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Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects several
organs and causes variable clinical symptoms. Exploring new insights on genetic factors
may help reveal SLE etiology and improve the survival of SLE patients. The current study is
designed to identify key genes involved in SLE and develop potential diagnostic
biomarkers for SLE in clinical practice. Expression data of all genes of SLE and control
samples in GSE65391 and GSE72509 datasets were downloaded from the Gene
Expression Omnibus (GEO) database. A total of 11 accurate differentially expressed
genes (DEGs) were identified by the “limma” and “RobustRankAggreg” R package. All
these genes were functionally associated with several immune-related biological
processes and a single KEGG (Kyoto Encyclopedia of Genes and Genome) pathway
of necroptosis. The PPI analysis showed that IFI44, IFI44L, EIF2AK2, IFIT3, IFITM3, ZBP1,
TRIM22, PRIC285, XAF1, and PARP9 could interact with each other. In addition, the
expression patterns of these DEGs were found to be consistent in GSE39088. Moreover,
Receiver operating characteristic (ROC) curves analysis indicated that all these DEGs
could serve as potential diagnostic biomarkers according to the area under the ROC curve
(AUC) values. Furthermore, we constructed the transcription factor (TF)-diagnostic
biomarker-microRNA (miRNA) network composed of 278 nodes and 405 edges, and
a drug-diagnostic biomarker network consisting of 218 nodes and 459 edges. To
investigate the relationship between diagnostic biomarkers and the immune system,
we evaluated the immune infiltration landscape of SLE and control samples from
GSE6539. Finally, using a variety of machine learning methods, IFI44 was determined
to be the optimal diagnostic biomarker of SLE and then verified by quantitative real-time
PCR (qRT-PCR) in an independent cohort. Our findings may benefit the diagnosis of
patients with SLE and guide in developing novel targeted therapy in treating SLE patients.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic autoimmune
disease mediated by autoimmune reactions and is characterized
by autoimmune inflammation (Bakshi et al., 2018). The serum of
SLE patients contains a variety of autoantibodies represented by
antinuclear antibodies, which combined with the corresponding
autoantigens in the body to form immune complexes and then
deposited in the glomerulus, liver, joints, skin, and other parts,
causing multiple symptoms and manifestations (Ahlin et al., 2012).
Currently, the pathogenesis and etiology of SLE have not been fully
elucidated, and biomarkers available in clinical practice are still
limited, mainly including anti-dsDNA antibodies, complement
molecules, and white blood cell counts (Piga and Arnaud, 2021).
Because of the diversity of symptoms, it can sometimes be difficult to
distinguish SLE from other diseases with similar symptoms, such as
rheumatoid arthritis (RA) and myositis. However, early diagnosis
and timely intervention can help reduce SLE recurrence and
hospitalization rates and the accumulation of chronic organ
damage (Mak et al., 2013; Piga and Arnaud, 2021). Therefore,
the identification of reliable biomarkers and revealing the
underlying molecular mechanisms are essential for better
diagnosis and effective treatment of SLE.

In recent years, numerous biomarkers in the different
processes of autoimmune diseases have been identified
through comprehensive bioinformatics analyses, including
SLE (Zhao et al., 2021), RA (Cheng et al., 2021) and
ulcerative Colitis (Chen et al., 2020), laying the foundations
for exploring the potential molecular mechanisms in
autoimmune diseases. Meanwhile, with the rapid
development of artificial intelligence (AI), machine learning
algorithm, as an important branch, has been widely used in the
diagnostic classification and prognostic prediction of diseases.
For example, machine learning methods were used to identify
key prognostic molecules in esophageal squamous cell
carcinoma (Li et al., 2021). Potential diagnostic biomarkers
of acute myocardial infarction were identified by the least
absolute shrinkage and selection operator (LASSO) regression
model and support vector machine recursive feature
elimination (SVM-RFE) (Zhao et al., 2020). Machine
learning algorithms are generally divided into weak
classifier algorithms and strong classifier algorithms. For
example, logistic regression (LR), support vector machine
(SVM), and artificial neural network (ANN) are weak
classifier algorithms, and random forests (RF) and extreme
gradient enhancement (XGBoost) are strong classifier
algorithms. A strong classifier can be composed of more
than one weak classifier. As proposed by Stafford et al.,
depending on the high classification performance of clinical
and genomic data, RF and SVM were most frequently utilized
in the diagnosis of autoimmune diseases (Stafford et al., 2020).

Therefore, based on bioinformatic analyses and machine
learning algorithms, the present study was aimed to identify
potential diagnostic biomarkers in SLE and construct the
molecular regulatory networks related to diagnostic
biomarkers, laying a foundation for in-depth exploration of
molecular mechanisms of SLE.

MATERIALS AND METHODS

Data Sources
The expression profiles of 924 SLE and 48 control samples in
GSE65391, 99 SLE and 18 control samples in GSE72509, and
78 SLE and 46 control samples in GSE39088 were downloaded
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/).
GSE65391 and GSE39088 were used to identify potential
diagnostic biomarkers in SLE, while GSE39088 was used to
test the reliability of these diagnostic biomarkers.

Screening and Functional Analysis of DEGs
DEGs between SLE and control samples in GSE65391 and
GSE39088 datasets were identified by the “limma” R package
with the threshold |log2FC| >1 and p-value < 0.05. The general
views of DEGs were shown as volcano plots. The expressions of
DEGs were visualized in the heatmap. The volcano plots and
heatmaps were generated by the “ggplot2” R package.
“RobustRankAggreg” R package was performed to screen
accurate DEGs from GSE65391 and GSE39088 (Zhou et al.,
2021). Then the functions of screened DEGs were analyzed by
the “clusterProfiler” R package. p-value < 0.05 was considered as
significantly enriched.

Identification of Diagnostical Biomarkers
and Prediction of Regulators and Drugs
The screened DEGs were submitted into the STRING database
(https://string-db.org), and then a PPI network was constructed
by setting the confidence as 0.4. The correlations among DEGs in
the PPI network were evaluated by the Pearson method and
visualized in the heatmap. Then the expressions of correlated
DEGs (Cor >0.7) were tested in GSE39088. Thereafter, the
performance of these DEGs in distinguishing SLE and control
samples were evaluated by ROC curves analyses, and DEGs with
AUC greater than 0.7 were identified as diagnostic biomarkers of
SLE. Furthermore, the reliability of these biomarkers was tested in
GSE39088. The miRWalk database (http://mirwalk.umm.uni-
heidelberg.de/) was used to predict the miRNAs targeting
these diagnostic biomarkers. The ChEA3 database (https://
amp.pharm.mssm.edu/chea3/) was used to predict the TFs
targeting diagnostic biomarkers. Then the miRNA-diagnostic
biomarker and TF-diagnostic biomarker pairs were integrated
into a miRNA-diagnostic biomarker-TF regulatory network and
visualized by Cytoscape software. The CTD database (http://
ctdbase.org/) was used to search for drugs targeting these
diagnostic biomarkers, and the PubChem database (http://
www.pubchem.ncbi.nlm.gov) was used to display the chemical
structures of several drugs, and a drug-gene network was
constructed and visualized.

Evaluation of Immune Cell Infiltration
The immune infiltrations of 28 types of immune cells in SLE
and control samples from GSE65391 were evaluated by the
ssGSEA method (Ye et al., 2019). Differentially infiltrated
immune cells between SLE and control samples were
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FIGURE1 | Volcano plots and heatmaps of DEGs. Each colored dot represents a DEG (|log2FC| >1 and p-value < 0.05). The blue dots represent the downregulated
genes and the red dots represent the up-regulated genes. (A) Volcano map of the 161 EDGs identified in GSE65391. (B) Heatmap of the 161 EDGs identified in
GSE65391. (C) Volcano map of the 125 EDGs identified in GSE72509. (D) Heatmap of the 125 EDGs identified in GSE72509.

FIGURE 2 | The expression heatmap and enrichment analysis of accurate DEGs. (A) The expression heatmap of 11 accurate DEGs in GSE65391 and GSE72509.
(B) The top 10 enriched GO terms. (C) The enriched pathway.
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FIGURE 3 | Interactions among the ten diagnostic biomarkers. (A) The PPI network of the ten biomarkers. (B) The correlation heatmap of the ten biomarkers. (C)
The correlation network of the ten biomarkers. (D) The boxplot of the expression levels of ten biomarkers validated in GSE39088.

FIGURE4 | The diagnostic performance of the ten biomarkers. (A)Training set: GSE65391. (B) Validation set: GSE72509. (C) Test set: GSE39088.
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identified by the Wilcoxon test using p-value < 0.05 as the
cutoff. Furthermore, the correlations between differentially
infiltrated immune cells and diagnostic biomarkers were
calculated by the Spearman method and shown in the
heatmap.

Machine Learning
Machine learning methods, including LR, RF, XGBoost, SVM,
and ANN (Li et al., 2021), were performed by the “glmnet”,
“randomForest”, “xgboost”, “e1071”, and “neuralnet” R packages
to develop classifiers for diagnostic classification, respectively. For
each machine learning algorithm, 1,023 models representing all
combinations of 10 identified biomarkers were established, and
AUCs of the models were calculated. Among all classifiers, the top
100 models with the highest AUC values were selected, and the
occurrence frequencies of each diagnostic biomarker were
counted. The top five diagnostic biomarkers with the highest
occurrence frequency in every classifier were extracted and
overlapped to identify the optimal diagnostic biomarkers.

Collection of Clinical Characteristics
A total of 26 SLE patients and 20 sex- and age-matched healthy
controls were recruited from Shengjing Hospital of China
Medical University. The clinical characteristics of subjects,
such as age, sex, course of the disease, and clinical and

laboratory indices, were obtained from electronic medical
records. The diagnosis of SLE was followed according to the
European League Against Rheumatism (EULAR)/American
College of Rheumatology (ACR) 2019 criteria and the SLE
disease activity was assessed according to the systemic lupus
erythematosus disease activity index 2000 (SLEDAI-2K)
(Gladman et al., 2002). Patients with malignant tumors,
pathogen infection, and other autoimmune diseases, such as
RA and systemic sclerosis, were excluded. The research
protocol was approved by the Medical Ethics Committees of
the Shengjing Hospital of China Medical University. All
experiments were conducted by the principles and regulations
formulated by the ethics committee.

RNA Extraction and qRT-PCR
Blood samples from each subject were collected in
ethylenediaminetetraacetic (EDTA) tubes. Peripheral blood
mononuclear cells (PBMCs) were obtained by density
gradient centrifugation (Solarbio Life Sciences, Beijing,
China). Total cellular RNA was extracted from PBMCs
using RNA Extraction Kit (Omega, Guangzhou, China).
200 ng RNA per sample was submitted for reverse
transcription using Evo M-MLV RT Kit (Accurate
Biotechnology, Changsha, China) following the
manufacturer’s instructions. The qPCR cycle was conducted

FIGURE 5 | TF-biomarker-miRNA regulatory network. The orange ellipses represent the biomarkers, the purple round rectangles represent the miRNAs and the
green diamonds represent the TFs.
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using SYBR Green Premix Pro Taq HS qPCR Kit (Accurate
Biotechnology, Changsha, China) on Light Cycler 480 real-
time PCR instrument (Roche, Basel, Switzerland). The 2−ΔΔCt

method was used to calculate the relative expression of mRNA.
β-actin was used as the internal control for normalization. The
gene-specific primers are available in Supplementary
Table S1.

Statistical Analysis
All the statistical analyses were performed with R software
(version 4.1.0). The student’s t-test was performed to compare
gene expressions between different groups. ROC curve analysis
was used to evaluate the performance of biomarkers for
diagnosing SLE. p < 0.05 was considered statistically
significant.

RESULTS

DEGs Involved in SLE
A total of 161 DEGs, including 124 up-regulated and 37 down-
regulated genes in SLE samples relative to control samples, were
identified in GSE65391 (Supplementary Table S2; Figure 1A),
and the expression levels were shown as a heatmap (Figure 1B).
Meantime, a total of 125 DEGs, including 116 up-regulated and
nine down-regulated genes in SLE, were identified in GSE72509
(Supplementary Table S3; Figure 1C), and the expression levels
were also shown as a heatmap (Figure 1D). By
RobustRankAggreg method, IFI44, IFI44L, EIF2AK2, IFIT3,
IFITM3, ZBP1, TRIM22, PRIC285, XAF1, PARP9, and
ODF3B were screened as accurate DEGs (Supplementary
Table S4). All the expressions of them were up-regulated in

FIGURE 6 | Predicting the drugs targeting the diagnostic biomarkers. (A) Drug-gene network. (B) Chemical structures of few of the drugs, from left to right, are
(+)-JQ1 compound, acetaminophen, Benzo(A)pyrene, Estradiol and Valproic Acid.
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SLE samples (Figure 2A). The top 10 biological processes into
which these DEGs were significantly enriched were associated
with immunity, such as response to virus, type Ⅰ interferon
signaling pathway, cellular response to type Ⅰ interferon, and
positive regulation of cytokine-mediated signaling pathway
(Figure 2B). In addition, these DEGs were markedly
associated with a KEGG pathway of necroptosis (Figure 2C).

TenDiagnostic Biomarkers Identified in SLE
Next, we constructed a PPI network of the DEGs, including IFI44,
IFI44L, EIF2AK2, IFIT3, IFITM3, ZBP1, TRIM22, PRIC285 (also
named as HELZ2), XAF1, and PARP9 (Figure 3A). These 10
genes had strong positive correlations with each other (Cor >0.7,
Figure 3B), so we constructed a correlation network according to
their correlations (Supplementary Table S5; Figure 3C).
Moreover, the expression patterns of these 10 genes were
validated in the GSE39088 dataset and were all up-regulated
in SLE samples (Figure 3D). To identify their performance in
distinguishing SLE and control samples, we plotted ROC curves
in GSE65391 GSE72509 and GSE39088 datasets. The AUCs of the

10 genes were higher than 0.9 in GSE65391 (Figure 4A), higher
than 0.85 in GSE72509 (Figure 4B), and higher than 0.7 in
GSE39088, indicating that these genes had high accuracy and
reliability in distinguishing between SLE and control samples.
Thus, these 10 genes were identified as diagnostic biomarkers
in SLE.

Construction of the TF-Diagnostic
Biomarker-miRNA Network
Thereafter, we investigated the miRNAs and TFs that regulate the
expression of the identified biomarkers. By miRWalk database,
176 miRNAs targeting IFI44, IFI44L, EIF2AK2, IFIT3, IFITM3,
ZBP1, TRIM22, XAF1, and PARP9 were predicted, and a
miRNA-biomarker network composed of 185 nodes and 179
edges was constructed (Supplementary Figure S1). In addition,
93 TFs binding with and regulating the expressions of IFI44,
IFI44L, EIF2AK2, IFIT3, IFITM3, ZBP1, TRIM22, XAF1, and
PARP9 were obtained from the ChEA3 database, and a TF-
biomarker network composed of 102 nodes and 226 edges was

FIGURE 7 | The relationship between diagnostic biomarkers and immune cell infiltration. (A) The heatmap of the infiltration proportion of 28 types of immune cells.
(B)The boxplot of the infiltration proportion of 28 types of immune cells in SLE and control samples. (C) The heatmap of the correlations between diagnostic biomarkers
and immune cells.
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constructed (Supplementary Figure S2). After integration, a TF-
biomarker-miRNA regulatory network was visualized by
Cytoscape, including 278 nodes and 405 edges (Figure 5).
Furthermore, we also predicted the drugs targeting the
biomarkers by CTD (Supplementary Table S6), extracted the
drug-biomarker relation pairs, and constructed a drug-gene
network composed of 218 nodes and 459 edges, including
nine biomarkers and 209 drugs (Figure 6A). The chemical
structures of several drugs, including (+)-JQ1 compound,
acetaminophen, Benzo(a) pyrene, Estradiol, and Valproic Acid
are displayed in Figure 6B.

Immune Cell Infiltration Results
Considering that SLE is an autoimmune disease and immune
cells play important roles in affecting disease progression, we

analyzed and compared the immune infiltration in SLE and
control samples. The infiltration of 28 types of immune cells in
each sample was calculated by the ssGSEA algorithm
(Supplementary Table S7) and the results are displayed in
the heatmap (Figure 7A). We found that the infiltrations of
most immune cells were significantly different between SLE
and control samples (Figure 7B). Moreover, we found that the
expression of biomarker genes was positively correlated with
activated dendritic cells, central memory CD8 T cells, gamma
delta T cells, neutrophils, and type 2 T helper cells, but
negatively correlated with activated B cells, activated CD8
T cells, CD56bright natural killer cells, CD56dim natural
killer cells and central memory CD4 T cells (Figure 7C),
indicating that these biomarkers may regulate SLE via
interplay with the immune environment.

Identification of Optimal Biomarkers in SLE
To detect the optimal SLE biomarkers, we performed machine
learning analyses, in which the importance of these 10
biomarkers was weighted by their occurrence frequencies in
the top 100 models (Figure 8A). The top five important
biomarkers in each machine learning method were shown
in Table 1, and the only intersecting biomarker was IFI44
(Figure 8B), indicating that IFI44 was the optimal SLE
biomarker. Then the IFI44 related network composed of 76
nodes and 75 edges was extracted, including one miRNA,
18 TFs, and 56 drugs (Figure 8C).

FIGURE 8 | Identification of the optimal diagnostic biomarkers. (A) The occurrence frequencies of ten diagnostic biomarkers in top 100 models. (B) Venn diagram
of top five important biomarkers in each machine learning analysis. (C) The IFI44 related network.

TABLE 1 | Top five important biomarkers in each machine learning method.

Rank RF SVM ANN LR XGBoost

1 PIRC285 IFI44L IFI44 IFI44 IFI44
2 IFI44L EIF2AK2 EIF2AK2 PIRC285 IFIT3
3 IFI44 ZBP1 IFI44L XAF1 EIF2AK2
4 XAF1 IFI44 PIRC285 ZBP1 IFI44L
5 IFIT3 PARP9 XAF1 EIF2AK2 XAF1

RF, Random forest; SVM, Support-vector machine; ANN, Artificial neural network; LR,
Linear regression; XGBoost, eXtreme Gradient Boosting.
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To further explore whether IFI44 could be a reliable
biomarker, the expression levels of IFI44 were identified by
qRT-PCR in an independent cohort of 26 SLE patients and 20
healthy controls. The main clinical features of patients and
controls are summarized in Table 2. Results showed that
compared to that in healthy controls, the expression of IFI44
in SLE patients’ PBMCs was significantly higher no matter
whether lupus nephritis (LN) was present (Figures 9A, B).
ROC curve analysis showed that AUC for IFI44 was 0.850
when distinguishing SLE patients from healthy controls, and
the diagnostic sensitivity and specificity were 0.923 and 0.850,
respectively (Figure 9C).

DISCUSSION

In this study, two gene expression profile datasets were integrated
and analyzed by multiple bioinformatic approaches. 11 DEGs
between SLE and control samples were identified and analyzed by
GO and KEGG. The results of GO analysis in the biological
process have mainly enriched the response of type I and type II
interferon (IFN) and the regulation of cytokines, while KEGG
pathway analysis showed these DEGs were involved in the
pathway of necroptosis. There was sufficient evidence to
support that the impaired expression of type I IFN and its
related genes were widely involved in the pathology of SLE
(Postal et al., 2020), and the activity of type I IFN is related to
the level of circulating type II IFN (Oke et al., 2019). The
dysregulated secretion of cytokines and associated impairment
of immune regulation is a key factor influencing the symptoms
and disease activity in SLE patients (Howe and Leung, 2019).
Necroptosis, a specialized programmed cell death, is a regulated
mode of necrotizing cell death mediated by the RIP1 and RIP3
kinases, the hyperactivation of which leads to autoimmunity
(O’Donnell et al., 2018). It has been reported that elevated
IFN signaling in SLE increased necroptosis, leading to tissue
damage (Sarhan et al., 2019). Further, necroptosis was also
associated with B cell reduction in SLE patients (Fan et al., 2014).

Through PPI analysis, we found that IFI44, IFI44L,
EIF2AK2, IFIT3, IFITM3, ZBP1, TRIM22, PRIC285, XAF1,
and PARP9, interacted with each other and had strong positive
correlations, and all of them have high diagnostic efficiency in
different datasets. Therefore, these 10 genes could be used as
diagnostic biomarkers for SLE. The expression of IFI44 is
induced by interferon, which may reflect the whole blood
interferon signature in SLE (Strauß et al., 2017). DNA
methylation is often inversely proportional to the
transcriptional activity of genes, and PARP9 and IFI44L
showed marked hypomethylation in a variety of immune
cells in SLE patients (Ulff-Møller et al., 2018), including
CD4+ T cells, monocytes, granulocytes, and B cells.

FIGURE 9 | Validation of IFI44 as SLE diagnosis biomarker in an independent cohort. (A) Expression of IFI44 in SLE patients and healthy controls. (B) Expression of
IFI44 in SLE patients with or without LN and healthy controls. (C) ROC curves of IFI44 for SLE diagnosis. ***p < 0.001, ****p < 0.0001.

TABLE 2 | Clinical characteristics of SLE patients and healthy controls.

Clinical characteristics# SLE (n = 26) Healthy
Control (n = 20)

Sex, male/female 2/24 2/18
Age (year) 36.77 ± 14.49 32.55 ± 9.99
Duration (year) 7.63 ± 6.96
LN 11 (26)
SLEDAI scores 11.5 ± 3.81
ANA (Positive) 25 (26)
Anti-ds-DNA antibody (Positive) 22 (26)
Lupus anticoagulant (Positive) 10 (26)
Leukocyte (109/L) 5.43 ± 1.81
Platelets (109/L) 179.8 ± 95.41
CRP (mg/L) 9.95 ± 12.24
ESR (mm/h) 19.2 ± 14.96
C3 (g/L) 0.73 ± 0.46
C4 (g/L) 0.1 ± 0.07
IgG (g/L) 14.04 ± 8.02
IgA (g/L) 2.65 ± 1.7
IgM (g/L) 0.79 ± 0.64
Serum creatinine (μmol/L) 70.81 ± 57.27
24 h urine protein (Positive) 10 (11)

# LN, lupus nephritis; SLEDAI, systemic lupus erythematosus disease activity index; ANA,
antinuclear antibody; Anti-dsDNA, antibody, anti-double stranded deoxyribonucleic acid
antibody; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; C3/C4
complement 3/complement four; Igs, immunoglobulins.
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Hypomethylation of the IFI44L promoter region has excellent
sensitivity and specificity for diagnosing SLE and
distinguishing it from other autoimmune diseases (Zhao
et al., 2016). EIF2AK2 is highly expressed in SLE and
selectively modulates immune responses and transcription
of SLE-related histone genes by targeting TFs (Ge et al.,
2021). IFIT3 promotes the production of type I IFN and
other pro-inflammatory cytokines in SLE patients by
positively regulating the cGAS-STING signaling pathway,
aggravating the symptoms of SLE (Wang et al., 2018).
IFITM3 is an interferon-induced transmembrane protein
whose role in SLE is unclear, but it can inhibit the
production of IL-6 (Stacey et al., 2017) and regulate the
differentiation of T helper cells (Yánez et al., 2020), so it
may help to regulate the inflammatory response and
immune regulation in SLE. ZBP1 is closely related to
necroptosis. Stimulated by IFN, ZBP1 protein can interact
with RIPK3 to initiate RIPK3-dependent necroptosis (Yang
et al., 2020). TRIM22 is a viral restriction factor that may play a
role in certain autoimmune diseases such as multiple sclerosis
(Jefferies et al., 2011). PRIC285 is a transcriptional coactivator
involved in PPAR-γ signaling (Fairfax et al., 2012), and PPAR-
γ can inhibit the activation of macrophages and regulate their
differentiation, improving SLE symptoms (Kiss et al., 2013).
XAF1 can increase p53 transcriptional activity (Pinto et al.,
2020), and p53-dependent apoptosis has been implicated in
the pathogenesis and disease activity of SLE (Chen et al., 2021).

The organ damage caused by SLE is attributed to the
deposition of immune complexes on the one hand and the
infiltration of activated immune cells on the other hand
(Apostolidis et al., 2011). Therefore, we compared the
immune cell infiltration between SLE and control samples
in GSE65391 and found that the proportions of 18 immune
cells were significantly different between the two groups, of
which 10 were significantly associated with the screened
diagnostic genes. Among them, the proportion of central
memory CD8+ T cells was significantly high, and there was
a strong positive correlation with diagnostic genes, which may
be associated with the maintenance of chronic inflammation
(Liu et al., 2007). It is generally believed that the Th2-
dominated Th1/Th2 imbalance and the pathogenesis of
SLE are intimately connected (Jiang et al., 2021), and our
results showed that the diagnostic biomarkers have a
significant positive correlation with the increased frequency
of Th2, but not with Th1, which supported the reliability of
the diagnostic biomarkers screened by us.

In addition, we constructed the miRNA-diagnostic
biomarker-TF network to explore the regulatory
mechanisms of the selected genes. MicroRNA (miRNA) is
one of the main epigenetic regulators of SLE-related genes. A
considerable amount of research progress has been made in
the development of biomarkers and therapeutic methods
based on miRNA (Hong et al., 2020). The network
indicated that hsa-miR-6799-5p and hsa-miR-6759-5p, two
tumor suppressor-related miRNAs, could interact with
EIF2AK2 and IFI44L simultaneously. Hsa-miR-6759-5p can
regulate the PI3K/AKT pathway that plays an important role

in chronic inflammation by targeting IGF2 (Liu et al., 2020),
while the molecular function of hsa-miR-6799-5p is still
unclear. We also used the CTD database to predict the
drugs associated with the diagnostic genes and established
a drug-gene network, which can provide a reference for
constructing new treatment options or mining potential
pathogenic factors for SLE. For example, the (+)-JQ1
compound simultaneously targeted seven diagnostic genes
in the network, and in vitro treatment of CD4+ T cells
from SLE patients with JQ1 has been reported to reverse
immune dysregulation and reduce inflammatory cytokines
such as IFN-γ and IL-21 (Gao et al., 2018), suggesting that it
could be a potential SLE therapeutic drug. The notorious
carcinogen Benzo(a)pyrene also affects multiple diagnostic
genes, but it is also an immunomodulator that can act as a
ligand for aryl hydrocarbon receptors to alleviate arthritis
symptoms in certain autoimmune diseases such as RA (Hui
and Dai, 2020).

In this study, the RobustRankAggreg algorithm was used to
evaluate the expression consistency of diagnostic genes in
multiple datasets, and multiple machine learning algorithms
were used to evaluate the contribution of different diagnostic
genes to distinguish disease and control samples, to make the
identification of biomarkers more accurate. Finally, the results
showed that IFI44 had the highest contribution, suggesting
that it may be the optimal SLE diagnostic biomarker. IFI44 is a
type I IFN signature gene, which was hypomethylated in SLE
patients (Joseph et al., 2019) and negatively regulated the
innate immune response induced by the virus (DeDiego
et al., 2019). Therefore, it may be related to the immune
imbalance of autoimmune diseases. IFI44 has been
considered as a key diagnostic biomarker in various
diseases, including Sjogren’s syndrome (Xu et al., 2021) and
psoriasis (Wang et al., 2020). A recent study showed that IFI44
can serve as a key biomarker for LN from IgA nephritis and
healthy controls, and was associated with LN disease activity
(Shen et al., 2021), suggesting that IFI44 was not only involved
in the damage of immune complexes to the kidney but also
closely related to the pathogenesis of SLE. Lupus nephritis is a
frequent and severe complication of SLE, occurs in about 40%
of SLE patients, which often indicates a poor prognosis
(Gasparotto et al., 2020). The subjects included in our study
were not limited to lupus nephritis, so it can better reflect the
value of IFI44 in the diagnosis of SLE. The qRT-PCR results
showed the up-regulation of IFI44 differed significantly
between SLE patients with or without LN and healthy
controls, indicating that IFI44 might be a reliable SLE
diagnostic biomarker.

However, our study has certain limitations. Firstly, the
samples of one of the datasets we used, GSE65391, were
mainly from pediatric patients, and it is difficult to
determine whether the age factor affected the research
results. Secondly, we need further experiments to verify our
findings, such as validating in a larger scale and rigorous trial,
evaluating the expression of the other biomarkers we
identified, and comparing the expression of IFI44 in various
autoimmune diseases.
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CONCLUSION

In conclusion, we found ten potential diagnostic biomarkers (IFI44,
IFI44L, EIF2AK2, IFIT3, IFITM3, ZBP1, TRIM22, and PRIC285) for
SLE by integrating bioinformatics methods, and discovered the
potential of IFI44 as an optimal biomarker by five machine
learning algorithms. The qRT-PCR and ROC curve analysis were
performed to validate the diagnostic performance of IFI44 in an
independent cohort. Immune cell infiltration showed the proportion
of central memory CD8+ T cells was significantly high and positively
correlated with selected biomarkers in SLE patients. The construction
of miRNA-diagnostic biomarker-TF regulatory network and drug-
gene network provides ideas for further exploring the pathogenesis at
the genetic level and treatment of SLE.
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