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Deep learning‑based virtual 
cytokeratin staining of gastric 
carcinomas to measure 
tumor–stroma ratio
Yiyu Hong1,6, You Jeong Heo2,6, Binnari Kim3,4,5, Donghwan Lee1, Soomin Ahn3, 
Sang Yun Ha3, Insuk Sohn1 & Kyoung‑Mee Kim2,3,4*

The tumor–stroma ratio (TSR) determined by pathologists is subject to intra‑ and inter‑observer 
variability. We aimed to develop a computational quantification method of TSR using deep learning‑
based virtual cytokeratin staining algorithms. Patients with 373 advanced (stage III [n = 171] and IV 
[n = 202]) gastric cancers were analyzed for TSR. Moderate agreement was observed, with a kappa 
value of 0.623, between deep learning metrics (dTSR) and visual measurement by pathologists 
(vTSR) and the area under the curve of receiver operating characteristic of 0.907. Moreover, dTSR 
was significantly associated with the overall survival of the patients (P = 0.0024). In conclusion, we 
developed a virtual cytokeratin staining and deep learning‑based TSR measurement, which may aid in 
the diagnosis of TSR in gastric cancer.

Abbreviations
H&E  Hematoxylin and eosin staining
WSI  Whole-slide image
CK  Cytokeratin staining
DAB  Diaminobenzidine
TSR  Tumor–stroma ratio
vTSR  Visual tumor–stroma ratio
dTSR  Digital tumor–stroma ratio
ROC  Receiver operating characteristic
AUC   Area under the ROC curve

With the cancer progression, surrounding tumor microenvironment co-evolves into an activated state and cre-
ates a dynamic signaling circuitry promoting cancer initiation and growth, ultimately leading to fatal  diseases1. 
Endothelial cells, pericytes, fibroblasts, various inflammatory cells, and the extracellular matrix constitute the 
stroma surrounding the cancer cells. The tumor–stroma ratio (TSR) represents the proportion of neoplastic 
cells with respect to tumor-associated stroma. The technique for determining TSR is based on hematoxylin and 
eosin (H&E) staining of histological sections, allowing the estimation of the amount of stroma present in the 
primary tumors analyzed using conventional microscopy. The stromal component-predominant TSR-high is 
an independent adverse prognostic factor in several cancers, including breast cancer (especially triple-negative 
breast cancer)2,3, esophageal squamous cell  carcinoma4, ovarian  cancer5, non-small cell lung  carcinoma6, cervi-
cal  carcinoma7,8, and colorectal  carcinoma9–13. Despite existing evidence, TSRs are not implemented in routine 
pathology reports, possibly because of the lack of standard procedure due to varying methodologies used in 
assessing  TSR14. Most published studies propose including visual assessments by pathologists; however, such 
assessments have low inter-observer agreement and reproducibility.
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To minimize the problems associated with the visual methods for assessing TSRs, computer-aided deep 
learning-based methods are being developed to facilitate the automated assessment of  TSRs14,15. In many stud-
ies, computer-aided tumor and stroma quantification, based on the screening of automated tissue segmenta-
tion in H&E-stained sections with a combination of hand-crafted features and machine learning, are being 
 used14–16. Deep learning algorithms, which are a new branch of machine learning  algorithms17–21, have recently 
entered the field of computational pathology, and have shown promise in automating histopathological image 
 analysis14–16,22–27. Geessink et al.14,15 proposed a deep learning-based TSR scoring, which requires labor-intensive 
patch-wise or pixel-wise annotations of the tumor, stroma, and normal tissue regions, and this automatic TSR 
score achieved a moderate agreement of 0.521 kappa compared with two observers’ consensus scores. Xu et al.27 
recently introduced a conditional  CycleGAN18 to transform H&E images into immunohistochemical (IHC) 
images by transferring the styles. However, the CycleGAN mechanism uses unpaired H&E and IHC images 
during the training stage; the generated IHC images may provide less precise information than the actual IHC 
images. Furthermore, Bulten et al.22 and Tellez et al.23 used IHC images as reference standards to extract annota-
tions for specific cells using a typical classification model.

In the present study, we aimed to distinguish tumors from the stroma using simplified binary annotated masks 
without laborious annotation. For this purpose, we developed a deep learning model with pixel-level-paired 
H&E and IHC images using a single network.

Materials and methods
Patients. This study was approved by the Institutional Review Board of Samsung Medical Center (approval 
number: 2020-04-225) and included a consecutively selected cohort of 373 patients with stage III and IV gastric 
adenocarcinoma. All patients underwent curative surgery in 2014 and 2015 at the Samsung Medical Center 
(Republic of Korea), and written informed consent was obtained from all participants. All experiments were 
performed in accordance with the relevant guidelines and regulations. No patient received neoadjuvant chemo-
therapy or died within 30 days from the date of surgery. Prior to surgery, no distant metastases or other cancers 
in patients were diagnosed. Follow-up clinical data were obtained from medical records. Clinicopathological 
findings, including age, sex, Lauren type, pathology, depth of tumor invasion (pT), and lymph node metastasis 
(pN) stages, are listed in Table 1.

Preparation of multiplexed H&E‑ and IHC‑stained sections and scanning. Slides were prepared 
for a representative section of each of the 373 formalin-fixed and paraffin-embedded (FFPE) tissue samples; 
FFPE tissue section (4-µm-thick) were prepared and stained with H&E using an automatic stainer for routine 
diagnostic purposes. Representative slides containing deeply invasive tumor parts were selected to visually assess 
the TSR and tumor pT stage.

For multiplexed H&E- and IHC-stained sections, IHC staining for cytokeratin (CK) (Novocastra™ Liquid 
Mouse Monoclonal Antibody with 1:500 dilution) was performed. Intermediate filaments found in epithelial cells 
of all types and markers for carcinoma cells were first analyzed using BOND-MAX Autoimmunostainer (Leica 
Biosystems, Melbourne, Australia). The IHC-stained slides were scanned at × 200 total magnification (tissue-level 
pixel size, 0.32 μm/pixel) with Aperio Digital Pathology Slide Scanner (Aperio Technologies, Inc., Vista, CA). 

Table 1.  Clinicopathologic characteristics of patients with gastric adenocarcinoma. SD standard deviation.

Training set (n = 13) Test set for TSR assessment (n = 358)

(Mean ± SD) (Mean ± SD)

Age 53 (± 11.71) 64 (± 12.88)

Sex

Male 10 (76.92%) 230 (64.25%)

Female 3 (23.08%) 128 (35.75%)

Lauren type

Intestinal 7 (53.85%) 76 (21.23%)

Diffuse 6 (46.15%) 225 (71.23%)

Mixed 0 (0.00%) 0 (0.00%)

Indeterminate 0 (0.00%) 27 (7.54%)

Pathology

Hepatoid adenocarcinoma 0 (0.00%) 1 (0.28%)

Mucinous adenocarcinoma 0 (0.00%) 27 (7.54%)

Signet-ring cell carcinoma 1 (7.69%) 36 (10.06%)

Tubular adenocarcinoma, well/moderately differentiated 7 (53.85%) 76 (21.23%)

Tubular adenocarcinoma, poorly differentiated 5 (38.46%) 218 (60.89%)

AJCC stage

Stage III 7 (53.85%) 163 (45.53%)

Stage IV 6 (46.15%) 195 (54.47%)
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After scanning, the same slides were stained with H&E after removing aminoethylcarbazole (AEC) by washing 
with distilled water, and then, the slides were incubated with 70%, 80%, and 95% ethanol for 2 min each, followed 
by incubation with 0.15 M  KMnO4 for 1 min as previously  described20. A total of 15 pairs of multiplexed H&E 
and CK whole-slide images (WSIs) of gastric carcinoma were prepared for this study.

Dataset preparation. As shown in Table 1, we prepared WSI datasets consisting of one training dataset 
and two test datasets for evaluation. Each pair of H&E and CK WSI or only H&E WSI was obtained from each 
patient. The training dataset, which contained 13 pairs of H&E and CK WSIs, was used to train a deep learning 
model about structured context between H&E and CK images.

One test dataset, which contained two pairs of H&E and CK WSIs, was mainly used for the visual comparison 
of virtually generated CK image against the real CK-stained image. The other test dataset that contained the 358 
H&E WSIs was used to evaluate the performance of our TSR-scoring method. The test datasets were used as 
hold-out sets and were not used for model training or optimization.

Visual measurement of TSR (vTSR) by the pathologists. The TSR score for each specimen was visu-
ally assessed by experienced pathologists (B. K. and K.-M. K.). Areas with the highest amount of stroma were 
selected, and the amount of stromal tissue was estimated per 10% increment using a 10× objective lens. The 
TSR was categorized into vTSR-high (> 50% stroma) and vTSR-low (≤ 50% stroma) groups based on the recom-
mended  guidelines9. In cases where the stroma region was larger than the tumor region in hotspots, the WSI 
was scored as vTSR-high, and in cases where the tumor region was larger than the stroma region in hotspots, the 
WSI was scored as vTSR-low.

Development of a deep learning pipeline. The pipeline for our method is illustrated in Fig. 1. At the 
training stage, we registered CK and H&E images to ensure high-pixel-level similarity. The process was per-
formed in a global and local manner. After registration, each corresponding local region was tiled into pairs of 
small patch images to train cGAN. The use of deep adversarial training allowed the model to learn structural 
information and details between H&E images and their corresponding CK images. During model testing, the 
H&E patch images were inputted into the training generator to generate the CK image. The generated CK images 
were stitched into a part of or an entire WSI for further scoring of the dTSR using corresponding H&E images.

Registration between H&E and CK images. Figure 2 shows the pipeline of our registration method, 
which is a two-step (global and local) method. A global shift vector was calculated to coarsely align the pair of 
WSIs. A local shift was then calculated for each local region to enable precise registration. A detailed description 
of the registration method is as follows. First, the H&E and CK WSIs were downsampled 32 times. Next, color 
 deconvolution28 was performed on both sets of images to transform their RGB color space into a hematoxylin-
eosin-diaminobenzidine (HED) color space. CK antibody is mainly stained in the cytoplasm; therefore, eosin 
color channels were extracted from H&E images, and diaminobenzidine (DAB) color channels were extracted 
from CK images. Thereafter, we binarized the two channel images using locally adaptive thresholding to estab-
lish the binary threshold for small regions of the images. Each threshold value was calculated as the weighted 
mean of the local neighborhood subtracted by an offset value. The local neighborhood block size was set at 151, 

Figure 1.  The pipeline of our proposed method.
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and the offset value was set at 10. After binarization, small objects with area under 200 were removed from the 
binary images. The global shift vector was calculated by determining the location of the maximum value of the 
2D cross-correlation heatmap of the two binary images. Cross-correlation can be calculated by employing the 
fast Fourier transform algorithm. To achieve precise mapping between the two types of images, local registration 
must be performed in succession. Global shifting was applied onto the images of the local regions with the same 
location as shown in WSIs and with 10,240 × 10,240-pixel resolution, and then, the images were extracted in a 
tiling manner. From each local region, we further extracted patch images with 1024 × 1024-pixel resolution also 
in a tiling manner, except for those with almost all-white backgrounds. The local shift vector of each pair of patch 
images was calculated using the same process used for calculating the global shift vector. The mean of the local 
shift vectors, which allowed the removal of outliers with local region plus the global shift vector, were established 
as the final shift vector for the local region.

CK image generation using H&E images using Pix2Pix cGAN. After registration, a one-to-one cor-
respondence between H&E and CK patch images was achieved. To generate CK images from H&E images, a 
model should learn the structured context between the two images. In other words, a model should learn the 
semantic information between CK and H&E images during the transformation process. If a model could pre-
serve high semantic correctness, it would establish virtually generated CK images into functional data as the 
generated images would function like the actual stained image. Through a thorough investigation, we considered 
the Pix2Pix deep generative adversarial  architecture18 as the best approach for this task. Such a model is suffi-
ciently flexible in detecting subtle differences in a range of higher-order statistics between generated and real CK 
images. The Pix2Pix model is trained using deep adversarial learning that can automatically learn a proper loss 
function instead of through manually engineered loss functions.

Included in the Pix2Pix architecture is a generator network G and a discriminator network D . From a previous 
 study18, the generator was a U-net19-shaped network with skip connections, and the discriminator was based on 
a PatchGAN that operates by classifying individual patches in an image as real or fake. By importing an H&E 
image x into the generator, a CK image G(x) was generated. Furthermore, by defining real CK images as y , the 
discriminator D learned to classify between real {x, y} pairs and fake {x,G(x)} pairs. The generator was trained to 
develop CK images that could not be distinguished from real CK images by an adversarial trained discriminator. 
Both the generator and discriminator observed the input H&E images, and the discriminator used pairs from 
both real and fake images.

To provide noise such that the network could produce a high stochastic output, dropout was applied onto 
the generator in the original Pix2Pix architecture. However, in our case, the network required more predictable 
and deterministic outputs; thus, we removed the dropout from our generator network.

The objective of our conditional GAN was formulated as follows:

Figure 2.  The pipeline of our image registration process.
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where G minimized this objective against an adversarial D that attempted to maximize it. The generator G 
attempted to reduce the loss from the discriminator and additionally attempted to move the fake distribution 
close to the real distribution using the L1 loss. Besides the L1 loss in the RGB color space, we added L1 loss into 
the HED color space between the real CK image and fake CK image.

Our final loss function is

The network was implemented in PyTorch (https:// pytor ch. org/). During training, �1, �2 , and the batch size 
were set to 10, 0.9, and 1, respectively. The Adam optimizer with a fixed learning rate of 0.0002 was used to mini-
mize the loss function. The model was trained for 200 epochs. At the test stage, the discriminator was removed, 
and only the generator was used to develop the CK images from the H&E images. The code developed and used 
for this study can be found at https:// github. com/ YiyuH ong/ ck_ virtu al_ stain ing_ paper.

The images used for training and inference were processed as follows: H&E and CK WSI were all tiled 
into 256 × 256-pixel resolution patch images at × 200 total magnification (tissue-level pixel size 0.32 μm/pixel) 
using OpenSlide library (https:// opens lide. org) after image registration processing. The pairs of patch images 
in the white background that are H&E patch images where > 95% of the pixel values were above 220 in the gray 
scale color space were  removed25,26. Many CK patch images with little dyed areas (no epithelial cells) were not 
useful for the model to learn structural contexts between H&E and CK images. These types of pairs of images 
were downsampled and accounted for approximately 10% of the total training images. A CK patch image was 
considered as having little dyed area if < 5% of pixels were left on the DAB channel that was thresholded at 80.

Measurement of TSR by the deep learning metrics (dTSR). The overall process to calculate the 
dTSR score using virtually generated CK images is shown in Fig. 3. First, real H&E image and virtual CK image 
pairs were binarized. The H&E image was binarized by thresholding at 200 after transformation into gray-
scale. The CK image was binarized by thresholding with 80 on the DAB channel that was obtained by color 
 deconvolution28. In the figure, the white region of the binarized H&E image and the binarized virtual CK image 
were regarded as the tissue region and tumor region, respectively. We considered the removed tumor region 
from the tissue region as the stroma region. The dTSR in this study was calculated using the following equation:

(1)LcGAN (G,D) = Ex,y

[

logD(x, y)
]

+ Ex

[

log(1− D(x, G(x)))
]

,

(2)LL1(G)
RGB = Ex,y

[

�yRGB − G(x)RGB�1
]

,

(3)LL1(G)
HED = Ex,y

[

�yHED − G(x)HED�1
]

.

(4)G
∗ = arg min

G
max
D

LcGan(G,D)+ �1LL1(G)
RGB + �2LL1(G)

HED.

Figure 3.  The dTSR scoring process. The white region on the binary image indicates the corresponding 
detected region of tissue, tumor, and stroma.

https://pytorch.org/
https://github.com/YiyuHong/ck_virtual_staining_paper
https://openslide.org
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Results
Visual assessment of registered H&E and CK images. As both H&E and CK WSI were available from 
the re-staining of the same tissue sections, we found almost no complex nonlinear deformations; however, we 
did find a simple vertical and horizontal shift between them. These shifts have also been previously  reported22,23. 
Figure 4 shows the representative pairs of H&E and CK patch images after registration. All images were from 
different WSIs. By following the black grid in the figure, only minor deformations between the H&E images and 
their corresponding CK patch images were observed.

Visual comparison of virtual and real CK staining. Figure  5 shows the real H&E images, real CK 
images, and virtual CK images at the WSI and patch levels for visual comparison. Real H&E and CK images were 
obtained from the test dataset for visual comparison. The real CK images were obtained after the registration 
of the real H&E images, and the virtual CK images were obtained by transforming the corresponding real H&E 
images using our method. At the WSI level, the overall staining pattern between the real CK WSI and virtual 
CK WSI was similar: scattered single tumor cells and cancer glands were stained in the same cells, although the 
staining intensity was different among areas within the tumor. Interestingly, vessels mimicking tumor glands 
were not visualized by virtual CK staining. The high sensitivity and specificity of virtual CK staining observed 
using the visual comparison of images indicated that our trained model had learned the difference in semantic 
context between H&E and CK images.

To ensure accurate TSR assessment of the tumor cell-rich areas using our method, segmentation performance 
for tumor and stroma on the virtual CK images must be checked. Figure 6 shows the dTSR assessed using H&E 
images from the test dataset for TSR scoring. They were transformed into virtually generated CK images using our 
method and segmented as shown in Fig. 3. The segmented images showed that the tumor region occupied most 
of the area in the segmented dTSR-low images compared with the segmented dTSR-high images. Although other 
types of cells and structures in the stroma region could be present because the stroma region was obtained by 
removing the tumor region from the tissue region, they were negligible with respect to the TSR-scoring hotspots.

Agreement of TSR between deep learning and pathologists and its effect on prognosis. In 
this study, wherein deep learning-based measurement was applied, 358 advanced gastric cancers were divided 
into 121 (33.80%) dTSR-low and 237 (66.20%) dTSR-high tumors. According to the visual assessments by the 
pathologists, the 358 gastric cancers comprised 128 (35.75%) vTSR-low and 230 (64.25%) vTSR-high tumors. 
Agreement between dTSR and vTSR was measured using the test dataset for TSR scoring, where the dataset 
included H&E WSIs of 358 gastric carcinomas (Table 2). Each WSI was labeled as either vTSR-low or vTSR-high 
by pathologists, and the hotspots marked with tumor-rich and deeply infiltrating and invasive cancer areas were 
annotated on each WSI. For WSI with several hotspots, our method for calculating dTSR scores for each of the 
hotspots was used, and the average dTSR score was assigned to the WSI.

Low and high TSRs scored by the pathologists were treated as true labels and set as 0 and 1, respectively, to 
calculate the ROC and AUC curves of the proposed method, as shown in Fig. 7. Adding the LL1(G)

HED loss 
improved the performance of the proposed method compared to using only LL1(G)

RGB loss, thereby resulting 
in an AUC of 0.907 (improved by 0.053) for the test dataset. An AUC of > 0.90 indicates that our method has a 
high performance in automatically assessing TSR-low and TSR-high WSI in hotspots.

Cohen’s kappa was also calculated to measure the TSR-scoring agreement between the dTSR and vTSR. After 
assessing several cut-offs, such as 50%, 55%, 65%, 70%, and 75%, for dichotomizing dTSR into dTSR-high and 

(5)dTSR =
Stroma area

Tumor area+ Stroma area
× 100%.

Figure 4.  Pairs of hematoxylin and eosin (H&E) and cytokeratin (CK) staining patch images after registration.
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dTSR-low, the 65% cut-off was identified to provide the best kappa value. The details are presented in Table 2. A 
substantial agreement, with a kappa of 0.623, was found.

Parameters of the correlation between dTSR with clinicopathological characteristics are described in Table 2. 
Tumors classified as dTSR-high tumors were significantly associated with a diffuse histologic subtype based on 
higher disease stage (P = 0.0195), pathology (P < 0.0001), Lauren type (P < 0.0001), and vTSR (P < 0.0001). In 
predicting patient overall survival, dTSR-high tumors were significantly associated with worse overall survival 
in stage III and IV cancer patients; the statistical values for the predictive power of dTSR (P = 0.0024) and vTSR 
(P = 0.002) were similar (Fig. 8). We constructed a Cox proportional hazards model and found that dTSR-high 
was associated with worse prognosis of patients (hazard ratio 1.268, 95% 1.125–11.23, P = 0.0307).

Figure 5.  Visual comparison of real hematoxylin and eosin (H&E)- and real cytokeratin (CK)-stained images 
against virtual CK-stained images at the WSI and patch level.
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Discussion
In this study, we developed a deep learning-based TSR measurement tool, aided by virtual CK staining using 
combined image registration techniques and a conditional GAN-based generation model. Using deep learning-
based dTSR measurement, 358 advanced gastric cancers were classified into 121 dTSR-low and 237 dTSR-high 
tumors; the dTSR-high tumors were significantly associated with advanced disease stage and worse overall 
survival in patients with stage III and IV cancer. Moreover, the agreements for determining TSR using dTSR 
and vTSR yielded a moderate agreement with an AUC value of 0.907. Moreover, in patients with stage III gastric 
cancer, dTSR was more significantly associated with the overall survival of patients than vTSR.

Tumor stroma is an integral part of cancer initiation, growth, and progression. Moreover, stromal elements of 
tumors hold prognostic and response-predictive information, and abundant targeting opportunities within the 
tumor microenvironment continue to be  identified1. Consistent with previous studies on various tumor  types2–12, 
we first identified that TSR-high tumors were a poor prognostic factor for advanced gastric cancer. Although we 
failed to determine any significance in stage IV gastric cancer patients, determining a prognostic factor for stage 
IV gastric cancers was difficult owing to poor prognosis wherein 5-year survival rates reportedly range from 15 
to 18%29. In our previous molecular classification of gastric  cancer30, mesenchymal-like molecular subtype was 
closely associated with poor prognosis and diffuse type according to Lauren classification. In the present study, 
compared with TSR-low subtypes, we demonstrated that the TSR-high subtype was significantly associated with 
diffuse histologic subtypes and worse prognosis.

Lou et al.31 provided evidence that TSR upon the initial diagnosis of ovarian carcinoma was associated 
with the eventual emergence of its resistance to platinum-based chemotherapy. They also indicated that TSR is 
straightforward and not cost-prohibitive as it utilizes routine histopathologic slide evaluations and is a parameter 
that can be included in pathology reports as part of medical records. TSR can be further validated by examining 
tissues and correlating it with the outcomes of large-scale co-operative group  trials31. Variations in methodology 
and a lack of a standard procedure in assessing  TSR14 have posed challenges in establishing routine pathology 
reports. To address such challenges, standardized assessment methods without inter-observer variability are 
important. The recent introduction of digital pathology in routine tissue diagnostics provides opportunities for 
automated TSR  analysis14,15. Herein, we used deep learning-based dTSR measurements and found that it cor-
related with vTSR and prognostic significance.

In the present study, image registration and de-staining and re-staining processes for the same tissue sections 
for H&E and CK staining of WSIs guaranteed pixel-level registration with minimal shifting changes. Image 
registration with high performance enabled the production of large amounts of training image data that sub-
sequently improved the performance of the deep learning model. Although some registered patch images with 

Figure 6.  Tumor and stroma segmentation results on virtual CK images that were transformed from 
hematoxylin and eosin (H&E)-stained images on the hotspots of tumor–stroma ratio (TSR) assessment. The two 
columns on the left are images of dTSR-low, whereas the two columns on the right are images of dTSR-high.
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Table 2.  Correlations between dTSR and vTSR and corresponding clinicopathologic characteristics.

Test set for TSR assessment 
(n = 358)

P-value

dTSR-low dTSR-high

(n = 121) (n = 237)

Age 0.0006

 < 60 28 (23.14%) 100 (42.19%)

 ≥ 60 93 (76.86%) 137 (57.81%)

Sex 0.0121

Male 89 (73.55%) 141 (59.49%)

Female 32 (26.45%) 96 (40.51%)

Lauren type  < 0.0001

Intestinal 47 (38.84%) 29 (12.24%)

Diffuse 61 (50.41%) 194 (81.85%)

Indeterminate 13 (10.75%) 29 (5.91%)

Pathology  < 0.0001

Hepatoid adenocarcinoma 1 (0.83%) 0 (0.00%)

Mucinous adenocarcinoma 13 (10.74%) 14 (5.91%)

Signet-ring cell carcinoma 8 (6.61%) 28 (11.81%)

Tubular adenocarcinoma, well/moderately differentiated 46 (38.02%) 30 (12.66%)

Tubular adenocarcinoma, poorly differentiated 53 (43.80%) 165 (69.62%)

AJCC stage 0.0195

Stage III 66 (54.55%) 97 (40.93%)

Stage IV 55 (45.45%) 140 (59.07%)

vTSR  < 0.0001

Kappa = 0.623

 vTSR-low 98 (80.99%) 30 (12.66%)

 vTSR-high 23 (19.01%) 207 (87.34%)

Figure 7.  Receiver operating characteristic (ROC) curve of dTSR-scoring performance of the proposed method 
without and with LL1(G)

HED.
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small shifting errors were observed, their effect on the model performance was insignificant owing to their small 
quantity. Alternatively, similar to normal processes in pathologic research and diagnosis, tissue sections can be 
stained with H&E and CK to produce training data. However, as they are not from an identical tissue section, 
significant morphological differences make the pixel-level registration almost impossible; deep learning models 
hardly learn structured context from these kinds of paired images.

The approach of using a manual pixel-wise annotation and IHC staining as a reference standard can be 
assessed based on two aspects: annotation precision and labor intensity. For example, in the present study, 
it was possible to annotate the epithelial tumor cells that were tightly attached in clusters in the H&E image; 
however, it was almost impossible to precisely annotate all individually scattered epithelial tumor cells as it 
required enormous labor. Furthermore, subjectivity affected the classification of the cell types, with ambiguous 
morphology and introduced intra- and inter-observer variability, resulting in reduced precision. By contrast, 
the CK IHC annotation was more objective and precise in marking epithelial tumor cells, although slight arti-
facts during scanning and non-specific staining could reduce precision. The main labor requirement came from 
the destain–restain process for producing IHC WSIs, which was laborious and costly. Based on the findings of 
recently published  studies22,23,27 that utilized IHC WSI with deep learning, we trained a generative model by 
introducing CK IHC WSI for TSR scoring instead of using manual  annotations14,15. The TSR-scoring ability was 
verified by correlating the results of our method with those obtained by experienced pathologists from this large 
dataset (AUC of 0.907 and kappa of 0.623 on 358 gastric carcinoma H&E WSI). Moreover, direct comparisons 
of real CK images and virtual CK images detected almost the same cells with high precision in both intestinal 
and diffuse type gastric carcinomas. Validation of the proposed technology on a larger and independent data-
set is essential for the technology to be incorporated into routine pathologic diagnostics. The objectivity of a 
deep learning-based TSR measurement method, which allows accurate and reproducible quantification, has the 
potential to pave the way for the implementation of TSR in clinical  practice14.

Nevertheless, there are two main limitations of the present study: (1) the selection of hotspots for TSR meas-
urement is not automatic; instead, selection was subjectively performed by a pathologist. Therefore, pathologists 
using our approach would result in different TSR scores as they may select different hotspots on the same WSI. 
To solve this problem, an objective and automatic hotspot detection module is required. (2) As our deep learning 
model was trained using data from a single institute, it may not be usable on datasets from other hospitals. Tissue 
samples that are processed, stained, and prepared differently may contain different color tones and morphological 
details that would decrease the performance of this deep learning model. To overcome these limitations, we plan 
to develop a fully automatic TSR measurement approach that includes automatic hotspot detection to reduce 
inter-pathologist variation. Moreover, we intend to implement prospective, multi-institutional consortium to 
train a more robust deep learning model.

Until recently, TSR was evaluated by pathologists; however, the use of H&E slides and TSR score prediction 
techniques using deep learning has just begun, although it has limited accurate prediction power. Our study 
presents a novel technique to evaluate TSR using a deep learning model with virtual CK images generated using 
cGAN by inputting H&E slide images.

Data availability
The datasets generated and/or analyzed in the current study are available from the corresponding author upon 
reasonable request.

Code availability
The code used in this manuscript can be found on Github at https:// github. com/ YiyuH ong/ ck_ virtu al_ stain 
ing_ paper.

Figure 8.  Kaplan–Meier curve of the overall survival of patients stratified by tumor–stroma ratio (TSR) 
measured by pathologists (vTSR) (A) and TSR using the deep learning metrics (dTSR) (B) for gastric cancers.
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