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Identification of genes and signaling pathways
associated with diabetic neuropathy using
a weighted correlation network analysis
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Abstract
Background: The molecular mechanisms behind diabetic neuropathy remains to be investigated.

Methods: This is a secondary study on microarray dataset (GSE24290) downloaded from Gene Expression Omnibus (GEO) at the
National Center for Biotechnology Information (NCBI), which included 18 nerve tissue samples of progressing diabetic neuropathy
(fibers loss ≥500 fibers/mm2) and 17 nerve tissue samples of nonprogressing diabetic neuropathy (fibers loss �100 fibers/mm2).
Differentially expressed genes (DEGs) were screened between progressing and nonprogressing diabetic neuropathy. With the DEGs
obtained, a weighted gene coexpression network analysis was conducted to identify gene clusters associated with diabetic
neuropathy. Diabetes-related microRNAs (miRNAs) and their target genes were predicted and mapped to the genes in the gene
clusters identified. Consequently, amiRNA–gene network was constructed, for which gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis was performed. Potential drugs for treatment of diabetic neuropathy were also
predicted.

Results: Total 370 upregulated and 379 downregulated DEGs were screened between nonprogressing and progressing diabetic
neuropathy. Has-miR-377, has-miR-216a, and has-miR-217 were associated with diabetes. Inflammation was the most significant
GO term. The peroxisome proliferator-activated receptor (PPAR) pathway and the adenosine monophosphate (AMP)-activated
protein kinase (AMPK) signaling pathway were significantly KEGG pathways significantly enriched with PPAR gamma (PPARG),
stearoyl-CoA desaturase (SCD), cluster of differentiation 36 (CD36), and phosphoenolpyruvate carboxykinase 1 (PCK1).

Conclusion: The study suggests that PPARG, SCD, CD36, PCK1, AMPK pathway, and PPAR pathway may be involved in
progression of diabetic neuropathy.

Abbreviations: ADORA3 = adenosine A3 receptor, AMP = adenosine monophosphate, AMPK = AMP-activated protein kinase,
ANGPTL4= angiopoietin-like protein 4, AQP7= aquaporin 7, BDKRB2= bradykinin receptor B2, CD= cluster of differentiation, CEL
= cell Intensity, CFH = complement factor H, cmap = Connectivity Map, CXCL9 = C-X-C motif chemokine ligand 9, DEGs =
differentially expressed genes, EHHADH = enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase, FC = fold change, GEO =
Gene Expression Omnibus, GO= gene ontology, GS= gene significance, KEGG= Kyoto Encyclopedia of Genes and Genomes, ME
= malic enzyme, miR = microRNA, MS = module significance, NCBI = National Center for Biotechnology Information, NLRP3 =
NOD-like receptor 3, NOD= nucleotide-binding oligomerization domain, PCK1= phosphoenolpyruvate carboxykinase 1, PFKFB1=
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1, PPAR = peroxisome proliferator-activated receptor, PPARG =
peroxisome proliferator-activated receptor gamma, SCD = stearoyl-CoA desaturase, TNF= tumour necrosis factor, WGCNA =
weighted gene coexpression network analysis.
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1. Introduction

Diabetic neuropathy is a leading complication of diabetes
characterized by progressive loss of peripheral nerve axons,
leading to decreased sensation and pain.[1,2] It tortures
approximately 30% of patients with diabetes, and will finally
occur in up to half of diabetic patients during the disease
course.[3] Nerve damage usually occurs before symptoms and
signs are clinically obvious. When the diabetic neuropathy is
detected, irreversible damage often has already been caused.[4] It
is a challenging task to prevent, slow, or reverse the progression
of diabetic neuropathy. Therefore, it is of considerable signifi-
cance to investigate the molecular mechanisms of diabetic
neuropathy for prevention and treatment of the disease.
Omete et al[5] have suggested that inhibition of tumour necrosis

factor (TNF) pathway might inhibit the progression of diabetic
neuropathy in mice model. A latest study suggests that alterations
in ion-channel function and energy metabolism depending on
axon–glia crosstalk might also contribute to the development of
diabetic neuropathy.[6] Moreover, Chen et al[7] have reported
that nucleotide-binding oligomerization domain (NOD)-like
receptor 3 (NLRP3) inflammasome activation mediated by
ATP–P2X4 signaling might be implicated in diabetic neuropathy-
related inflammation. There is in vivo evidence that microRNA
(miR)-29c knockdown or miR-27a knockdown compromises
progression of diabetic nephropathy.[8,9] Furthermore, Chien
et al[10] have found that miR-21, miR-29a/b/c, and miR-192 are
involved in pathogenesis of diabetic neuropathy and might be
suggested as biomarkers of progression of diabetic neuropathy.
Despite these achievements, the molecular mechanisms behind
the diabetic neuropathy have not been fully elucidated.
Hur et al[11] have characterized the differentially expressed

genes (DEGs) between patient samples with progressing diabetic
neuropathy (fibers loss ≥500 fibers/mm2) or nonprogressing
diabetic neuropathy (fibers loss�100 fibers/mm2), and unraveled
that these genes are linked to inflammatory responses and lipid
metabolism-related pathways. However, miRNAs are not
targeted in their study. Using gene expression dataset
(GSE24290) uploaded to NCBI GEO database, this study
conducted a series of microarray analysis to shed light on
development of promising drugs for prevention of diabetic
neuropathy, and biological function of DEGs involved in
progression of diabetic neuropathy. A weighted gene coex-
pression network analysis (WGCNA)[12] was used to search for
gene clusters associated with diabetic neuropathy following
identification of DEGs between progressing and nonprogressing
diabetic neuropathy. Moreover, diabetes-related miRNAs and
their target genes were predicted and mapped to the gene
coexpression network for construction of a miRNA–gene
network. Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis was performed for
the genes in the miRNAs–target genes network. Additionally,
potential drugs for prevention of the disease were also
investigated, based on the identified DEGs.
2. Methods

2.1. Data preprocessing

It is a secondary study of gene expression dataset (GSE24290)
downloaded from NCBI GEO database[13] (http://www.ncbi.
nlm.nih.gov/geo/). The GSE24290 dataset included 18 nerve
tissue samples from patients with progressing diabetic neuropa-
thy (fibers loss ≥500 fibers/mm2) and 17 nerve tissue samples
2

from patients with nonprogressing diabetic neuropathy (fibers
loss �100 fibers/mm2). Preprocessing of the probe-level data in
cell intensity (CEL) files was conducted using oligo package
(Bioconductor, Seattle, Washington State, USA) of R 3.1.3
language, including conversion into expression measures,
background correction, and quartile data normalization.[14]

The platform of the data is GPL10526 (Affymetrix GeneChip
Human Genome HG-U133 Plus 2 Array, Affymetrix, Santa
Clara, CA, USA). No additional subjects were included, thus
ethical approval and patient consent are not required.
2.2. Identification of DEGs and two-way hierarchical
clustering analysis

Significant DEGs between progressing diabetic neuropathy
samples and nonprogressing diabetic neuropathy samples were
screened using Linear Models for Microarray Analysis package
in R language.[15] The strict threshold was set at fold change
(jlogFCj) ≥1.2 and P value<0.05.
2.3. Weighed gene coexpression network analysis

The WGCNA package[12] in R software (GNU Project, Free
Software Foundation, Boston,MA, USA) was applied to construct
a weighted gene coexpression network. Briefly, the correlation
efficient (Smn) between genem and gene nwas calculated as follow:
Smn= jcor(m,n)j. Second, the adjacency (amn) was calculated using
power adjacency function: amn ¼ powerðSmn;bÞ. Based on the scale-
free behavior of the coexpression network, the weighted value (b
value)was determined by linear correlation between the number of
edges log (k), and the probability of finding a node with k edges P
(k). The correlation coefficient between log (k) and logP (k)was set
at ≥0.9. Subsequently, the adjacency matrix was converted into
topological matrix.
Hierarchical clustering tree was built using hybrid dynamic

shear tree method, with different branches corresponding to
different gene modules. At least 30 genes were required for each
module. The cut weight was set at 0.9. The module significance
(MS) of each module was calculated as the average gene
significance (GS) values of all genes in the module, with higher
MS value indicating a closer connection of the module with the
disease. GS value of the difference in the mRNA expression of
each gene between progressing diabetic neuropathy and
nonprogressing diabetic neuropathy was calculated using
Student t-test.
Based on the GS values of all network modules, the top 3

modules were selected for construction of a gene coexpression
network associated with diabetic neuropathy using heatmap.2
function of gplots package (Bioconductor) in R3.1.3.[16]
2.4. Identification of diabetes-related miRNAs and
prediction of target genes of miRNAs

The study searched for diabetes-related miRNAs using miR2-
Diease database.[17] It is a monthly updated database, providing
rich information concerning deregulated miRNAs in various
human diseases. Its current version included 3273 curated
associations between 349 human microRNAs and 163 human
diseases by reviewing published papers. Subsequently, target
genes of the diabetic-related miRNAs obtained were predicted
using miRanda software[18] Computational Biology Center of
Memorial Sloan, New York, USA) and TargetScan software [19]

(www.targetscan.org, Whitehead Institute for Biomedical
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Figure 1. Power value for the adjacency matrix in weighted gene coexpression
network analysis. The red line signals 0.9 on the vertical axis.
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Research, Cambridge, MA, USA), which were commonly used
tool for scanning target sites of miRNAs. These target genes were
mapped to the gene coexpression network, and a miRNA–gene
network was then constructed.
2.5. Identification of potential therapeutic small molecules

Connectivity map is a useful approach to mine connections among
bioactive small molecules, which share an action mechanism,
chemicals and physiological processes, and diseases and drugs.[20]

With the help of Connectivity map (cmap), the DEGs were
compared with the predefined signatures of drugs and drug-like
smallmolecules, and ranked according to a connectivity scorewhich
corresponded to the relative similarity to the imported DEGs. The
small molecules with P value <0.05 and jconnectivity scorej >0.8
were determined to be highly associated with diabetic neuropathy.
The connectivity score ranged from�1 to 1. The score closer to�1
indicated that the drug had a stronger effect against the disease.
Figure 2. Gene dendrogram and modules from weighted gene coexpression netw
represents height of the gene clustering tree.

3

2.6. GO and KEGG pathway enrichment analysis

In order to unravel the biological function of the genes in the
miRNA–gene network, GO function and KEGG pathway
enrichment analysis was performed using Gostat software[21]

(Bioconductor) and KOBAS software (KOBAS, Surrey, UK),[22]

respectively.
3. Results

3.1. Identification of DEGs

Total 749 DEGs were screened between nonprogressing diabetic
neuropathy and progressing diabetic neuropathy samples,
including 370 upregulated DEGs and 379 downregulated DEGs.
3.2. WGCNA analysis and module selection

In order to guarantee the scale-free topology of the gene
coexpression network, power=6 was selected when the correla-
tion coefficient between log (k) and log P (k) reached 0.9 for the
first time (Fig. 1). The constructed gene clustering tree (cut
height=0.9) was shown in Fig. 2. Different modules were marked
in different colors. All modules were withMS value>0.8 andMS
P value<0.05. According to theMS value, top 3 modules ranked
in descending order were selected, consisting of the blue module
(156DEGs), the brownmodule (55 DEGs), and the greenmodule
(47 DEGs) for further analysis (Fig. 3).

3.3. Prediction of target genes of diabetes-related miRNAs

Using miR2Disease database, we obtained 3 miRNAs associated
with diabetes: has-miR-377,[23] has-miR-216a,[24] and has-miR-
217.[24] With the help of miRanda software and TargetScan
software, the study predicted 1052 target genes of has-miR-377,
962 target genes of has-miR-261a, and 1025 target genes of has-
miR-217 (Table 1).
3.4. Construction of the miRNA–target gene network

Has-miR-377, has-miR-216a, has-miR-217 and their target
genes were mapped to the DEGs in the blue module, brown
module, and green module. Consequently, a miRNA–target gene
network was built, and shown in Fig. 4.
ork analysis. Horizontal axis represents modules in different colors. Vertical axis
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Figure 3. Module significance of different modules. Different modules are
marked in different colors.

Table 1

Diabetes-related microRNAs and their target genes.

miRNAs Target gene P

hsa-miR-216a ANGPTL4 5.50E-04
hsa-miR-216a ANXA9 2.42E-04
hsa-miR-216a CFH 1.51E-02
hsa-miR-216a CHI3L2 4.73E-02
hsa-miR-216a INPP4B 2.87E-05
hsa-miR-217 ADRBK2 3.42E-02
hsa-miR-217 CSN1S1 2.38E-02
hsa-miR-217 GALM 3.47E-02
hsa-miR-217 MTTP 1.53E-03
hsa-miR-217 SGCG 2.18E-04
hsa-miR-217 SHC3 2.47E-02
hsa-miR-217 TMEM61 2.78E-03
hsa-miR-217 VLDLR 9.92E-03
hsa-miR-377 ADRBK2 9.03E-03
hsa-miR-377 EN1 9.42E-03
hsa-miR-377 FAM89A 4.42E-02
hsa-miR-377 GAP43 2.53E-02
hsa-miR-377 MAP1LC3C 9.39E-04
hsa-miR-377 NUDT11 6.83E-03
hsa-miR-377 PNPLA2 4.74E-02
hsa-miR-377 SLPI 8.01E-03
hsa-miR-377 ZSWIM3 2.04E-02

ANGPTL4 = angiopoietin-like protein 4, CFH = complement factor H, miR = microRNA.
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3.5. Selection of potential drugs against diabetic
neuropathy

Based on the Connectivity map database, 5 small molecules with
P value <0.05 and jconnectivity scorej >0.8 were selected to be
potential drugs for diabetic neuropathy: desipramine, pirlindole,
penbutolol, brinzolamide and pyridoxine (Table 2). The
connectivity score of desipramine was lowest (�0.935).
3.6. GO and KEGG pathway enrichment analysis

GO enrichment analysis revealed that the DEGs in the
miRNA–target gene network were significantly related to 14
GO terms (Fig. 5A). The most significant GO term was
significantly enriched with 13 genes, such as adenosine A3
receptor (ADORA3), chemokine (C-X-C motif) ligand (CXCL)
9, bradykinin receptor B2 (BDKRB2), and complement factor H
(CFH). CFH was a target gene of has-miR-216a. As for KEGG
pathway enrichment analysis (Fig. 5B) there were 8 significant
Figure 4. A miRNA–target gene network. In the network, upper triangles represen
White nodes stand for miRNAs. Blue, brown, and green nodes are genes extracted
A dotted line suggests that the two genes are negatively correlated. A solid line sugg
a gene and a miRNA suggests that the gene is regulated by the miRNA. miRNA
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KEGG pathways associated with DEGs. The most significant
KEGG pathway was peroxisome proliferator-activated receptor
(PPAR) pathway significantly enriched with 8 genes: cluster of
differentiation (CD)36, malic enzyme (ME)1, enoyl-CoA,
hydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH),
angiopoietin-like protein 4 (ANGPTL4), PPAR gamma
(PPARG), aquaporin (AQP)7, stearoyl-CoA desaturase (SCD),
and phosphoenolpyruvate carboxykinase 1 (PCK1). ANGPTL4
was a target gene of has-miR-216a. Adenosine monophosphate
(AMP)-activated protein kinase (AMPK) signaling pathway was
t upregulated genes and downward triangles represent downregulated genes.
from the blue module, the brownmodule, and the green module, irrespectively.
ests the positive correlation between two genes. A red arrow-headed line linking
= microRNA.



Table 2

Promising drugs predicted for diabetic neuropathy.

cmap name Correlation value P

Desipramine �0.935 0.00002
Pirlindole �0.888 0.00268
Penbutolol �0.822 0.0113
Brinzolamide �0.821 0.00193
Pyridoxine 0.875 0.00034

cmap= connectivity map database.
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significantly enriched with PPARG, SCD, 6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 1 (PFKFB1), CD36, and
PCK1.

4. Discussion

Diabetic neuropathy is the most common complication occurred
in diabetic patients. In order to unravel the molecular mecha-
nisms underlying the progression of diabetic neuropathy, the
study carried out WGCNA analysis to identify gene clusters
associated with progression of diabetic nephropathy. The study
further found that the DEGs in nonprogressing and progressing
diabetic neuropathy were significantly enriched with several GO
terms and KEGG pathways, such as inflammation, PPAR, and
AMPK signaling pathways.
Figure 5. Significant GO terms and KEGG pathways. A, significant GO terms. Ho
term. Vertical axis represents GO terms. P values are marked in different colors. B
significantly enriched in each KEGG pathway. Vertical axis represents GO terms.
Encyclopedia of Genes and Genomes.
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Increasing studies have demonstrated that inflammation-
related pathways play critical roles in the progression of
diabetic nephropathy.[25,26] The study confirmed the key role
of inflammation, as evidenced by the finding that inflamma-
tion was the most significant GO term associated with DEGs
in the miRNA–gene network. Hu et al[27] have found that
PPARa expression is decreased in diabetic neuropathy rat
model, and that PPARa overexpression inhibits diabetic
neuropathy-related inflammation. Moreover, increasing evi-
dence has suggested that PPARa and PPARg agonists may be
promising agents for management of diabetic nephropa-
thy.[28,29] Similarly, the study also unveiled that PPAR
pathway was the most significant signaling pathway enriched
with several DEGs, including ANGPTL4, a target gene of
has-miR-216a. ANGPTL4 is a member of the angiopoietin-
like gene family produced from fat tissue and liver, involving
in energy metabolism and insulin sensitivity. It is also a target
of PPARs. It has been reported that ANGPTL4 over-
expression modulates mitochondria function and methionine
metabolic cycles in the liver of diabetic mice.[30] The study
indicates that ANGPTL4 regulated by has-miR-216a and
PPAR signaling pathway might participate in progression of
diabetic neuropathy.
AMPK is an important enzyme in regulating cellular and

whole-body energy homeostasis.[31] AMPK which plays critical
roles in key metabolically relevant tissues is considered as an
rizontal axis represents the number of genes significantly enriched in each GO
, significant KEGG pathways. Horizontal axis represents the number of genes
P values are marked in different colors. GO = gene ontology, KEGG = Kyoto

http://www.md-journal.com
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attractive drug target for diabetes. The present study suggests
that AMPK signaling pathwaymight be implicated in progression
of diabetic neuropathy. Moreover, both AMPK and PPAR
signaling pathways were significantly enriched with PPARG,
SCD, CD36, and PCK1 in the present study. PPARG encodes
PPARg protein. SCD gene encodes SCD protein, which is a
critical enzyme involved in fatty acid metabolism. There is
evidence that loss of SCD1 promotes glucose utilization in the
heart of mice model.[33] CD36 is an integral membrane protein
located on the surface of many cell types, participating in several
process, such as inflammation and oxidative stress.[34] It has been
reported that CD36 is involved in proximal tubular epithelial cell
apoptosis of diabetic nephropathy.[35] Moreover, Shiju et al[36]

have implied that soluble CD36 in plasma and urine might be a
prognostic biomarker for diabetic neuropathy. PCK1 encodes
phosphoenolpyruvate carboxykinase 1 protein, which is a key
enzyme in gluconeogenesis.[37] Findings of this study indicate that
PPARG, SCD, CD36, and PCK1might participate in progression
of diabetic neuropathy, partly by regulating AMPK and PPAR
signaling pathways.
The study predicted that desipramine, pirlindole, penbutolol,

brinzolamide, and pyridoxine might be promising agents for
treatment of diabetic neuropathy. In consistence with this finding,
it has been established that desipramine is effective in relieving
pain in painful diabetic neuropathy.[38] However, the other 4
drugs have not been reported in management of diabetic
neuropathy. In addition, there are some limitations in the study,
including the single platform of dataset, the dataset is not
sufficiently robust and the reproducibility has not been
determined, and the sample size is small. In addition, the study
only included microarray data analysis. Therefore, further
experimental studies are needed to verify the findings of this
study.
5. Conclusion

The study suggests that PPARG, SCD, CD36, PCK1, AMPK
pathway, and PPAR pathway may be implicated in progression
of diabetic neuropathy. The genes might be recommended as
possible biomarkers for progression of diabetic neuropathy.
Further experimental studies are necessary to verify the findings
of this study.
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