 and σ = 0.125. Figure 11 shows a linear relationship between 

the effort level (eii) and the reputation. The MU’s reputation is lower when the MU uploads the 

sensing data with a small evaluation matrix. However, the MUs’ reputation will be higher if the 

evaluation matrix of the MUs is larger. 

 

Figure 11. Number and reputation of MUs change with the effort level. 

6. Conclusions 

In this work, an incentive mechanism is proposed on the basis of the Stackelberg game that 

considers coverage and reputation for MCS. The overall mechanism includes the OMUS algorithm, 

Figure 11. Number and reputation of MUs change with the effort level.

4. Energy and bandwidth payoff: Figure 6 analyzes the mean square deviation of the energy payoff

and bandwidth payoff obtained by the MUs. The total reward R given by the SC to MUs will be
divided into two parts: each MU is rewarded on the basis of the energy consumed and bandwidth
used. As shown in Figure 6, the mean square deviation of the energy payoff and bandwidth payoff

increases with the total reward R. This phenomenon shows that the gap among MUs’ energy
payoff, bandwidth payoff, and the average payoff increases with R. The mean square deviation of
the energy payoff is greater than that of the bandwidth payoff when R is fixed because energy is
determined by the distance of MUs, and the bandwidth is selected between zero and five. Thus,
the stability of each MU’s energy payoff is worse than that of the bandwidth payoff.

5. The utility of priority: Figure 7 shows the relationship between the utility of MUs whether
choosing priority and the total reward R of the task. The task has the utility when MUs choose
the optimal bandwidth strategy. However, if MUs need to perform other tasks, then the utility
of each task will vary because the total rewards of the MU’s every task are diverse. Figure 7
illustrates that as the total reward R of the task increases, the total utility obtained by MUs also
rises. After the priority ranking is performed, the total utility obtained by MUs will be greater
than that without prioritization. This finding shows that the total utility will increase after each
MU selects the priority of the task, and the MU can perform tasks better to avoid time conflicts.

6. Bandwidth strategy: Figure 8 analyzes the relationship between the bandwidth selected by MUs
and the total reward R of the task. In Figure 8, the average bandwidth selected by MUs increases
with the total reward R. When the total reward is less than 1000, the average bandwidth selected
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by the MU is less than 2.5. However, MUs choose the average bandwidth value to exceed 4 when
the total reward is greater than 3000.

7. Utility and payoff: Figure 9 shows the utility and payoff of MUs in the follower game and the
utility and payoff of the SC in the leader game when the MUs have been selected to perform
the task. The horizontal axis represents the total reward. In Figure 9a, the utility of the SC is
declined when the total reward R increases from 1000 to 2000, and the payoff of the SC remained
unchanged. Considering the selected MUs are certain, the utility of the SC will decrease when
the total reward paid by the SC increases. In Figure 9b, the average utility and payoff of MUs are
growing with the increase in R. Moreover, the total rewards paid by the SC are linearly related to
the average utility and payoff of MUs. This indicates that under the condition of a certain number
of users, the more rewards the SC has, the less utility the SC has, however, the users will have
more utility.

8. Figure 10 shows the utility of the SC and MUs of the CRJC-IMA and STD algorithm [15]. The STD
algorithm is a non-cooperative game based on the Stackelberg game, and the total reward and
sensing time of a task are used as the parameters of the utility function in the proposed game
formula. With the increase in the total reward R paid by the SC to MUs, the utility of the SC in
both algorithms declines (Figure 10a). As R grows, the optimal number of MUs increases, and the
average utility of the two algorithms will no longer increase significantly (Figure 10b). However,
MUs have more average utility when the total reward R and the optimal number of users are
constant in the CRJC-IMA. The reason is that the cost is determined by the bandwidth of MUs
when performing the task in the CRJC-IMA, and the cost of MUs will be lower than that of the
STD algorithm.

9. Reputation evaluation: Figure 11 shows the relationship between the reputation of MUs and the
quality evaluation matrix (effort level eii) of the sensing data collected by MU wi. For the quality
evaluation matrix eii of the sensing data, the majority of MUs uploaded follow the same normal
distribution in [32], where µ = 0.75 and σ = 0.125. Figure 11 shows a linear relationship between
the effort level (eii) and the reputation. The MU’s reputation is lower when the MU uploads the
sensing data with a small evaluation matrix. However, the MUs’ reputation will be higher if the
evaluation matrix of the MUs is larger.

6. Conclusions

In this work, an incentive mechanism is proposed on the basis of the Stackelberg game that
considers coverage and reputation for MCS. The overall mechanism includes the OMUS algorithm,
two-stage Stackelberg game model, task priority time series method, and reputation update and
reward allocation method. The accuracy of the collected sensing data has an obvious improvement,
because the optimal MUs are selected by the constraint of coverage and reputation. In addition,
each user chooses the sensing task priority to ensure that the utility of tasks reaches the maximum.
Compared with the CTSIA, the proposed model in this paper has a higher coverage rate. The utility
of the SC and MUs in the proposed method is greater than that in the STD algorithm. Meanwhile,
MUs have more utility than those without a priority order. However, this article does not consider
the user selection task problem when multiple tasks are released. Therefore, an incentive mechanism
considering multiple TPs will be investigated in future work. Moreover, we will design an incentive
mechanism that combines non-monetary incentives to reduce the total rewards of the SC in the MCS.
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