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Abstract
Three-dimensional (3D) reconstruction of an organ or tissue from a stack of histologic serial

sections provides valuable morphological information. The procedure includes section prepa-

ration of the organ or tissue, micrographs acquisition, image registration, 3D reconstruction,

and visualization. However, the brightness and contrast through the image stack may not be

consistent due to imperfections in the staining procedure, which may cause difficulties in

micro-structure identification using virtual sections, region segmentation, automatic target trac-

ing, etc. In the present study, a reference-free method, Sequential Histogram Fitting Algorithm

(SHFA), is therefore developed for adjusting the severe and irregular variance of brightness

and contrast within the image stack. To apply the SHFA, the gray value histograms of individu-

al images are first calculated over the entire image stack and a set of landmark gray values

are chosen. Then the histograms are transformed so that there are no abrupt changes in pro-

gressing through the stack. Finally, the pixel gray values of the original images are transformed

into the desired ones based on the relationship between the original and the transformed histo-

grams. The SHFA is tested on an image stacks frommouse kidney sections stained with tolui-

dine blue, and captured by a slide scanner. As results, the images through the entire stack

reveal homogenous brightness and consistent contrast. In addition, subtle color differences in

the tissue are well preserved so that themorphological details can be recognized, even in vir-

tual sections. In conclusion, compared with the existing histogram-based methods, the pres-

ent study provides a practical method suitable for compensating brightness, and improving

contrast of images derived from a large number of serial sections of biological organ.

Introduction
Three-dimensional (3D) reconstruction of organs and tissues based on serial sections is a well-
established. Compared with traditional morphological approaches, its advantage is that com-
puter assisted 3D reconstructions can visualize micro-structures in space, provide abundant
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morphological information, and localize accurately cellular functional proteins. This technique
has been successfully used in kidneys [1–3], nerves [4], limbus [5], etc.

In order to apply this technique, high quality of micrographs is needed, i.e. homogeneity of
brightness, contrast, and resolution through the entire image stack derived from a large num-
ber of biological serial sections must be ensured. The gray value variance of two corresponding
pixels in the neighboring images will result in artificial stripes in computer-aided resliced im-
ages (virtual section rendered from the image stack), disturbing the accurate region segmenta-
tion and automatic target tracking of the structure. This may ultimately cause distortions of the
reconstructed structures. Such defects are inevitable, especially in images from sections stained
in different batches and different photographing conditions.

Currently, most algorithms for correcting the variance of contrast and brightness of serial
images are designed for images from confocal laser scanning microscope (CLSM), CT, or MRI.
In the case of CLSM. When CLSM images from a thick specimen are captured, their brightness
may decline with the depth of the specimen because of signal attenuation due to scattering, ab-
sorption, or photo bleaching [6, 7]. This weakness could be overcome by finding functions of
brightness, e.g. intensity decay function [8] and point spread function [9]. In the case of CT or
MRI, the brightness intensity may also be inconsistent through the image stack, even if the
same patient is examined in the same scanner and with the same protocol. This may cause arti-
facts and errors in acquiring quantitative information [10,11], image registration [12], and re-
gion segmentation. Nyúl et al. have proposed [13] and later improved [14] a histogram
specification algorithm according to the standard histogram derived from different MRI image
stacks. The algorithm consists of two steps: a training step and a transform step. In the first
step, a stack of images obtained from the same body region and protocol corresponding to a
population of patients is given as input. Then the parameters (landmarks) of a ‘‘standard” ref-
erence histogram are calculated. In the second step, any given set of images acquired according
to the protocol and for the body region can be corrected utilizing the information of the refer-
ence histogram, which is so called histogram specification. For a stack of CLSM images, Stanciu
et al. [15] have designed an estimator ARDE (Automated Reference Detection Estimator) for
optimizing the steps for selection of a reference image, and for creating a reference histogram.
The ARDE contains three vectors describing the brightness, standard deviation, and mean
value of the pixel grey values of the Sobel-operator-processed image.

The algorithms mentioned above are often integrated as software packages into the operat-
ing system of the instruments. However, the methods for CLSM, CT, and MRI are not suitable
for a large number of images with severe and irregular variance in brightness and contrast, cap-
tured from biomedical serial sections that have been stained manually. In other words, a practi-
cal reference model (functions or reference images) can hardly be established for such image
series, since the brightness and contrast vary irregularly from image to image, due to the section
staining, i.e. no “apriori” image can be created or found. Thus, a self-adaptive algorithm dealing
with the gray values is needed in order to handle images originating from serial sections.

In the present study, we propose an efficient reference-free method for automatic correction
of irregular brightness and contrast deviation in serial images of microscopic sections. The pro-
cessed images can be better aligned, and segmented precisely for further structural tracing and
3D reconstruction, as well as morphological qualification and quantification analysis.

Materials and Methods

Tissue Preparation and Image Acquisition
In the present study, all the images were obtained from developing mouse kidneys. The animal
experiments were performed in accordance with the code of Ethics of World Medical
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Association (Declaration of Helsinki) and were approved by the Medical Ethics Committee of
China Medical University.

C57/BL/6J mouse kidneys from three embryonic 17th day fetuses (E17) and from three post-
natal 7th day pups (P7) were studied. The fetal kidneys were removed a few minutes after injec-
tion of pentobarbital sodium (50 mg/kg body weight) into the peritoneal cavity of the pregnant
mice. The pup kidneys were preserved by perfusion fixation through the heart with a mixture
solution of 4% paraformaldehyde and 1% glutaraldehyde in 0.06 M sodium cacodylate buffer,
pH 7.4. All the kidneys or tissue blocks were further fixed for 1 h in 1% OsO4 in 0.1 M sodium
cacodylate buffer, and embedded in Epon 812, then cut into serial semi-thin (2.5-μm-thick)
sections using a Reichert Ultracut microtome (Reichert, Wienna, Austria). These consecutive
sections were stained with toluidine blue for morphological recognition. In all, about 600 sec-
tions from each of the three E17 kidneys and about 800 sections from each of the P7 kidneys
were obtained. The serial sections were used for the purpose of the 3D reconstruction and func-
tional analysis of the mouse developing kidneys, as previously reported [16].

Stacks of the tissue images were captured using a slide scanner (NanoZoomer Digital Pa-
thology, Hamamatsu, Japan) equipped with a 40× objective lens. The original image size was
10240 × 8196 pixels, whereby each pixel corresponded to 0.46 μm × 0.46 μm.

Sequential Histogram Fitting Algorithm
In the brightness histogram of a microscopic image (Fig 1), the columns on the leftmost part
represent the frequencies of the pixels with the lowest gray values, which normally corresponds
to the artifacts in the image; while those on the rightmost part represent the frequencies of the
pixels with the highest gray values, corresponding to the bright background without tissue in
the image; the middle part of the histogram represents the dynamic range, reflecting the fre-
quencies of the gray values of the tissue structures. So, the dynamic range varies in shape from

Fig 1. Schematic diagram of SHFA. (A) The histogram of the original image; (B) The desired histogram.
The desired image is generated by gray value transformation from the original histogram to the
desired histogram.

doi:10.1371/journal.pone.0127855.g001
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image to image. For example, the renal tubule wall is stained dark, which is reflected on the left
part of the dynamic range; while the lumen of the tubules in kidney tissue is either not stained
or stained very light, which is reflected on the right part of the dynamic range.

Most algorithms for adjustment of brightness and contrast are based on histogram opera-
tions, e.g. the shifting operation for brightness compensation, and the extension operation for
contrast enhancement. However, with respect to a series of images, one single operation, either
shifting or extending, may not meet the demands for both brightness and contrast homogeni-
zation at the same time. Therefore, the strategy is to take both brightness and contrast adjust-
ment into consideration at the same time.

The principle of our method is that the shape of each histogram is only related to the mor-
phological tissue structures in the image; so under optimal conditions of tissue preparation and
image acquisition, the individual histograms should be consecutive and vary gradually between
neighboring images. Therefore, a series of ideal histograms representing the consecutive images
could be calculated.

Sequential Histogram Fitting Algorithm (SHFA) was designed to guide the gray value
transformation from the original histograms into the desired histograms according to the fitted
variance features in the form of landmarks. So, when the series of original images were sub-
jected to the series of the desired histograms, a series of desired images were obtained, in which
the brightness and contrast were adjusted. So, the processed images may better reflect the real
tissue morphology than the raw captured images in visualization and future analysis.

We denoted the images in the original and the desired stacks as Ii and I'i, where, i represents
the image number in the original and desired image stacks. The histogram of Ii and I'i were de-
noted by Hi and H'i. In order to preserve the basic shape of a histogram when transforming
from the original histogram Hi into the desired histogram H'i, landmarks Li j and L'i j (recorded
as the gray value where the landmark was set up in the histogram) were necessarily set up in
the histograms Hi and H'i, where j represents the number of landmark from left to right in
each histogram.

The main procedures for obtaining the series of desired images are to be described in two
steps: (1) Histogram Fitting and (2) Gray Value Transformation.

Step 1. Histogram Fitting
The overall algorithm of the step of “Histogram Fitting” is briefly de-

scribed below:
Algorithm for Step 1: Histogram Fitting
Input: Original stack of images Ii (i = 1, 2, . . ., N);
Output: Landmarks in original histograms Li j and landmarks in desired histo-
grams L'i j (i = 1, 2, . . .N, j = 0,1, 2, . . ., M+1);
Begin:
1. for i = 1 to N do
2. compute the histogram Hi of Ii
3. set up Landmarks Li j (j = 0,1, 2, . . ., M+1)
4. endfor
5. for j = 0 to M+1 do
6. compute the jth fitting curve based on Li j (i = 1, 2, . . ., N) using
fitting algorithm
7. get the desired landmarks L'i j from the computed fitting expression
8. endfor

Firstly, all the histograms of the images in the original stack were calculated, and stored ac-
cording to their image number. In order to gain both speed and accuracy, thumbnail images
were processed instead of the original-sized images in this step.
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Next, landmarks in each histogram were set up in order to preserve its basic shape. For land-
marks Li j in the original histogram Hi, the leftmost point of the whole histogram, representing
the lowest gray value (usually 0), was defined as Li0, and the rightmost point representing the
highest gray value (usually 255) was defined as Li m+1. The leftmost point of the dynamic range
(containing useful tissue information) was defined as Li 1, which was selected by searching the
starting point where the gray value frequency steadily appeared. The rightmost point of the dy-
namic range was defined as Li m, which was selected by detecting the gray value of
bright background.

The landmarks Li2, Li3, . . ., Li m-1 were set up by dividing the span between Li1 and Li m in
its corresponding cumulative histogram rather than the original histogram. Here, the cumula-
tive histogram was transformed by integrating the original histogram, in which, the cumulative
frequency T(r) were calculated as

TðrÞ ¼
ðr

0

prðxÞdx

where, r represents any gray value, and pr(r) represents the frequency of the gray value r in the
original histogram. The integral of pr(r) from 0 to r was described as T(r) (0�r�255, 0�pr(r)�
1, 0�T(r)�1).

The range from Li 1 to Li m was divided evenly intom-1 spans according to the cumulative
frequencies in the corresponding cumulative histogram. Then, the gray values corresponding
to the landmarks of Li 2, Li 3, . . ., Li m-1 were determined. Finally, the basic shape of the original
histogram Hi was delineated by all the landmarks {Li0, Li1, Li2, . . ., Li m+1}. The more land-
marks, the more accurately the shape of the histogram was restored. Although there was a
great variance of the landmark gray values in the original histogram Hi, the proportions of the
spans composed of the landmarks {Li 0, Li 1, Li 2, . . ., Li m+1} remained almost identical between
the neighboring images, since the gray values were almost the same in the adjacent bio-tissue
structures. So, the neighboring landmarks should be consecutive.

Thirdly, a fitting algorithm was used on the original landmarks in order to calculate the gray
values of the desired landmarks in the serial of the histograms. The landmarks were grouped
according to the landmark ordinate number j, the gray values of landmarks {L1 j, L2 j, . . ., Ln j}
could be fitted into a smoothed curve Cj. Therefore, Cj was the gray value expression describing
the gray values of desired landmarks {L'1 j, L'2 j, . . ., L'n j} as below:

Grayvalueof L0
i j¼CjðiÞði ¼ 1; 2; . . . ; NÞ

Several complex and automatic curve fitting algorithms have been described [17,18]. When
analyzing the bio-tissue images, cubic or quartic polynomial fittings[19] has proven to balance
speed and accuracy of brightness compensation and contrast enhancement.

Finally, all the desired landmarks {L'1 j, L'2 j, . . ., L'n j} were calculated.

Step 2. Gray Value Transformation
The overall algorithm of the step of “Gray Value Transformation” is briefly

described below:
Algorithm for Step 2: Gray Value Transformation
Input: Original stack of images Ii (i = 1, 2, . . ., N); landmarks in the original
and desired histograms Li j and L'i j

Output: Desired stack of images I'i (i = 1, 2, . . ., N)
Begin:
1. for i = 1 to N do
2. compute the desired histogram H'i of I'i according to Hi and the rela-
tionship between L'i j and Li j

A Reference-Free Brightness Compensation for Serial Micrographs

PLOS ONE | DOI:10.1371/journal.pone.0127855 May 28, 2015 5 / 17



3. transform the gray values of the original image Ii according to the re-
lationship between H'i and Hi

4. endfor

For the ith image, the desired landmarks {L'i 0, L'i 1, L'i 2, . . ., L'i m+1} and the original land-
marks {Li 0, Li 1, Li 2, . . ., Li m+1} served as input. Now the desired histogram H'i could be
warped from the original histogram Hi. A piecewise linear transformation was used in histo-
gram warping, i.e., the gray values [Li j, Li j+1] in the original histogram were converted linearly
into the gray values [L'i j, L'i j+1] in the desired histogram. However, the spans outside of the dy-
namic range, i.e. [Li 0, Li 1] and [Li m, Li m+1], might be compressed after warping. So, the gray
value levels were compressed, especially the gray values near Li 1 and Li m, which might contain
the useful dark or high-light information. To avoid this situation, the scale factors in the spans
of [Li 1, Li 2] and [Li m-1, Li m] were adopted as the scale factors in the spans of [Li 0, Li 1] and [Li
m, Li m+1] for linear transformation. The gray values below 0 or above 255 were ignored after
warping. The operation above can be expressed as below:

Let piecewise scale factor be si j = (L'i j+1-L'i j) /(Li j+1-Li j); and the gray values in the original
and desired histogram i be x and x':

x0 ¼
Li0 þ si1ðx � L0

i0Þ; if ; x < L1

Lij þ sijðx � L0
ijÞ; if ; L1 � x � Lm

Lim þ sim�1ðx � L0
imÞ; if ; x > Lm

8><
>:

Then,

x0 ¼
0; if ; x0 < 0

x0; if ; 0 � x0 � 255

255; if ; x0 > 255

8><
>:

Now, any desired histogram H'i was established. Finally, the desired image was generated by
gray value transformation according to the relationship between H'i and Hi.

Results
The algorithm above was implemented in C# (Visual Studio 2010 Express) and ran on a PC
(Intel Core i7 720QM, 8GB). The algorithm was tested using an image stack obtained from ei-
ther an E17 kidney or a P7 kidney.

Sample 1: Image Stack of E17 Kidney
The image stack of E17 kidney was used to demonstrate the performance of the
proposed algorithm.

Firstly, all the image histograms were calculated, and nine landmarks (Li1—Li9) were select-
ed in the dynamic range of each histogram, as plotted in solid lines, Fig 2. Next, a gray value of
64 was detected as the desired gray value of landmark L'i1, and a gray value of 228 was detected
as L'i9. Then, a fitting algorithm was used to calculate the desired landmarks (L'i2—L'i8), as plot-
ted in dashed lines, Fig 2. Afterwards, the desired histograms were calculated according to the
relationship between the original and desired landmarks, Fig 3B. Finally, the gray values
were transformed.

In the original image stack, the gray values were changing dramatically and irregularly from
image to image, and the dynamic ranges were located in a narrow band in the middle-to-upper
part of each histogram (Fig 3A), reflecting inhomogeneous brightness and low contrast.
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Although the gray value distribution was changing dramatically and irregularly (Fig 3A), the
proportion of two adjacent landmarks in the dynamic range was identical between the neigh-
boring images. After processing, the histograms of the stack became regular, the dynamic
ranges covered a designated area (Fig 3B), reflecting a homogeneous brightness and enhanced
contrast. Representative images with different staining and contents were selected to show the
results of the algorithm: Image 1 was of good quality, whereas Images 137 and 483 had low con-
trast, Image 258 was insufficiently stained and over-bright, while Image 579 had extremely low
contrast and its tissue content was different from the other images. These original and pro-
cessed images are shown in Fig 3D and 3E. Their histograms are shown in Fig 3C (blue for orig-
inal images, red for processed images). The histograms of the processed images have kept all
the features of the original histograms, indicating the detailed gray values have been preserved.

The result was also evaluated by visual inspection of resliced images from the three-dimen-
sional reconstruction based on the image stack, Fig 4. The stripes in the SHFA-processed im-
ages (Fig 4B and 4D) were less pronounced than before SHFA processing (Fig 4A and 4C).
These stripes results from unequal brightness of the sections, clearly disturb the histology study
and data analysis. In addition, the contrast was enhanced, thus more subtle details could be rec-
ognized in the SHFA-processed resliced images.

Sample 2: Image Stack of P7 Kidney
The proposed algorithm was also tested with an image stack from the P7 kidney, where the tis-
sue structures changed more dramatically in size and shape from the very first image to the
middle one, and to the very last one due to the distinctive morphogenesis of an external cortex
and an internal medulla. In this kidney, more tubules with thicker walls were located in the cor-
tex than in the medulla, so that more dark stained areas were observed in cortex than in medul-
la. Furthermore, the convex shape of the tissue block changed from the first to the last section.
In this case, SHFA proved a robust tool with a big capability for compensating uneven bright-
ness and low contrast in a large number of serial images, Fig 5.

Fig 2. The normalized landmarks in the dynamic range of histogram. The solid lines represent the original landmarks and the dashed lines represent the
fitted landmarks in histograms of the image stack.

doi:10.1371/journal.pone.0127855.g002
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The stripes in the resliced images (Fig 6B and 6D) were less pronounced than before SHFA
processing (Fig 6A and 6C). The stripes in the resliced images (Fig 6B and 6D) were reduced
by SHFA (Fig 6A and 6C). In addition, the SHFA-processed resliced images (Fig 6B and 6D)
also revealed more detailed information.

Fig 3. The comparison of result of the E17 kidney image stack before and after processing by SHFA. (A) Histograms of the original image stack; (B)
Histograms of the image stack processed by SHFA; the abscissa represents the image number, the ordinate represents gray value (0–255), and pseudo-
color represents the frequencies of gray values appearing. (C) Histograms of typical images in the stack (blue for before and red for after processing), the
original and processed images are shown in (D) and (E). (Image 1: good quality, Images 137 and 483: low contrast, Image 258: over-bright, Image 579:
extreme low contrast). The scale bar represents 0.5 mm for all the images in D and E.

doi:10.1371/journal.pone.0127855.g003
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Discussion
Brightness compensation and contrast enhancement is a critical procedure in serial sections
analysis. The present study provides a reference-free method that may better adjust a large
number of images from histological serial sections. In this section, we explain its advantages in
comparison with the existing methods by quantitative and qualitative analysis.

Quantitative analysis was carried out using two indicators: Kullback-Leibler Divergence
(KLD) and Contrast per Pixel (CPP).

Kullback-Leibler Divergence is a non-symmetric measure of the difference between two
probability distributions P and Q in probability theory and information theory. KLD is often
intuited as a metric or distance, the KLD of Q from P is defined to be

KLDðP==QÞ ¼
X

i

PðiÞln PðiÞ
QðiÞ

Here, P(i) represents the histogram distribution of the original image, and Q(i) represents
the histogram distribution of the processed image. In the evaluation of KLD, the histogram
shift in different methods can be measured.

Fig 4. The resliced sections of three-dimensional reconstruction using the image stack of E17 kidney. (A, C) Resliced images based on the original
images; (B, D) Resliced images based on the images processed by SHFA, (A, B front view; C, D lateral view). The scale bar in A represents 0.5 mm, and for
B, C, and D.

doi:10.1371/journal.pone.0127855.g004
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In the image stack of E17 kidney, the KLD values are plotted in Fig 7 and the averaged val-
ues of KLD are presented in Table 1. We have found the following features: 1) the KLD varies
dramatically and irregularly within each of the three groups, likely because the gray values
change dramatically within the original image stack. 2) The KLD of the original-SHFA group is

Fig 5. Results of the typical images from the stack of P7 kidney processed by SHFA. (A) Original
images; (B) Processed images. The scale bar represents 1 mm for all the images.

doi:10.1371/journal.pone.0127855.g005
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Fig 6. The resliced sections of three-dimensional reconstruction using the image stack of P7 kidney. (A, C) Resliced images based on the original
images; (B, D) Resliced images based on the images processed by SHFA, (A, B front view; C, D lateral view). The scale bar in A represents 0.5 mm, and for
B, C, and D.

doi:10.1371/journal.pone.0127855.g006

Fig 7. Kullback-Leibler Divergence between the histograms of original and processed images in the stack of E17 kidney.

doi:10.1371/journal.pone.0127855.g007
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lowest compared with the corresponding groups by the other two methods, which could mean
that the original distribution of the gray values are preserved to the largest extent. Noticeably,
the KLD values for the images from 501 to 600 are highest within the groups in the cases of
Classic Equalization and Exact Equalization, but not in the SHFA. Conclusively, SHFA could
provide more exact desired histograms to conduct gray value transformation compared to the
other two methods, when dealing with a large image stack.

In the image stack of P7 kidney, the KLD is plotted in Fig 8, and the averaged KDL values
are presented in Table 2. Conclusions similar to those of the previous case could also be drawn
in this case.

Contrast Per Pixel (CPP) [20] is an estimation of the average intensity difference between a
pixel and its adjacent pixel. The CPP of an image is defined to be

CPP ¼

XM

i¼0

XN

j¼0

X
ðm;nÞ2Rði;jÞ

3

jf ði; jÞ � f ðm; nÞj

0
B@

1
CA

MN

Here, f(i,j) is the gray value of pixel (i,j), and f(m,n) is the gray value of neighboring pixel (i,
j) in the 3×3 window.

In the image stack of the E17 kidney, the CPP values are plotted in Fig 9, and the averaged
CPP values are presented in Table 3. The CPP values of all the three processed image stacks

Table 1. Averaged KLD in the image stack of E17 kidney by different methods.

Image Number 1–100 101–200 201–300 301–400 401–500 501–600

Original-Classic Equalization 3.024 2.988 2.800 2.704 2.774 3.277

Original-Exact Equalization 2.536 2.826 2.604 2.589 2.532 2.968

Original-SHFA 0.505 0.602 0.596 0.415 0.405 0.405

Original-Classic Equalization represents the KLD between the original images and the images processed by Classic Equalization, so are the Original-

Exact Equalization and Original-SHFA.

doi:10.1371/journal.pone.0127855.t001

Fig 8. Kullback-Leibler Divergence between the histograms of original and processed images in the stack of P7 kidney.

doi:10.1371/journal.pone.0127855.g008
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have increased compared to those in the original stack, which means that the contrasts have
been enhanced after processing by all the methods. The CPP of the image stack processed by
Classic Equalization is highest, which implies an over-enhanced contrast. This is caused by
over-stretching the histogram, and results in losing the detailed information, especially in the
dark or bright tissue contents. The images processed by Exact Equalization get higher CPP val-
ues (Images 101–400), suggesting that the original image histograms are similar to the refer-
ence image histogram, but get lower CPP values when the image histograms are very different
from the reference image histogram (Images 1–100 and 501–600). This situation happens
when the original histograms are forced to be equivalent to the reference histogram when they
are not similar. This causes an imprecise gray value transformation, losing some gray levels in
the images differing from the reference image. The CPP values of the images processed by
SHFA are modest, which could also be proven by images comparison, indicating that the con-
trast is properly improved for images both well-stained and poorly-stained, both similar and
dissimilar to the reference image.

The quality of the image staining in stack in P7 kidney is generally better than in E17 kid-
ney, thus the averaged CPP values are higher, as shown in Fig 10 and Table 4. The CPP values
of the image stack processed by Exact Equalization are very similar to those of the original
image stack, which could be interpreted as the contrast of the detected reference image is simi-
lar to that of the other original images. This may indicate that the contrast is not improved as
much in this image stack as in the E17 kidney. In the image stack processed by SHFA, the CPP
values are increased but are lower in the other two processing groups, indicating that the con-
trast is improved at a proper level and the gray value levels of the images are better preserved.

Table 2. Averaged KLD in the image stack of P7 kidney by different methods.

Image Number 1–100 101–200 201–300 301–400 401–500 501–600 601–700 701–780

Original-Classic Equalization 1.809 1.515 1.556 1.598 1.553 1.601 1.552 1.589

Original-Exact Equalization 1.313 0.901 1.261 1.391 1.392 1.356 1.189 1.288

Original-SHFA 0.744 0.492 0.374 0.335 0.317 0.348 0.333 0.408

Original-Classic Equalization represents the KLD between the original images and the images processed by Classic Equalization, so are the Original-

Exact Equalization and Original-SHFA.

doi:10.1371/journal.pone.0127855.t002

Fig 9. Contrast Per Pixel of the original and processed images in the stack of E17 kidney.

doi:10.1371/journal.pone.0127855.g009
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Qualitative analysis is performed by visual comparison. The global and local quality of the
images in the stack is checked meticulously. Representative images in the stack of E17 kidney
are illustrated in Fig 11, representing the images with good quality, deep-stained, and extreme
low contrast, respectively.

By Classic Equalization, the global contrast of processed images is most enhanced among all
the groups; however some gray value levels of the tissue structures are lost, especially in the
darker or brighter area (Fig 11B, Images 25 and 579). The reason is that Classic Equalization
focuses on the contrast of the whole image rather than a part of the image. This is a weakness
in biological micrographs with a broad background and small structure area. When dealing
with such images by Classic Equalization, the contrast of the background is over-enhanced,
while the contrast of the tissue structures is less enhanced. Because the histogram of the back-
ground is often over-stretched, the tissue is compressed.

By Exact Equalization, a reference image is first selected visually or automatically [15], and
then according to its histogram, those of the other images are adjusted, so that the contrast of
the images stack is appropriately enhanced. So, the reference image with the best quality is the
key of the algorithm. This algorithm performs well for the images (e.g. Fig 11C, Image 82) simi-
lar to the reference. But when a stack contains a large number of images from biological sec-
tions, or the contents in the images change dramatically (e.g. Fig 11C, Image 579), Exact
Equalization would work less effectively since a single reference image could hardly represent
all images in the two cases.

The presented SHFA, suitable for a larger number of images in the stack, could show the
changing tendency of the original histograms, then calculates the desired histograms for gray
value transformation of original images in the stack. The tendency contains most useful

Table 3. Averaged CPP in the image stack of E17 kidney by different methods.

Image Number 1–100 101–200 201–300 301–400 401–500 501–600

Original 3.212 2.950 2.952 3.361 3.221 2.581

Classic Equalization 5.218 6.044 5.782 6.033 5.596 4.685

Exact Equalization 3.902 5.462 5.464 5.041 4.693 3.338

SHFA 4.807 5.480 4.860 5.204 5.090 4.187

doi:10.1371/journal.pone.0127855.t003

Fig 10. Contrast Per Pixel of the original and processed stack of P7 kidney.

doi:10.1371/journal.pone.0127855.g010
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Fig 11. Comparison between SHFA and the existing algorithms using the image stack of E17 kidney. (A) Original images; (B) Images processed by
Classic Equalization; (C) Images processed by Exact Equalization (D) Images processed by SHFA. Typical bright/black parts are magnified in the colored
box. The scale bar represents 0.5 mm for all the images.

doi:10.1371/journal.pone.0127855.g011

Table 4. Averaged CPP in the image stack of P7 kidney by different methods.

Image Number 1–100 101–200 201–300 301–400 401–500 501–600 601–700 701–780

Original 5.141 8.746 9.943 9.363 9.094 9.063 8.060 7.869

Classic Equalization 9.248 15.49 17.38 16.97 16.66 15.83 14.37 14.17

Exact Equalization 5.282 8.957 10.14 10.01 9.601 9.252 8.500 8.125

SHFA 6.678 11.87 13.84 13.32 12.81 12.61 11.52 11.08

doi:10.1371/journal.pone.0127855.t004
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information from tissue structures in the images, therefore a few poorly-stained images will
not affect the desired histograms. The histograms of images with abnormal brightness or low
contrast (e.g. Fig 11D, Image 579) could be fitted as well.

When images processed only by SHFA are compared with those processed by SHFA and
then subjected to further contrast enhancement, the latter are often preferred by observers, al-
though both pairs of images are acceptable. This benefit of further contrast enhancement is
most apparent when the original images are of good quality (e.g. Fig 11D, Image 82).

The image stack of the P7 kidney is taken as another example where the tissue content dra-
matically changes. In this case, the number of landmarks in the histograms, and the fitting al-
gorithm can be adjusted according to the complexity of the changing content. In addition,
since the thickness of the biological sections is at a micron level, the tissue structures rarely
vary dramatically from one section to the next. According to our experience, cubic or quartic
polynomial fitting algorithms are usually suitable for a large number of images from biological
serial sections.

In conclusion, SHFA provides a suitable reference-free method for brightness compensation
and contrast enhancement of serial section images, where a reference image or function can
hardly be found, compared with the existing methods.
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