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Abstract 

Background: The use of highly sensitive molecular tools in malaria diagnosis is currently largely restricted to research 
and epidemiological settings, but will ultimately be essential during elimination and potentially eradication. Accurate 
diagnosis and differentiation down to species levels, including the two Plasmodium ovale species and zoonotic vari‑
ants of the disease, will be important for the understanding of changing epidemiological patterns of the disease.

Methods: A qPCR‑high resolution melting (HRM) method was to detect and differentiate all human Plasmodium spe‑
cies with one forward and one reverse primer set. The HRM detection method was further refined using a hydrolysis 
probe to specifically discriminate Plasmodium falciparum.

Results: Out of the 113 samples tested with the developed HRM‑qPCR‑ P. falciparum probe assay, 96 (85.0 %) single 
infections, 12 (10.6 %) mixed infections, and 5 (4.4 %) were Plasmodium negative. The results were concordant with 
those of the nested PCR at 98.2 %. The assay limit of detection was varied from 21.47 to 46.43 copies /µl, equivalent to 
1–2.11 parasites/µl. All P. falciparum infections were confirmed with the associated Taqman probe.

Conclusions: Although the dependence on qPCR currently limits its deployment in resource‑limited environments, 
this assay is highly sensitive and specific, easy to perform and convenient for Plasmodium mono‑infection and may 
provide a novel tool for rapid and accurate malaria diagnosis also in epidemiological studies.
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Background
A significant step-up in worldwide malaria control efforts 
in the past decades has resulted in a considerable reduc-
tion of mortality and clinical episodes in many malaria-
endemic countries [1]. At the same time, asymptomatic 
infections have gained importance as a reservoir of new 
infections and epidemics. Novel and more sensitive tools 
are, therefore, urgently needed to support when techni-
cally possible, microscopic examination of thick and thin 

bloods films remaining the gold standard for laboratory 
diagnosis of malaria in resource-limited environments.

In Europe and European Economic Area, 8349 malaria 
cases were reported in 2018 and nearly all reported cases 
were imported. Around 84 % of imported malaria cases 
have been reported to be non-falciparum malaria [2]. 
These tend to receive limited attention due to their less 
severe clinical course (when compared to Plasmodium 
falciparum); however, recent and increasing numbers of 
studies are supporting the capacity of Plasmodium vivax 
to cause severe disease by affecting the spleen, lungs and 
born marrow [3–7]. These findings are prompting a more 
thorough and comprehensive differentiation between 
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species for a correct treatment approach, particularly in 
regions with declining Plasmodium endemicity [8].

In spite of a similar presentation in the early stages of 
the disease P. vivax and Plasmodium ovale spp. pose spe-
cific challenges due to their ability to produce dormant 
liver stages (hypnozoites). These can induce re-activa-
tion of malaria up to several years after the initial infec-
tion [9]. Infection with Plasmodium malariae, known 
as quartan fever, can result in long-lasting disease if not 
well treated. Plasmodium ovale spp. and P. malariae were 
reported to be responsible for asymptomatic cases in a 
seroprevalence study of P. ovale spp. and P. malariae in 
healthy populations in Western Africa [10].

The Plasmodium mitochondrial genome (6-kb) is 
rooted entirely from the female gametocyte and does not 
undergo recombination among lineages. That makes it 
a desirable candidate for pathogens surveillance and for 
Plasmodium species diagnosis. Additionally, the mito-
chondrial genome exists in multiple copies (up to ~ 22 
copies) defining it as a good target for Plasmodium spe-
cies differentiation [11–16].

Light microscopy and immuno-chromatographic rapid 
diagnostic tests (RDTs) are the two methods recom-
mended by the World Health Organization (WHO) and 
used routinely for parasitological diagnosis of malaria 
[17]. However, particularly in asymptomatic infections 
and in the case of low parasite densities, misclassifica-
tion and low detection rates of non-falciparum malaria 
are commonly reported with microscopy and RDTs, 
respectively [18]. Multiplex qPCR has been identified as 
a substantial improvement to microscopy in reference to 
laboratory detection of malaria species specifically due to 
its superior limit of detection (LOD) [18].

Since the development of PCR based methods in 
malaria diagnosis in the late 1980s, several methods tar-
geting the Plasmodium 18S SSU RNA gene have been 
developed. These methods include isothermal amplifi-
cation (LAMP), conventional nested and semi-nested 
PCRs, and real-time PCRs [19, 20]. However, Plasmo-
dium species-specific identification by these methods 
requires multiplexing or many time-consuming steps 
using primer pairs that are specific to each of the Plasmo-
dium species.

High-Resolution Melting (HRM) curve analysis is a 
fast and straightforward post-PCR analysis which has 
been successfully applied for genotyping, including path-
ogen-typing. In this procedure, the region of interest is 
amplified in the presence of a specialized DNA binding 
dye and a gradual denaturation of the amplicons, which 
produce characteristic melting profiles. Recently, an 
HRM assay targeting the 18S SSU RNA was described for 
simultaneous detection and typing of five Plasmodium 
species affecting humans [21]. The use of such an HRM 

assay would help saving time in Plasmodium species 
identification. HRM technology was successfully used to 
differentiate both P. ovale species in one PCR reaction by 
targeting the highly conserved apicoplast genome [22].

In this paper, a qPCR high-resolution assay is described 
targeting the mitochondrial DNA for simultaneous 
detection and quantification of P. falciparum, P. vivax, 
P. malariae, P. ovale curtisi, P. ovale wallikeri and Plas-
modium knowlesi, with high specificity and sensitivity. A 
Taqman probe was added to the PCR mix to specifically 
detect and confirm P. falciparum infection.

Methods
Samples and DNA extraction
Samples (113) from published studies conducted in 
Bangladesh, Malaysia and Ethiopia were used for method 
development (Additional file  1). All samples were col-
lected under approved protocols and after obtaining 
written informed consent. Parasite density and species 
diagnosis were initially established by microscopy and 
nested PCR [23, 24]. Archived filter papers of each sam-
ple (4 × 4 mm blood spots soaked overnight in 100 µl 
PBS at 4°C) were used for DNA extraction with Illustra 
blood genomicPrep Mini Spin kits (GE Healthcare, Buck-
inghamshire, UK) following the manufacturer’s proto-
col. The DNA was eluted with two times 50 µl of elution 
buffer and stored at − 20 °C.

Target selection and primer design
The mitochondrial (complete or partial) genome of 
P. falciparum (KT119883, KT119882), P. ovale spp. 
(AB354571, HQ712052, HQ712053), P. vivax (KF668406, 
AY598121), P. malariae (AB489192, AB354570), and P. 
knowlesi (AY598141, AY722797) obtained from Gen-
Bank (National Center for Biotechnology Information, 
Bethesda, MD) were used for primer design.

The selected fragment of all six Plasmodium species 
is presented in Fig. 1. The partial mitochondrial genome 
was aligned using the clustalW algorithm, as imple-
mented in the BioEdit software package version 7.2.6. 
After the identification and selection of a specific and 
conserved region, a pair of primers, specific to all 6 Plas-
modium species was designed to amplify a 109–117  bp 
fragment for the real-time PCR-HRM assay (qPCR-
HRM) using the Primer3 online tool. The primers were 
synthesized by Eurofins MWG Synthesis GmbH (Ebers-
berg, Germany) and purified by reverse-phase high-per-
formance liquid chromatography.

PCR and melting curve
The PCR reaction was performed in 20 µl containing 
100 nM forward primer (PhHRM F1: 5’-CGT CTC ATC 
GCA GCC TTG - 3’), 100 nM reverse primer (PhHRM 
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R1: 5’-AGG TTA ACG CCT GGA GTT CT-3’), 1x GoTaq 
qPCR master mix (Promega Corporation, Madison, 
USA), 50 nM of Texas red probe (5’ TR-GTC ACG CAA 
TAT CAA TAT A-MGB-Eclipse 3’) (Eurogentec, Liège, Bel-
gium) and 4 µl DNA sample. The PCR was performed in 
a Roche LightCycler 480 qPCR system (Roche Diagnos-
tics GmbH, Mannheim, Germany) with an initial dena-
turation step at 95 °C for 3 min, followed by 45 cycles of 
95 °C for 10 sec and 62 °C for 30 sec. The PCR products 
were then subjected to the following melting programme: 
denaturation at 95°C for 1 min, cooling to 65 °C (held for 
1 min), and continuous heating at 2.2°C/s with fluores-
cence acquisition from 65 °C to 95 °C. Two filter combi-
nations were used: SYBR Green/ HRM dye and 533–610/
Texas-red dye.

Positive control plasmids preparation and sequencing
The short fragment of each Plasmodium species (Fig. 1) 
was inserted into TOPO vector using the TOPO® TA 
Cloning® Kit, and the recombinant vector was trans-
formed into competent Escherichia coli. Selected posi-
tive clones were cultured, the plasmids purified and 
sequenced by Eurofins MWG Synthesis GmbH (Ebers-
berg, Germany). The sequencing data were analysed 
using Vector NTI.10 (Invitrogen) software, and the 
sequences were checked by using the Basic Local Align-
ment Search Tool (Nucleotide BLAST) to confirm their 
identity.

Assay sensitivity, specificity and precision
The method specificity was evaluated with the melting 
profile (comparatively to the positive control plasmid), 
and also with DNA from the following organisms (using 
identical PCR conditions): Toxoplasma gondii, Leishma-
nia infantum, Trypanosoma brucei, Trypanosoma cruzi, 
Babesia divergens, Entamoeba histolytica, Cryptosporid-
ium parvum, Giardia intestinalis, Enterocytozoon bie-
neusi, Encephalitozoon cuniculi, Pneumocystis jirovecii, 
Echinococcus granulosus, Strongyloides stercoralis, 

Dirofilaria repens, Toxocara canis, and Ascaris suum. 
Five Plasmodium negative blood spots on filter papers 
from human were tested. The assay was performed in 
duplicate with each DNA sample.

The PCR amplification efficiency was established by 
the means of three calibration curves providing the mean 
PCR efficiency and analytical sensitivity. The PCR effi-
ciency was calculated according to the following formula:

PCR efficiency = 10 − 1/slope − 1 [25].
The assay sensitivity was expressed as the limit of 

detection (LOD) at 95 % probability. The LOD for each 
Plasmodium species was defined as the measured con-
centration producing at least 95 % positive replicates [26]. 
The LOD was assessed by amplifying seven different con-
centrations (80, 60, 40, 20, 10, 8, and 6 copies/µl) of each 
plasmid in six (6) replicates on four separate occasions. 
The total proportion of positive tests was recorded and 
subjected to probit regression analysis using R version 
3.4.2 (2017-09-28) via RStudio version Version 1.1.383 
to obtain LOD with confidence interval (CI). Similarly, 
the boxplots of the melting temperatures (Tm) were also 
produced using R via the RStudio version. The Welch’s 
unequal variances t-test was used to compare the differ-
ence between arithmetic means of the respective Tm of 
the amplicons of all five parasite species using R.

Results
Assay design and optimization
Species identification was originally performed by 
microscopy analysis and/ or nested PCR (Additional 
file 1). The assay required one forward and one reverse 
primer binding specifically to all six human Plasmo-
dium species (Fig.  1). The melting temperature (Tm) 
values were 77.25 ± 0.03°  C (P. malariae), 77.69 ± 0.12° 
C (P. vivax), 78.11 ± 0.06° C (P. knowlesi), 78.53 ± 0.03 
°C (P. ovale wallikeri), 78.73 ± 0.05 °C (P. ovale curtisi), 
and 79.01 ± 0.12 °C (P. falciparum) (Figs. 2 and 3). The 
high-resolution melting analysis is differentiating each 
Plasmodium species from the others with a range of 

Fig. 1 Selected fragment of Plasmodium cox1 gene with human Plasmodium species signatures: Fragments: P. falciparum (110 bp); P. malariae 
(112 bp); P. ovale wallikeri, P. vivax and P. knowlesi (115 bp); P. ovale curtisi (116 bp); PhHRM F1 (18 bp); PhHRM R1 (20 bp); PhHRM probe (22 bp: 
5’ VIC‑ ctcgtcacgcaatatcaatata‑MBG‑NFQ 3’) with the corresponding bp on the fragment (black horizontal line). The used primer base pairs are 
presented in a red rectangle
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ΔTm of 0.20–0.44 °C. Single infections were system-
atically identified based on their melting temperature 
described in Table 1.

Assay performance
Isolated plasmid construct with each mitochondrial frag-
ment of the Plasmodium species was used to determine 
the efficiency of the assay by amplifying 10-fold serial 
dilutions starting with  107 copies/µl to 10 copies/µl. The 

Fig. 2 Melting curves (a), melting peaks (b), normalized melting curves, and temperature shifted difference plot of reference plasmid of P. 
falciparum, P. ovale wallikeri, P. vivax and P. knowlesi, and P. ovale curtisi. The following melting temperatures were observed: 77.25 °C for P. malariae 
(grey), 77.69 °C for P. vivax (pink), 78.11°C for P. knowlesi (blue), 78.53 °C for P. ovale wallikeri (brown), 78.73 °C for P. ovale curtisi (green), and 79.01 °C for 
P. falciparum (red)

Table 1 Assay melting temperature, specificities, and limits of detection (LOD) with confidence interval (CI)

Species n Test Tm (Tm range)
(°C)

Efficiency (%) Slope R2 LOD with CI (Copy/µl)

P. malariae 3 HRM 77.25 ± 0.03 (77.20–77.28) 99.85 − 3.3256 0.9974 21.47 (15.97–41.16)

P. vivax 33 HRM 77.69 ± 0.12 (77.50–77.94) 98.78 − 3.3527 0.9985 29.36 (22.61–45.85)

P. knowlesi 5 HRM 78.11 ± 0.06 (78.06–78.22) 99.74 − 3.3281 0.9927 42.47 (31.67–67.57)

P. ovale wallikeri 13 HRM 78.53 ± 0.03 (78.45–78.57) 94.99 − 3.4482 0.9992 33.47 (24.49–57.87)

P. ovale curtisi 5 HRM 78.73 ± 0.05 (78.65–78.79) 97.67 − 3.3791 0.9985 30.26 (22.68–49.81)

P. falciparum 38 HRM 79.01 ± 0.12 (78.80–79.23) 97.95 − 3.3720 0.9991 46.43 (32.50–85.44)

P. falciparum 38 Probe – 97.18 − 3.3913 0.9988 –
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ranges of efficiency, slope, and  R2 were 94.99 to 99.85 %, 
− 3.3256 to − 3.4482, and 0.9927 to 0.9992, respectively 
(Table  1). The probit analysis of runs between 80 and 
10 copies /µl provided LODs at 95 % confidence vary-
ing from 21.47 (15.97–41.16) copies /µl with P. malar-
iae to 46.43 (32.50–85.44) copies /µl with P. falciparum 
(Table 1).

The discrimination power of the assay was tested 
using 108 Plasmodium positive samples, 5 Plasmodium 
negative samples, and also DNA samples positive for 
16 other organisms listed in section material and meth-
ods. The melting temperature (Tm) results of the Plas-
modium samples are illustrated in boxplots (Fig. 3). The 
Welch’s unequal variances t-test showed that Tm of all 
Plasmodium amplicon (6) was significantly different 
(p-value < 2.2e−16).

Out of the 113 samples tested with the HRM-qPCR- P. 
falciparum probe assay, 96 (85.0 %) single infections were 
detected: 11 P. malariae, 5 P. knowlesi, 6 P. ovale curtisi, 
8 P. ovale wallikeri, 31 P. vivax and 35 P. falciparum were 
detected (Fig.  4). Additionally, 12 (10.6 %) mixed infec-
tions of P. malariae /P. falciparum (2), P. falciparum / P. 
ovale curtisi (2), P. vivax/ P. falciparum (5), and P. falci-
parum / P. ovale wallikeri (3), were identified. Five (4.4 %) 
samples were Plasmodium negative. All mix infections 
were observed with P. falciparum infection confirmed by 
high resolution melting and/or by the probe with texas-
red detection at 650nm. The HRM melting curves alone 
allowed the detection of two of the four mixed infections 
(P. falciparum/ P. malariae, and P. falciparum/ P. vivax) 
(Fig.  5) confirmed by the Taqman probe amplification 
curve. The two additional mixed infections P. falcipa-
rum/ P. ovale curtisi, and P. falciparum/P. ovale wallikeri 
needed both HRM Tm (for P. ovale species) and Taqman 
probe amplification (for P. falciparum) to be confirmed.

The results were concordant with those of the nested 
PCR at 98.2 % at 95 % CIs. Indeed, out of the 113 sam-
ples, two mixed infections of P. falciparum/P. ovale cur-
tisi (nested PCR) were detected as single infections with 
P. falciparum using the qPCR-HRM-P. falciparum probe 
assay. The selected forward and reverse primers were 
specifically binding to all six Plasmodium species and did 
not amplify any of the 16 organisms used to test the spec-
ificity of the method.

Discussion
A combination of an intercalating dye with a hydroly-
sis probe real-time PCR is described with a simultane-
ous differentiation of all human Plasmodium species. 
The hydrolysis probe designed for P. falciparum was 
included to double differentiate the predominant and 
potentially most virulent parasite (P. falciparum) from 
the other Plasmodium species: P. ovale wallikeri, P. 

ovale curtisi, P. vivax, P. malariae, and P. knowlesi. In an 
attempt to increase the assay specificity and sensitivity, 
the mitochondrial genome was targeted because it is 
more conserved within each of the Plasmodium species 
and exists in multiple copies (up to ~ 22 copies) within 
each parasite [13–16]. The developed assay’s specific-
ity (98.2 % at 95 % CIs) and sensitivity (LODs of 21.47–
46.43 copies/µl, equivalent to 1–2.11 parasites/µl) are 
comparable to those of other studies like Joste et  al. 
[27] and Murillo et al. [28] with 100 % specificity and 1 
parasite/µl sensitivity. Chua et  al. [21] reported a sen-
sitivity range of 1–100 copies/µl in a qPCR-HRM assay 
targeting the 18S SSU rRNA gene of Plasmodium spp. 
with also one primer set. Similar LODs values of 1par-
asite/µl and 1–10 parasites/µl were also achieved by 
Lucchi et al. [29] and Demas et al.[30] with P. knowlesi, 
and P. falciparum-P. vivax, respectively. Further studies 
have shown that lower LODs can be achieved when the 
qPCR target has higher copy number like the teleromic-
associated repetitive element 2 (TARE-2, ~ 250 copies/
genome) and the var gene acidic terminal sequence 
(varATS, 59 copies/genome). Indeed, lower LODs 
(0.03–0.15 parasites/µl) were achieved by Hofmann 
et  al. [31] using the TARE-2 and varATS, respectively 
for P. falciparum and P. vivax. More recently, Gupta 
et  al. [32] reported 34–44 copies of PfMLS152 and 
PvMLS110 sequences corresponding to P. falciparum 
and P. vivax, respectively, with a low LOD value (0.1 
parasites/µl). The qPCR assay also demonstrated the 

Fig. 3 Boxplots of the melting temperature of P. falciparum (Pf, red), 
P. ovale wallikeri (Pow, blue), P. vivax (Pv, pink), P. knowlesi (Pk, brown), P. 
malariae (Pm, green), and P. ovale curtisi (Poc, teal). The box specifies 
the likely range of melting temperature variation. The melting 
temperature ranges were 77.20–77.28 °C for P. malariae, 77.50–77.94 
°C for P. vivax, 78.06–78.22 °C for P. knowlesi, 78.45–78.57 °C for P. ovale 
wallikeri, 78.65–78.79 °C for P. ovale curtisi, and 78.80–79.23 °C for P. 
falciparum 
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utility of multi-copy DNA sequence in the diagnosis of 
malaria. Its sensitivity is lower compare to other stud-
ies but the developed assay is presenting the advantage 
to target a conserved fragment of the mitochondria 
genome compare to the poor homology of the repeats 

in assays with higher copy of genomic sequences [31, 
32].

  The time needed to run a sample, including both 
amplification curves detection and melting curve analy-
sis, was 1h15 min without a probe, and 2  h when the 

Fig. 4 qPCR‑HRM (azure blue) results of 113 samples compared to nested PCR (baby blue). The qPCR‑HRM results of 113 (98 %) samples matched 
with the nested PCR. Two mixed infections of P. falciparum/ P. ovale curtisi were detected as a single infection of P. falciparum in the developed 
qPCR‑HRM assay

Fig. 5 Melting peaks of mixed infection samples presenting 2 cases of double infection: a P. malariae (grey), P. falciparum (red) with a mixed 
infection P. malariae/ P. falciparum (black). b P. vivax (pink), P. falciparum (red) with a mixed infection P. vivax/ P. falciparum (grey)
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Texas-red probe was added, respectively. The qPCR-
HRM developed by Chua et al. [21] was also performed 
in 2 hours. These single PCR techniques are faster com-
pared to the conventional approaches based on nested 
PCR with additional PCR product separation by electro-
phoresis in agarose gel [23, 33, 34].

This assay has the advantage of detecting all Plasmo-
dium species with a single primer set in one PCR reac-
tion. Additionally, P. falciparum infection is confirmed 
with the hydrolysis probe in the same PCR reaction. 
Mixed infections remain a major challenge even for 
experienced microscopists and are difficult to detect 
with most currently available RDTs. Such a method will 
therefore be essential in co-endemic areas where species 
differentiation is crucial for directing appropriate treat-
ment and surveillance [17]. This assay provides a sensi-
tive and rapid method to overcome the difficulties with 
distinguishing mixed infections involving P. falciparum, 
e.g., P. knowlesi/ P. falciparum [35], or P. malariae/ P. fal-
ciparum [36].

A limitation of the current assay is the identification of 
selected mixed infections due to the small Tm difference 
between the species. Indeed, mixed infections involving 
the two P. ovale species (wallikeri and curtisi) would be 
detected as a single infection with the developed assay. 
This, however, has very limited clinical implications. In 
this case, a method targeting the two closely related P. 
ovale species like the one previously developed [22], are 
necessary to differentiate the species.

The use of a Taqman probe (250 $ for ~ 6000 qPCR 
reactions) was generating additional cost making the 
developed assay slightly more expensive than the SYBR 
Green detection assays [21]. But the probe cost is distri-
bution across thousands of PCR reactions making low 
impact on the cost of sample analysis. Despite using a 
Taqman probe, the developed assay remains cost-efficient 
compared to a fluorescence resonance energy transfer 
(FRET) more expensive than the Taqman probes [37–39]. 
The assay without the Taqman probe will indeed identify 
any Plasmodium infection through the specific melting 
temperature.

Conclusions
This is the first method describing the combination of 
non-probe (HRM) with a hydrolysis probe qPCR in 
malaria diagnosis. The assay is targeting all six Plasmo-
dium species with an additional detection step for P. 
falciparum infection. The assay provides a highly sensi-
tive, specific, and easy to perform HRM-hydrolysis probe 
qPCR assay for differentiating and quantifying malaria 
parasites. This qPCR assay could contribute to a timely 
diagnosis in both non-malaria-endemic and malaria-
endemic areas and also contribute to protecting the most 

vulnerable population groups, like young children and 
non-immune populations, in whom P. falciparum can be 
rapidly fatal.
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