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Summary Female reproductive performance traits in pigs have low heritabilities thus limiting

improvement through traditional selective breeding programmes. However, there is

substantial genetic variation found between pig breeds with the Chinese Meishan being

one of the most prolific pig breeds known. In this study, three cohorts of Large White 9

Meishan F2 cross-bred pigs were analysed to identify quantitative trait loci (QTL) with effects

on reproductive traits, including ovulation rate, teat number, litter size, total born alive and

prenatal survival. A total of 307 individuals were genotyped for 174 genetic markers across

the genome. The genome-wide analysis of the trait-recorded F2 gilts in their first parity/litter

revealed one QTL for teat number significant at the genome level and a total of 12 QTL,

which are significant at the chromosome-wide level, for: litter size (three QTL), total born

alive (two QTL), ovulation rate (four QTL), prenatal survival (one QTL) and teat number

(two QTL). Further support for eight of these QTL is provided by results from other studies.

Four of these 12 QTL were mapped for the first time in this study: on SSC15 for ovulation

rate and on SSC18 for teat number, ovulation rate and litter size.
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Introduction

Reproduction, especially female reproductive performance,

is an important component in livestock production. In pigs,

selection for improved prolificacy over the last decade has

been performed in different countries with a consequent

moderate increase in litter size (LS) at birth (Bee 2007).

However, this increase in number of piglets at birth has led

to an increased within-litter variation in birthweight as well

as a decrease in the birthweight per piglet (Bee 2007). These

effects have been associated with greater pre-weaning

mortality, slower growth rates and decreased pork quality

(Herpin et al. 2002; Quiniou et al. 2002; Foxcroft et al.

2007). As a result, selection for increased LS has not been

wholly productive. Recently, however, the Danish pig

industry has made progress by selecting for the number of

piglets still alive at day 5 as proposed by Su et al. (2007).

Maternal and environmental effects, as well as uterine and

conceptus factors, which affect the development of the

embryo and foetus, need to be taken into account. There-

fore, an understanding of these factors and the genetic

control of reproductive performance would offer the oppor-

tunity for an effective increase in LS at term and for

increased lifetime productivity.

The Chinese Meishan (MS) breed, a member of the Taihu

group of breeds, is one of the most prolific pig breeds known,

farrowing between three and five more live piglets per litter

than European commercial breeds, such as the Large White

(LW). However, the MS is not commercially viable in

Europe due to its poor growth rate and high carcass fat

content (Bidanel et al. 1990; Haley et al. 1992; Serra et al.

1992). The MS breed has larger litters through improve-

ments in prenatal survival (PS) at a given level of ovulation

rate (OR) (Haley & Lee 1993). Generally, when gilts are

compared at the same number of cycles after puberty, the

OR is similar in MS and composite white and LW gilts.

However, breed differences emerge and appear to increase

as the sows get older (Christenson et al. 1987; Bennett &

Leymaster 1989; Haley & Lee 1993). Despite the similar

uterine size observed in the different breeds (Haley & Lee

1993), the MS breed has been shown to display an

increased uterine capacity, achieving this by a greater level

of organisation in the uterus (Christenson et al. 1987; Haley

& Lee 1993) as well as increased placental efficiency (as

defined by the placental/foetal weight ratio) compared to

both European and U.S. breeds (Biensen et al. 1998; Wilson

et al. 1999).

Genetic markers associated with reproductive traits have

been identified through two complementary approaches.
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First, physiological candidate genes, which comprise genes

with known roles in the trait of interest, are scanned for

polymorphisms and tested for associations with variation in

the trait (Rothschild et al. 1996, 2000; Short et al. 1997;

Jiang et al. 2001; Vallet et al. 2005; Fernandez-Rodriguez

et al. 2011). Second, unbiased genome scans with anony-

mous DNA markers, such as microsatellites and more

recently with thousands of single nucleotide polymorphisms

(SNPs), have been used to identify quantitative trait loci

(QTL) with effects on reproductive traits (Rathje et al. 1997;

Rohrer et al. 1999; Wilkie et al. 1999; Cassady et al. 2001;

de Koning et al. 2001; King et al. 2003; Holl et al. 2004;

Rodriguez et al. 2005; Bidanel et al. 2008; Tribout et al.

2008; Ding et al. 2009; Onteru et al. 2011, 2012). The aim

of this study was to identify QTL affecting reproduction

traits in first parity gilts. Results from this study were

compared to previous studies.

Materials and methods

The population structure

Three cohorts of LW 9 MS crosses were developed at the

Roslin Institute over a period of eight years. The founder

grandparental animals were purebred LW and MS pigs

(Haley et al. 1992). All F0 animals were unrelated (Walling

et al. 1998). The F1 parents were produced through

reciprocal crosses of F0 purebred founder animals (MS male

9 LW female and LW male 9 MS female). The F1 offspring

weremated, producing F2 offspring in 43 full-sib families. The

resulting F2 female offspring were mated at 8–11 months of

age to purebred LW boars, and various reproductive traits

were recorded. In total, the present study included 35 F0 (13

males and 22 females), 94 F1 (14 males and 80 females) and

216 F2 (all females) individuals. The trait-recorded F2
animals had a minimum live weight of 85 kg at the start of

each experiment, and they were reared indoors on standard

commercial growth rations provided ad libitum until the time

scheduled for first mating. All gilts were observed daily for

signs of oestrus andweremated on the same day as detection.

Phenotypic trait data

At 5–20 days after mating, the weight of the animal was

recorded and the number of corpora lutea (CL) on the

ovaries was counted by laparoscopy and used as an

estimate of OR. The measures were recorded by the same

person each year to ensure consistency across the experi-

ment. In addition, for each gilt the number of teats (TN) was

counted. The total number of piglets born (LS) and the

number of piglets born alive was recorded (TBA). PS was

calculated as LS divided by OR. It was assumed that the

total number of CL reflected the maximum potential LS, and

therefore the maximum value for PS was one. Gestation

length (in days) was calculated as the difference between

the age of a gilt at mating and its age at farrowing.

Individuals with any missing measurements or with PS

values higher than one were removed from the data set

prior to analysis, resulting in 137 gilts with full records. The

mean, range and standard deviation of the phenotypic data

recorded for each trait and covariate are shown in Table 1.

DNA samples

At the end of the experiment, the animals were slaugh-

tered. DNA was prepared by standard procedures from

spleen tissues, which were collected post-mortem and stored

at –70 °C. DNA concentration and quality were estimated

on the Nanodrop ND-1000 (Labtech International Ltd.)

and checked by electrophoresis on a 0.8% agarose gel.

Working dilutions for a final concentration of 12.5 ng/ll
DNA were prepared in 96-well plates for all the samples,

and the plates were stored at 4 °C.

Genotyping of microsatellites markers

The genotypes of the trait-recorded F2 females, their F1
parents and their purebred grandparents were determined

for a total of 174 polymorphic genetic markers. The

microsatellites included in this study were selected from

microsatellites reported previously by the USDA-MARC

linkage map (Rohrer et al. 1996; http://www.marc.usda.

gov/genome/swine/swine.html), developed from BAC end

sequences of BAC clones that map to the region of interest

on chromosome 8 (SSC8) in the physical map (Humphray

et al. 2007; http://pre.ensembl.org/Sus_scrofa_map/Info/

Index) and designed from BAC clone sequences (Table S1).

Linkage map construction

CRI-MAP likelihood-based map construction (Green et al.

1990) and MULTIMAP (Matise et al. 1994) programs were

used to build linkage maps based on the recombination

Table 1 Summary of phenotypic data, indicating range of values, mean

and standard error of the mean (�SEM) and standard deviation (SD) for

each trait.

Traits recorded Range Mean (�SEM) SD

Ovulation rate (OR) 9–28 17.21 (0.30) 3.53

Teat number (TN) 12–18 14.93 (0.12) 1.37

Litter size (LS) 2–22 12.12 (0.33) 3.85

Total born alive (TBA) 1–17 10.96 (0.29) 3.42

Prenatal survival (PS) 0.11–1 0.71 (0.02) 0.19

Covariates

Age at mating (days) 248–357 302.41 (1.84) 21.50

Weight at laparoscopy (kg) 90–195 142.41 (1.82) 21.26

Age at farrowing (days) 362–469 416.54 (1.84) 21.50

Gestation length (days) 108–119 114.13 (0.15) 1.74

© 2014 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of
Stichting International Foundation for Animal Genetics., 45, 191–197

Hernandez et al.192



events in the QTL mapping pedigree. The order and

orientation of the linkage maps were investigated for

consistency with published maps (Rohrer et al. 1996;

http://www.marc.usda.gov/genome/swine/swine.html).

The resulting linkage maps also were checked with the

Chrompic option in CRI-MAP to identify putative double-

recombinant events in short map distances (i.e. <5 cM).

Suspect genotypes associated with the unlikely double

recombinants which could not be resolved were omitted

and a revised linkage map constructed.

QTL scan analysis

Quantitative trait loci analyses were performed using

regression-based interval mapping using the GridQTL web

interface enabling covariates and fixed effects to be fitted

(Seaton et al. 2006). A fixed QTL allele model, in which

genetically distinct founder lines (MS and LW pigs in this

case) were assumed to be fixed for alternative alleles at the

QTL affecting the trait of interest, was used for the QTL scan

analyses (Haley et al. 1994). Each reproductive trait mea-

sured was investigated individually for evidence of QTL in

the genome. For all QTL analyses, gestation length was

included as a covariate, except for TN for which no

covariate was used.

For each trait, the genome-wide (experiment-wide)

significance thresholds for the F-values were determined

by permutation testing using 1000 permutations. For

detected QTL, bootstrap with resampling analysis was then

carried out using 1000 resamples of the trait data to

determine approximate confidence intervals for the QTL

locations.

The presence of a second QTL in SSC8, where evidence for

a significant QTL was found in a previous study (King et al.

2003), was investigated. The best fitting model with

two QTL was tested against the best model fitting only

one QTL using an F-test. The F-ratio was calculated by

[(RSS1�RSS2)/(df1�df2)]/(RSS2/df2) with (df1�df2) degrees

of freedom in the numerator considering additive and

dominance effects in the genetic model. The two-QTL model

is accepted if there is a significant improvement over the

best one-QTL model at P < 0.05.

Results

Linkage map and QTL analysis

The sex-average linkage maps constructed from the Roslin

LW 9 MS pedigrees used in this study were consistent with

the published USDA-MARC linkage maps and comprise a

total of 174 markers covering 1901.7 cM (Table S2). QTL

with suggestive or significant linkage for the reproductive

traits are listed in Table 2.

The genome-wide (experiment-wide) permutation analy-

sis revealed a QTL at 5% genome-wide significance level for

TN on SSC5. Additionally, there were three suggestive QTL

at 1% chromosome-wide significant level and nine at 5%

chromosome-wide significance level. The plots for these QTL

are presented in Figures S1–S7. In these figures, the linkage

map of the chromosome with marker names is shown on

the x-axis and the statistical support for the QTL at each

position is shown on the y-axis for the five traits analysed.

As the QTL plot for SSC8 (Fig. S4) has twin peaks for PS and

to a lesser extent for LS, the data were tested for evidence of

two QTL each for PS and LS, but there was no evidence that

two-QTL models represented a better fit for the data for

these traits.

Discussion

In this study, the genomes of the Roslin LW 9 MS

population were scanned for QTL with effects on reproduc-

Table 2 Results from the genome-wide and bootstrap analysis.

Trait SSC Position (cM) F-ratio

Estimate effect
95% CI (cM)

(start–end) Significance level (P)Additive effect (�SE) Dominance effect (�SE)

TBA 8 105 6.98 �0.03 (0.38) �2.12 (0.56) 0.0–133.0 Chromosome-wide (<0.05)
18 49 6.02 �0.18 (0.46) �2.37 (0.68) 5.0–53.0 Chromosome-wide (<0.05)

LS 6 102 5.65 1.38 (0.45) 0.92 (0.65) 7.0–102.0 Chromosome-wide (<0.05)
8 105 5.86 �0.03 (0.43) �2.18 (0.63) 4.0–135.0 Chromosome-wide (<0.05)

18 47 7.41 �0.36 (0.52) �2.95 (0.77) 6.0–53.0 Chromosome-wide (<0.01)
PS 8 124 7.53 �0.03 (0.02) �0.1 (0.03) 2.0–136.0 Chromosome-wide (<0.05)
OR 7 56 7.45 �1.38 (0.45) 0.98 (0.58) 8.0–75.0 Chromosome-wide (<0.05)

13 56 8.42 �1.51 (0.4) 0.84 (0.56) 27.0–97.0 Chromosome-wide (<0.01)
15 8 8.3 �1.82 (0.47) 1.06 (0.66) 2.0–60.0 Chromosome-wide (<0.01)
18 42 5.28 �1.064 (0.45) �1.59 (0.66) 1.0–52.0 Chromosome-wide (<0.05)

TN 5 52 10.32 �0.63 (0.14) 0.12 (0.22) 17.5–69.0 Genome-wide (<0.05)
6 20 5.19 �0.75 (0.23) �0.33 (0.26) 0.0–97.0 Chromosome-wide (<0.05)

18 0 6.44 �0.55 (0.15) �0.17 (0.21) 0.0–50.5 Chromosome-wide (<0.05)

The table indicates the trait analysed (TBA, total born alive; LS, litter size; PS, prenatal survival; OR, ovulation rate; TN, teat number), chromosome

(SSC) where a significant QTL was found, position of the QTL in cMs, F-ratio for the QTL, estimated additive and dominance effect (� standard

error), confidence interval in cM and significant levels for each QTL.
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tive traits (LS, PS, OR, TN, TBA). An earlier analysis, which

examined only SSC8 in this population, found evidence for

the presence of a putative QTL with effects on LS and PS in

animals at first parity and limited evidence for a QTL with

effects on TN (King et al. 2003). In the current study, the

population was genotyped for additional genetic markers in

the LS/PS QTL region to improve the resolution with which

the QTL was mapped. A linkage-based approach for QTL

detection was used exploiting three-generation F2 intercross

pedigrees in which the founder generation (F0) were LW

and MS pigs. These breeds exhibit significant differences in

female reproductive performance, and the QTL analyses

were based on the assumption that LW and MS are fixed for

different alleles at the QTL. The pig QTL database (Pig-

QTLdb; http://www.animalgenome.org/cgi-bin/QTLdb/SS/

index; Hu et al. 2013) was used to compare results from

this study with previously published reports of QTL with

effects on pig reproductive performance.

For a multiparous animal such as the pig, TN is an

important trait and can affect the ability of a sow to nurture

her offspring. Variation in TN between individuals is evident

from the phenotypic data (see Table 1). A QTL significant at

the 5% genome-wide level with effects on TN was mapped

to a region on SSC5 to which Ding et al. (2009) have

previously mapped a QTL with effects on TN in a White

Duroc 9 Erhualian population. The Erhualian and Meishan

breeds are both prolific and classified as Taihu pigs. Two

other studies, both of which exploited MS-European inter-

cross F2 populations, also reported TN QTL with locations

which overlap with the QTL observed here on SSC5 (Lee

et al. 2003; Rodriguez et al. 2005). The results from these

four independent studies provide strong support for the

presence of a QTL with effects on TN on SSC5. Martinez-

Giner et al. (2011) examined the gene encoding parathyroid

hormone-like hormone (PTHLH), which has a role in

mammary development and which maps to SSC5, as a

candidate gene for this TN QTL. From studies of PTHLH

gene expression and an association study of a PTHLH

polymorphism in the Iberian–MS population described by

Rodriguez et al. (2005), they concluded that PTHLH was

unlikely to be the gene responsible for the TN QTL effects.

The putative TN QTL located around the SW1057 marker

on SSC6 has been observed in an earlier study of a

population derived from the same founder animals as the

population described here (Guo et al. 2008). The TN QTL

mapped to SSC18 in this study represents the first report of

a QTL on SSC18 with effects on TN.

Ovulation rate is an important determinant of female

reproductive performance, as it sets the upper boundary for

LS, if the effects of monozygotic twinning are ignored.

Additional support for QTL with effects on OR detected on

SSC7 and SSC13 in this study is provided by the earlier

report from Bidanel et al. (2008), who mapped OR QTL to

similar locations on SSC7 and SSC13, also in a MS 9 LW F2
population. Although others have mapped QTL with effects

on OR to SSC15 (Rathje et al. 1997; Rohrer et al. 1999;

Wilkie et al. 1999), these QTL are located in the mid to

distal part of the chromosome in contrast to the putative

SSC15 OR QTL described here, which maps towards the

proximal to mid part of the chromosome. The putative

SSC18 QTL with effects on OR described in this study is not

corroborated by other studies.

As might be predicted from the biology of the LS and TBA

traits, the QTL with effects on these traits overlap greatly as

confirmed by comparisons of QTL mapped for these traits

(Rothschild et al. 1996; Buske et al. 2005; Horogh et al.

2005; Li et al. 2009; Fernandez-Rodriguez et al. 2010; see

also PigQTLdb). There is additional support for the SSC6

QTL with effects on LS described here from a study of LS in a

Yorkshire 9 MS population (Wilkie et al. 1999) in which

QTL with effects on LS and TBA were mapped to a similar

location on SSC6. The QTL at the distal end of SSC18 with

effects on TBA and LS, which are significant at the

chromosome-wide level (P < 0.05, P < 0.01 respectively),

are co-located with a putative OR QTL, and there is some

suggestion of a role for a contribution to PS in this region

(Fig. S7). There is some support for QTL with effects on LS in

this region of SSC18 from a genome-wide association study

in which an association between total number born in parity

3 (TNB3) and SNPs (ALGA0098607–ASGA0080202)

located between 46.29 and 46.54 Mbp on pig genome

assembly 10.2 (Sscrofa10.2; Groenen et al. 2012) were

reported (Onteru et al. 2012). The porcine homologue of the

human IGFBP1 gene, which is involved in regulating the

menstrual cycle, ovulation, implantation and foetal growth

(Fowler et al. 2000), maps to SSC18 54.86 Mbp. In a recent

study, Sironen et al. (2010) tested IGFBP1 polymorphisms

for associations with reproduction traits in a Finnish

Yorkshire and Landrace population and reported a positive

effect of one allele of one SNP on LS in later parities of

Landrace sows.

The addition of 13 markers across the SSC8 QTL with

effects on TBA, LS and PS reported earlier (King et al. 2003)

has changed the appearance of the QTL plots (Fig. S4 and

Fig. 2 in King et al. 2003). Previously, the LS and PS QTL

appeared to be co-located and were defined by a broad,

smooth, almost symmetrical peak (King et al. 2003). In

contrast, the QTL plot for PS on SSC8 (Fig. S4) now shows a

peak location at 124 cM in a broad peak at the end of the

chromosome plus a secondary sharp peak at 105 cM, for

which there is slightly less statistical support and which is

coincident with the TBA and LS QTL. The peak position for

the LS and TBA QTL (i.e. the location for which there is

most support) is now upstream of the peak location for the

PS QTL. Despite the twin-peak appearance of the PS QTL

plot, a two-QTL model for LS was not significantly better

than a one-QTL model. No evidence was found for more

than one QTL within each region.

The SPP1 gene, which encodes secreted phosphoprotein

1, is located under the peak position for the PS QTL and has
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roles in implantation and placentation (Johnson et al.

2003), remains a candidate for these LS traits. Fernandez-

Rodriguez et al. (2011) have reported differences in SPP1

expression between high and low prolificacy sows. Differ-

ences in SPP1 protein expression also have been observed

between MS and LW gilts and between the placentas of

small- and normal-sized foetuses (Hernandez et al. 2013).

The effects of the QTL found on SSC8 and on SSC18 in

this study were all negative dominant, that is, the hetero-

zygotes show inferior performance to both classes of

homozygotes. Although the additive effects were not signif-

icant, the beneficial alleles at most of the QTL appear to be

from the MS breed. This effect of the MS alleles would be

consistent with previous observations describing the supe-

rior performance in LS in MS through a higher level of PS

for a given OR (Bidanel et al. 1989; Haley & Lee 1993).

The results presented here represent and confirm the

importance of SSC8 in reproductive traits in pig together

with other regions in the genome and identify possible

candidate genes that require further investigation. As noted

previously, some of the QTL detected in the present study

have not been reported previously. The diversity of results

between the different studies illustrates the genetic variation

in the different populations used. Increasing the number of

animals with phenotypes and genotypes is the most effective

way of improving the confidence in the findings and the

power of QTL studies. Although the number of genotyping

assays available has increased with the advent of SNP chips

(Ramos et al. 2009) and the cost of genotyping has reduced

dramatically, the cost of acquiring phenotypes remains a

challenge, especially for traits such as OR and PS. Thus,

despite the completion of a draft pig genome sequence

(Groenen et al. 2012), it remains difficult to identify genes to

improve reproductive traits with effects in a range of

different breeds, especially for composite traits like LS

(Bennett & Leymaster 1989), expressed by the embryo

and the dam (Linville et al. 2001) and influenced by

environmental factors. An important step in examining

functions of genes is to determine their spatial and temporal

expression patterns in different tissues or under different

conditions. The evaluation of the gene at these levels is the

ultimate step in assessing their contribution to the trait of

interest. Before using these genes for marker assisted

selection, they should be mapped as candidate genes in

other populations and extensive functional analyses carried

out to confirm the possible contribution of these genes and

their potential to contribute to improvements in reproduc-

tive performance.
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