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Abstract: Adenosine -5′-triphosphate (ATP) plays a valuable role in metabolic activity to produce
adequate energy in a biosystem. A high ATP/AMP ratio has a correlation with diabetes that induces
suppression of AMP-activated protein kinase (AMPK). Matrix-assisted laser desorption/ionization
(MALDI)–mass spectrometry (MS) has outstanding potential in determining the ratio of several types
of adenosine phosphates in a sample to rapidly understand the primary energy transfer in metabolism.
Although MALDI is viewed as a soft ionization technique for MS analysis, excess photon energy
might crack the phosphate bonds leading to misinterpretation of the ATP level. In this work, ionic
liquid matrices (ILMs) were employed to reduce fragmentation and increase the detection efficiency
during the MALDI process. This study demonstrated for the first time that 2,5-dihydroxybenzoic acid
pyridine (DHBP) is one of the most effective matrices for further quantitative analysis of adenosine
nucleotides. This systematic screening of ILMs also enhances the fundamental understanding
of MALDI.

Keywords: ionic liquids; MALDI; ionic liquid matrix; soft ionization; nucleotides; triphosphate;
Adenosine; AMPK; ATP

1. Introduction

Adenosine-5′-triphosphate (ATP) has been studied as a “molecular currency,” which stores
and transfers chemical energy in living cells [1]. It is essential as a metabolic regulatory parameter
between anabolism and catabolism. ATP is composed of adenine and ribose with three phosphates,
of which two high-energy phosphate bonds can be hydrolyzed to adenosine-5′-diphosphate (ADP) and
adenosine -5′-monophosphate (AMP) to release energy. Most cells maintain the intracellular ATP/ADP
ratio at 10:1. ATP level balance is closely related to energy homeostasis [2,3]. Recently, numerous
studies have indicated that the level of ATP could influence metabolism activities in various cancer
cells [4,5]. For example, AMP-activated protein kinase (AMPK) is a sensor of cellular energy change,
which is activated by increasing AMP/ATP or ADP/ATP ratios [6–9]. Dysfunction of ATP synthesis
and consumption can cause AMPK maladjustment [10]. Therefore, it is essential to determine the
ratio between AMP, ADP, and ATP in a biological system to understand primary energy transfer in
metabolism. Ambiguous quantitative analysis may lead to misinterpreted values and thus distort real
events in the biosystem.
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Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), two of the
most popular soft ionization techniques, are widely used for the analysis of biomolecules [11–14]. A soft
ionization process provides the opportunity to observe intact biomolecules in a mass spectrum rather
than the fragments of ions struck by high energy. Although it is generally believed that the ionization
process of ESI is milder than that of MALDI, by avoiding the fragmentation of labile analytes, MALDI
has the advantages of straightforward sample preparation, high throughput, and low interference from
background salts. Therefore, it is widely used in various research fields and has unique advantages.
Some small molecules are mixed with an analyte as the MALDI matrix to absorb photon energy from
a pulsed laser, and then the analyte is desorbed into the gas phase and ionized. Compared with
direct high-energy irradiation by lasers or particle beams [15,16]. MALDI reduces the requirement of
laser energy through the matrix as a medium. The milder ionization process of MALDI provides the
opportunity to observe the original structures of the analyte without breaking it during the desorption
and ionization process.

Although conventional MALDI is considered a soft ionization technique, many studies have
revealed that labile molecules, such as glycans containing sialic acid, phosphate, sulfate, acetyl
peptides, gangliosides, and polymers readily dissociate into fragments during MALDI [17–22].
Consequently, several modified methods or new matrices have been developed to overcome the
cracking problem in the ionization process. For instance, ionic liquids (ILs) were used as matrices
to not only provide homogenous morphology but also preserve the intactness of ganglioside and
phospholipid ions [23]. In another study, nanomaterials modified the MALDI sample plate to increase
sensitivity and reproducibility for glucans (pullulan and dextran) [24,25]; moreover, frozen MALDI
was employed, in which the solution temperature decreased to 100 K, making ganglioside and heparin
ions remained intact [26–28]. The aforementioned ionization techniques might successfully reduce
fragmentation, but the spot-to-spot reproducibility of the MALDI sample remains a challenge for
quantitative analyses. ILs have many advantages in various applications, including application
in MALDI– mass spectrometry (MS) [29,30]. The substitution of the conventional MALDI matrix
with ILs leads to substantial benefits. IL matrices (ILMs) exhibit characteristics such as vacuum
stability, homogeneous morphology, high reproducibility during sampling, and minimal fragment ion
production [31]. ILMs allow both qualitative and quantitative measurement of MALDI–MS and are
therefore widening the field of applications for this analytical method [32]. Moreover, an ILM can be
conveniently operated in a commercial MALDI–time-of-flight (TOF), which is suitable for this study.

High-performance liquid chromatography (HPLC)/ESI–MS is commonly used for quantitative
analysis of biomolecules. However, the platform is unsuitable for the quantitative analysis of adenosine
nucleotides because of the loss of phosphate [33]. The fragment ions of ATP would superimpose
on the ADP or AMP signal to hamper the quantitative identification of adenosine nucleotides in
the applications. As a tool for the quantitative analysis of adenosine nucleotides, MALDI–TOF may
also misinterpret data as a result of the bond cleavage at phosphate ester/anhydride linkages [34–36].
Some studies have replaced conventional MALDI matrices, such as 2,5-dihydroxybenzoic acid (DHB)
and α-cyano-4-hydroxycinnamic acid (CHCA) with novel organic compounds, nanoparticles, or ILs for
higher sensitivity and lower background interference [37–40]. However, the matrices generate a certain
percentage of fragments, which obstruct further quantitative analysis. Thus, this study demonstrated a
strategy for discovering a MALDI matrix that can analyze adenosine nucleotides based on ILs. We also
analyzed the mixtures of ATP, ADP, and AMP by using the ILMs to demonstrate the further ability
of quantitative analysis. A series of CHCA ILs and DHB ILs were used as matrices for adenosine
analysis. The relative photon absorbance, spot-to-spot variation, and suppression effect of the ILMs
were studied. The experimental results were used as a model to confirm the excellent capability of ILs
to serve as effective MALDI–MS matrices.
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2. Results

A wide variety of ionic matrices have been used as MALDI matrices for different
applications. In this study, the conventional matrices DHB and CHCA were employed
for comparison with their derived ILs. These ILs were synthesized, as illustrated in
Scheme 1. At room temperature, DHBB (DHB-butylamine), DHB/MI (DHB-1-methylimidazole),
DHB/TPA (DHB-tri-n-propylamine), CHCA/MI(CHCA-1-methylimidazole), CHCA/TBA
(CHCA-tri-n-butylamine), and CHCA/TPA(CHCA-tri-n-propylamine) are liquid and DHBA
(DHB-aniline), DHBP (DHB-pyridine), DHB/TBA (DHB-tri-n-butylamine), CHCAA(CHCA-aniline),
and CHCAB (CHCA-butylamine) are solid. The melting points of all these matrices were accordingly
determined and provided in Table S1 (Supplementary Information). In this study, the MALDI–MS
spectra of ATP, ADP, and AMP were demonstrated by the aforementioned matrices.
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2.1. Fragmentation Yield

To identify the IL as the most suitable matrix for quantitative analysis, the critical conditions of
MALDI, such as matrix-to-analyte ratio and relative absorbance, were optimized for both positive and
negative ions. The mass spectrum (MS) of ATP was performed using conventional matrices and ILMs
to test the sensitivity of our target. Comparing the details of MS for ATP in positive (Figure S1) and
negative (Figure S2) ions, the mass spectra in the negative mode presented less matrix background,
which is relevant to evaluating the fragmentation yield of ATP. However, the class of matrix resulted in
distinct spectral qualities. The signal intensity was higher when using CHCA and its related ILs, but
the background noise was also higher. The system using DHB and its related ILs exhibited a clear
signal of ATP, whereas the use of DHBB and DHB/MI resulted in poor sensitivity. Figure 1 lists some of
the comparisons of MALDI–MS of ATP between conventional matrices and ILMs. The deprotonated
[ATP-H]− (m/z 506.5) dominated all of the spectra. In addition to the deprotonated molecules, signals
for sodium adducts could also be observed in negative ion mode. Both [ATP-2H+Na]− (m/z 528.3) and
[ATP-3H+2Na]− (m/z 550.3) exhibited minor peaks corresponding to ATP in the spectrum. The ion
signals of the matrix were studied and then labelled in each spectrum (Figure S3). In some spectra,
[ADP-H]− (m/z 426.8) was present, which accompanied by the loss of phosphate (HPO3) from [ATP-H]−

because of the extra energy leading to fragmentation during the ionization process. Compared with the
conventional matrix, ILMs were used with relative success and reduced the fragmentation effectively,
except DHBB and DHB/MI, which failed to detect ATP. The fragmentation yields of [ATP-H]− for
definite matrices (presented in Figure 2) illustrate their “softness.” The yields were estimated by
summarizing the ion signal of [ADP-H]− and [ADP-2H+Na]− and then dividing by the total ion signal
corresponding to the analyte. The conventional solid matrices presented higher fragmentation yields,
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illustrating their “hard” characteristics in the ATP ionization process. Furthermore, they exhibited
a higher relative standard deviation (RSD) of the ion signal due to low homogeneity, which will be
discussed in the subsequent section.
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Figure 1. MALDI mass spectra of ATP (1 nmol) in one spot with the matrix of (a) DHB compared
with DHBA, and DHB/TBA ILs and (b) CHCA compared with CHCAA and CHCA/TBA in a negative
reflectron mode. The molar ratio of the matrix-to-analyte was approximately 500:1. The relative laser
energy was 95% and 75% for each group, respectively. The star symbols denote the signals of the
matrix background.
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Figure 2. The fragmentation yield of ATP ion signal in various matrices: (a) DHB ILs and (b) CHCA
ILs. The error bar of each data set was calculated by the intensity values (n = 20) of each matrix.

In summary, the ILMs exhibited much lower fragmentation yields than the conventional solid
matrix. DHB/TBA, DHB/TPA, CHCA/TBA, and CHCA/TPA were apparently superior to the others
to serve as a soft MALDI matrix with fragmentation yields of 0.80, 0.29, 0.28, and 0.87 percent,
respectively. In addition to the negligible fragmentation (<1%), the aforementioned ILMs did not
produce intense cluster ions or matrix ions in MALDI–MS, which facilitates interpretation. The lower
fragmentation of analyte ions is a critical advantage for quantitative analysis because the interference
from the fragmentation often leads to interpretation difficulty for mass spectra of ATP, ADP, and
AMP. Moreover, the detection efficiency of the analyte is the main parameter to evaluate applicable
matrices. The conventional matrices and ILMs were examined by the detection efficiency of ADP and
AMP shown in Figures S4 and S5. Although DHB/TBA and DHB/TPA demonstrated extremely low
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fragmentation yield to ATP, their detection efficiency to AMP was insufficient for further applications
(Figure S5). CHCA and related ILMs demonstrated favorable detection efficiency of ATP and ADP.
However, most of them were not successful in detecting AMP, except CHCA and CHCA/TPA (Figure
S5) and did not appear to be suitable candidates for further quantitative analysis.

2.2. Possible Ionization Mechanism of ILM

Although UV-MALDI has been widely used in the mass analysis of biomolecules, its ionization
mechanism remains unclear. The selection of a suitable matrix typically relies on trial and error or
experience; the same applies to ILMs. Several mechanisms have been proposed to explain the ionization
process in MALDI [41–43]. In these modes, photon energy absorption and proton transfer are the
main concerns in the ionization mechanism. However, these proposed mechanisms were reported for
conventional solid matrices but not necessarily valid for ILMs. In this section, we represented the UV
absorption and molecular structure of ILMs to elucidate their characteristics.

The UV spectrum absorption profiles of conventional matrices and ILMs were shown between 250
and 450 nm (Figure 3). All the spectra were normalized by the highest absorption band to compare the
band shift after being synthesized into ILs. The ILMs presented a blue shift to solid matrices, DHB and
CHCA, but no significant changes to the profiles were observed. The UV spectrum provided by ILMs
had lower absorbance at the required wavelength (355 nm) to generate a “colder” environment during
the ionization process (Figure 3 inset). Studies have revealed that an increase in surface temperature
can effectively enhance the proton transfer reaction in UV-MALDI [44]. Therefore, a decrease of the
absorption cross-section would not only suppress the fragmentation but also decrease the ionization
efficiency considerably. However, except for DHBB, DHB/MI, and DHB/TPA, most ILMs produced
sufficient signal ions when ADP was used as the analyte (Figure S4). Because of the intrinsic carboxylate
group in ILMs, the proton is transferred effectively from analyte to the carboxylate group in CHCA
and DHB forming negatively analyte ions even if the thermal energy is lower than in conventional
conditions (Scheme 2). However, the heat of deprotonation of carboxylate group in CHCA (M→ [M
−H]− + H+) was 316 kcal/mol, which is smaller than that in DHB (325 kcal/mol) [28]. This suggests
that the CHCA ILMs had a lower ability to remove a photon from the analyte when the acidity of the
analyte was lower. Therefore, the detection efficiency of AMP was lower when using CHCA ILMs,
which confirms the aforementioned deduction.
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2.3. Homogeneity of Sample Preparations

The homogenous distribution of matrix and analyte molecules in the sample spot is a critical
consideration in MALDI–MS. This is particularly crucial for quantitative measurements in which
numerous unsuccessful shots have a negative influence on the measurement. Some studies have
compared the homogenous characteristics between conventional matrices and ILMs to demonstrate the
advantages in spot-to-spot reproducibility for quantitative studies [23]. In this work, the spot-to-spot
variation of ILMs was compared to select a suitable candidate for further quantitative analysis
(Figure S6). The signal intensity of [ATP-H]− was collected from 20 random sampling positions.
The signal reproducibility was demonstrated by their RSD values calculated from the variation of
signal intensities (listed in Figure 4). Among the conventional matrices, the RSD was 72% for DHB and
81% for CHCA; sample preparation using solid matrices represented the “hot spots” phenomenon in
both DHB and CHCA. However, most of the ILMs exhibited lower signal variation than conventional
matrices. Notably, the liquid-like ILMs (DHB/TPA, CHCA/MI, CHCA/TPA, and CHCA/TBA) displayed
better homogeneity compared with others ILMs (Figure 4b,d).
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Figure 4. Plot of normalized [ATP-H]− signal distribution of (a) DHB (black square) and DHBA IL
(red circle) and (c) CHCA (orange square) and CHCA/MI IL (blue circle). The averaged RSD value in
20 different positions of (b) DHB ILs and (d) CHCA ILs. Each sampling spot was irradiated by 1000
laser shots.

2.4. Quantitative Analysis of ATP

To identify the relative ratio of ATP, ADP, and AMP in a biological sample, considering the
suppression effect between the analytes in a mixture is essential. The degree of suppression effect can
be observed by comparing ion intensity between the spectra of a single component and the mixture.
Because of the high fragmentation yield of CHCAA, high signal variation of CHCAB (Figure 4d) and
insufficient detection efficiency intensity of DHB/TBA, DHB/TPA, and CHCA/TBA in AMP (Figure S5),
only four of ILMs were selected for examining the suppression effect (Figures S7–S10). In general,
the detection efficiency of AMP in MALDI is relatively low, which also presented a considerable
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suppression effect in these four matrices. Considering the fragmentation yield, detection efficiency,
and homogeneity in the aforementioned experimental results, DHBP and CHCA/TPA were selected as
the two most suitable candidates for the final evaluation.

AMP, ADP, and ATP were premixed in the stock solution at molar ratios of 1:1:1, 1:1:2, 1:1:3,
1:1:4, and 1:1:5. Figure 5 reports the ratio of the signal intensity for ATP/ADP and ADP/AMP using
conventional matrices and ILMs DHBP and CHCA/TPA. The black square represents the molar ratio of
the analyte in-stock solution, which could be connected to a straight line. The experimental results
were demonstrated by hollow circles distinguished by color codes. For further comparison, the ratios
for distinct matrices were normalized by the data point of molar ratio 1:1:1. Figure 5a presents the
ratio of ATP/ADP, and Figure 5b presents the ratio of ADP/AMP in the five aforementioned mixtures.
In the case of prepared mixtures, the proportion of ADP/ATP increased with different samples, but the
proportion of ADP/AMP was kept constant in this experiment.
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Figure 5. The ion intensity ratios of theoretical and experimental results. The molar ratios were 1:1:1,
1:1:2, 1:1:3, 1:1:4, and 1:1:5 for AMP, ADP, and ATP, respectively. The concentration of ATP was gradually
increased, whereas concentrations of AMP and ADP were fixed. The ratios were all normalized by 1:1:1
point: (a) ratio of ATP/ADP from 1:1:1 to 1:1:5 and (b) ratio of ADP/AMP from 1:1:1 to 1:1:5 (n = 8).

Both Figure 5 and Figure S11 demonstrated the perfect fit to theoretical values when DHBP
was employed as the MALDI matrix. When the experimental data deviated below the straight line,
it suggested that an extra ion signal of ADP was cracked from ATP during the ionization process
(Figure 5a). The conventional matrices, DHB (blue circle) and CHCA (green circle) presented this
characteristic due to the “hard” ionization environment. However, most experimental data deviated
above the straight line in Figure 5b, which suggests that the detection efficiency of AMP decreased
more than that of ADP in the mixture. A critical concern is the varying degree of changes in the
detection efficiency of mixtures during MS analysis. Herein, the ILM DHBP demonstrated excellent
performance in the definite detection efficiency between single components and mixtures. Moreover,
DHBP is sufficiently “cold” enough to reduce fragmentation of the analyte during the MALDI process.

In conclusion, we discovered that DHBP has an excellent capability to work in MALDI–MS for
adenosine nucleotides analysis. This makes DHBP an ideal tool for screening biological systems and
understanding primary energy transfer in metabolism.

3. Discussion

A novel strategy using ILs as MALDI matrices were studied for analyzing the adenosine
nucleotides, ATP, ADP, and AMP. ILMs displayed more advantages than traditional MALDI matrices
and could be applied in dried-droplet preparations in MALDI–MS analysis as well. The ILMs were
kept under high vacuum conditions in the MS instrument; therefore, no manual selection of hot spots
was necessary to yield MALDI–MS for an appropriate signal-to-noise ratio. The ILs could efficiently
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ionize adenosine nucleotides with only minor fragmentation, that characteristic provides a valuable
tool to accurately interpret the results in energy metabolism activities.

In summary, we demonstrated that the IL DHBP is a highly suitable matrix for analyzing adenosine
nucleotides preventing the fragmentation of phosphate group. Compared with the conventional
matrix, DHBP has lower UV absorption at 355 nm, which represents a milder ionization process that
reduces the fragmentation of phosphate bonds in ionization. Moreover, the intrinsic carboxylate group
enhanced the proton transfer to produce the deprotonated anion of the analyte to compensate for
the lack of thermal energy. Furthermore, the reproducibility of signal intensity was considerably
improved by ILMs, as was the case with DHBP. Finally, the suppression effect was almost negligible
when we analyzed a mixture. These features of DHBP provide the opportunity to analyze adenosine
nucleotides quantitatively and rapidly by MALDI–MS. After optimization of parameters such as
sample preparation procedure, pH, or solvent conditions, DHBP ILM holds much promise for future
applications, especially for diabetes.

4. Materials and Methods

4.1. Materials

ATP-disodium salt (ATP-2Na) (99%), ADP-disodium salt (ADP-2Na) (= 95%), AMP-disodium
salt (AMP-2Na) (99%), DHB (98%), CHCA (98%), and aniline were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Tri-n-butylamine and 1-methylimidazole were purchased from Alfa Aesar
(Tewksbury, MA, USA). Butylamine and tri-n-propylamine were purchased from Acros Organics
(Geel, Belgium). Pyridine was purchased from Showa (Saitama, Japan). Methyl alcohol (≥99.9%),
ethyl alcohol (≥99.9%), and acetonitrile (≥99.9%) were purchased from Avantor (Radnor, PA, USA).
The chemicals were used without further purification and pretreatment before experiments. Water was
purified using a purification system (PORETECH, Ultrapure water system, Taiwan); all organic solvents
were all HPLC grade.

4.2. Synthesis of ILMs and MALDI Sample Preparation

The stock solution of the conventional matrices was prepared with 1:3 (v/v) H2O/acetonitrile (1 M
for DHB and 0.1 M for CHCA). The synthesis of ILM was prepared by dissolving 0.2 mmole DHB or
CHCA in methanol. An equimolar amount of a series of amines (0.2 mmol) including aniline, pyridine,
butylamine, 1-methylimidazole, tri-n-butylamine, and tri-n-propylamine were added to the matrix
solution [45]. After mixing the solution on a vortex for 2–3 min, a vacuum oven was used to efficiently
evaporate methanol and residual amine for 24 h.

The produced ILs were diluted with ethanol to a final concentration of 1 M (for liquid ILs) and
0.2 M (for solid ILs) as a stock solution. Stock solutions of analytes (2 mM) were prepared in deionized
water. MALDI samples were mixed with stock solutions 1:1 and 5:1 (v/v) of the matrix and the analyte
to molar ratios of matrix-to-analyte (M/A) between 500:1 and 50:1. Afterward, 1-3 µL of the mixture
solution was spotted onto a stainless-steel MALDI plate by using the dried-droplet method.

4.3. Instrument

Bruker Ultraflex III TOF mass spectrometer (Bruker Daltonics, Gmbh, Germany) was employed
in this study operating on reflectron mode. The Nd:YAG laser system was operated at 355 nm and
100-Hz repetition rate with appropriate relative laser energy (75–100%) and mass range. All mass
spectra were acquired by summing 1000 single-shot mass spectra, unless stated otherwise.

The UV-Vis absorption spectra (200–600 nm) of the DHB, CHCA, or IL solutions were
performed using a UV spectrophotometer (Hitachi, Westford, MA, USA, U-3010 UV-Visible, scanning
spectrophotometer, double beam, 1 cm optical path length). All stock solutions (1 M for DHB, 0.1 M
for CHCA, and 0.2–1 M for ILs) was diluted 1000 times before loading into the quartz cell.
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Supplementary Materials: The following are available online, Figure S1: MALDI mass spectra of ATP (1 nmol) in
one spot with the matrix of (a) DHB ILs and (b) CHCA ILs in positive reflectron mode, Figure S2: MALDI mass
spectra of ATP (1 nmol) in one spot with the matrix of (a) DHB ILs and (b) CHCA ILs in negative reflectron mode,
Figure S3: MALDI mass spectra of matrix background for (a) DHB ILs and (b) CHCA ILs in negative reflectron
mode, Figure S4: MALDI mass spectra of ADP (1 nmol) in one spot with the matrix of (a) DHB ILs and (b) CHCA
ILs in negative reflectron mode, Figure S5: MALDI mass spectra of AMP (1 nmol) in one spot with the matrix
of (a) DHB ILs and (b) CHCA ILs in negative reflectron mode, Figure S6: Plot of normalized [ATP-H]− signal
distribution of (a) DHB ILs and (b) CHCA ILs in 20 different positions of one sample spot on the MALDI metal
plate, Figure S7: MALDI mass spectra of (a) AMP (1 nmol) (b) ADP (1 nmol) (c) ATP (1 nmol) (d) AMP:ADP:ATP
= 1:1:1 (0.33 nmol for each one) with DHBA IL in negative reflectron mode, Figure S8: MALDI mass spectra of
(a) AMP (1 nmol) (b) ADP (1 nmol) (c) ATP (1 nmol) (d) AMP:ADP:ATP = 1:1:1 (0.33 nmol for each one) with
DHBP IL in negative reflectron mode, Figure S9: MALDI mass spectra of (a) AMP (1 nmol) (b) ADP (1 nmol) (c)
ATP (1 nmol) (d) AMP:ADP:ATP = 1:1:1 (0.33 nmol for each one) with CHCA/MI IL in negative reflectron mode,
Figure S10: MALDI mass spectra of (a) AMP (1 nmol) (b) ADP (1 nmol) (c) ATP (1 nmol) (d) AMP:ADP:ATP = 1:1:1
(0.33 nmol for each one) with CHCA/TPA IL in negative reflectron mode, Figure S11: Quantitative comparison
between theoretical and experimental ratios of AMP, ADP, and ATP, Table S1: Melting points of conventional
matrices (DHB and CHCA) and IL matrices measured by the Mel-Temp II Capillary Melting Point Apparatus
(Laboratory Devices Inc., USA).
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