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Abstract

Motivation: Co-evolution methods have been used as contact predictors to identify pairs of resi-

dues that share spatial proximity. Such contact predictors have been compared in terms of the pre-

cision of their predictions, but there is no study that compares their usefulness to model

generation.

Results: We compared eight different co-evolution methods for a set of �3500 proteins and found

that metaPSICOV stage 2 produces, on average, the most precise predictions. Precision of all the

methods is dependent on SCOP class, with most methods predicting contacts in all a and mem-

brane proteins poorly. The contact predictions were then used to assist in de novo model gener-

ation. We found that it was not the method with the highest average precision, but rather

metaPSICOV stage 1 predictions that consistently led to the best models being produced. Our mod-

elling results show a correlation between the proportion of predicted long range contacts that are

satisfied on a model and its quality. We used this proportion to effectively classify models as cor-

rect/incorrect; discarding decoys classified as incorrect led to an enrichment in the proportion of

good decoys in our final ensemble by a factor of seven. For 17 out of the 18 cases where correct an-

swers were generated, the best models were not discarded by this approach. We were also able to

identify eight cases where no correct decoy had been generated.

Availability and Implementation: Data is available for download from: http://opig.stats.ox.ac.uk/

resources.

Contact: saulo.deoliveira@dtc.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

De novo protein structure prediction, also known as template-free

modelling, is the method of choice for structure prediction when

structural homologs to a target sequence cannot be effectively identi-

fied (Moult et al., 2014).

Recently, it has been shown that the use of predicted contacts can

significantly improve de novo protein structure prediction, (e.g. Braun

et al., 2015; Hopf et al., 2012, 2015; Jones et al., 2012, 2014;

Kamisetty et al., 2013; Kim et al., 2014; Marks et al., 2011, 2012;

Ovchinnikov et al., 2015; Seemayer et al., 2014). Such contacts tend

to be predicted based on the principle of correlated mutations. Under

this theory, sequence positions in a multiple sequence alignment that

mutate in a correlated fashion are likely to represent residues that

share a spatial proximity (Göbel et al., 1994; Pazos et al., 1997).

The notion of correlated mutations was first introduced by

Göbel et al. (1994), in which a simplistic formulation of correlated
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mutations was used to infer spatial constraints from a multiple se-

quence alignment. The precision of contacts inferred from correlated

mutations has recently been improved with the exponential growth

in the number of protein sequences available in the public domain

and the emergence of new statistical techniques.

Mean Field Direct Coupling Analysis (mfDCA) was one of the

first of these new techniques (Morcos et al., 2011). mfDCA uses the

information of all columns in the alignment when ascertaining the

correlation between two individual columns. An implementation of

this method, EV-Fold, was initially tested on 15 soluble proteins and

shown to obtain a predicted contact precision greater than 50% for

12 cases (Marks et al., 2011). Marks and colleagues also reported

how EV-Fold could be used to improve de novo structure prediction

both for soluble (Marks et al., 2011, 2012) and transmembrane pro-

teins (Hopf et al., 2012). Another approach uses an estimate of the

inverse covariance matrix to assign a score to residue pairs. This ap-

proach has been implemented in PSICOV (Jones et al., 2012) and

used to predict protein contacts for 150 targets. The top-L=5 long-

range contact predictions (sequence separation>23) for a protein of

length L were shown to have a precision greater than 0.5. These

contact predictions were then used in the fragment-assembly soft-

ware FRAGFOLD (Kosciolek and Jones, 2014), generating accurate

models for 100 of the 150 targets. PSICOV predictions were also

used with FILM3 to assist in protein structure prediction for 28

membrane proteins, producing accurate models for 26 of these pro-

teins (Nugent and Jones, 2013).

A third approach has been developed based on learning the dir-

ect couplings as parameters of a Probabilistic Graphical Model

(Markov random field) by maximizing its pseudo-likelihood. This

approach has several implementations, including plmDCA (Ekeberg

et al., 2013), GREMLIN (Kamisetty et al., 2013) and CCMPred

(Seemayer et al., 2014). GREMLIN has been tested on 329 protein

targets selected from the Continuous, Automated Model Evaluation

(CAMEO) (Haas et al., 2013) and shown to outperform PSICOV,

plmDCA and mfDCA. Another tool, EPC-map (Schneider and

Brock, 2014), combines contact predictions output by GREMLIN

with physicochemical information, reporting an average improve-

ment in precision of 4.4% compared to GREMLIN.

The three contact prediction approaches described above have

been shown to be partially orthogonal and output a significant num-

ber of non-overlapping predictions (Monastyrskyy et al., 2015).

Meta-predictors have been developed to combine the methods in an

attempt to produce a consensus. PconsC (Skwark et al., 2013) and

PconsC2 (Skwark et al., 2014) were based on using sixteen sets of

predictions output by PSICOV and plmDCA, each obtained using a

different multiple sequence alignment. A machine learning approach

generates the consensus set of predictions. PconsC2 was shown to

obtain higher precision when compared to PSICOV, plmDCA and

PconsC on three different sets. A second consensus method,

metaPSICOV, uses predictions output by Freecontact (a mfDCA im-

plementation) (Kaj�an et al., 2014), PSICOV and CCMPred.

Resulting contact predictions are used as features in a two-layer neu-

ral network.

Specialist predictors like Bbcontacts (Andreani and Söding,

2015) have been developed, in this case, to infer only beta-strand

pairing based on the output of CCMPred. It has been shown to

achieve 50% precision for b–b residue pairs at 50% recall using pre-

dicted secondary structure.

It has been suggested that the number of sequences required to

produce reliable contact predictions should be of the order of 5� L,

where L is the length of the protein. A recent study (Kamisetty et al.,

2013) estimated that the number of protein families in Pfam for

which no homologue structure is known (5146) and for which there

are more than 5� L sequences in the multiple sequence alignment is

291. According to the authors, only about 15% of de novo model-

ling cases can benefit from predicted contact information.

Different contact prediction software has been tested with differ-

ent structure prediction programs and on different structure test

sets. It is, therefore, hard to draw an unbiased comparison between

different contact predictors in order to identify the one that is most

suitable for de novo protein structure prediction. It is also necessary

to ascertain how we can use such contact predictions most effi-

ciently in order to improve contact assisted de novo protein struc-

ture prediction. In order to try and answer these questions, here we

have tested several different co-evolution methods generating more

than 3 million decoys, using approximately a decade of CPU core-

hours.

2 Methods

2.1 Contact definitions
Two protein residues are defined to be in contact if their C-bs (C-as

for Glycine) are less than 8 Å apart (Marks et al., 2011). Trivial con-

tacts occur due to residues being less than five residues apart and are

not considered in the scope of our analyses. A short-range contact

between residues i and j is defined when 5 � ji� jj � 23. A long-

range contact is defined when ji� jj > 23 (Jones et al., 2012). We

also define six classes of contacts between different secondary struc-

ture types: loop–loop as formed between two loop residues, loop–

helix, loop–strand, helix–helix, helix–strand and strand–strand.

2.2 Generation of multiple sequence alignments
Generating input alignments has been identified as a crucial step for

predicting contacts (Feinauer et al., 2014). To ensure consistency in

our analyses, the same alignment has been used as input for all con-

tact predictors, the exception being PConsC2 (for more details, refer

to Section 2.3). The multiple sequence alignment (MSA) was com-

puted according to the following parameters:

• HHBlits version 2.0.15 June 2012
• Database: Uniprot20_2013_03
• Iterations: 3
• Maximum Pairwise Sequence Identity: 99%
• Minimum Coverage with master sequence: 60%
• Maxfilt: 500000
• Diff: inf

2.3 Contact prediction methods
Mean Field Direct Coupling Analysis (mfDCA) is a class of contact

predictors based on a maximum entropy model. For the analyses

described in this work, we used both Freecontact version 1.0.21,

with standard parameters (Kaj�an et al., 2014) and PSICOV version

2.1 with a target precision matrix sparsity of 0.03 and default par-

ameters (Jones et al., 2012).

MfDCA and PSICOV are significantly different in terms of their

derivation and estimation procedures. However, they both rely on

estimating the inverse of the covariance matrix, which follows from

their maximum entropy model. The other category of contact pre-

dictors avoids the approximation of the inverse covariance matrix

altogether by maximizing a pseudo-likelihood. For the analyses

described in this work, we have used two implementations of

plmDCA: CCMPred v0.1.0 with standard parameters (Seemayer
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et al., 2014) and GREMLIN v2.01 with standard parameters

(Kamisetty et al., 2013).

PConsC uses different sets of contact predictions output by

PSICOV and plmDCA (standard parameters are used for both meth-

ods). In total, eight different MSAs are used as input for PSICOV

and plmDCA, resulting in sixteen sets of predicted contacts.

These MSAs are generated using HHblits (Remmert et al., 2012)

against its bundled nr20 database or Jackhmmer (Johnson et al.,

2010) against UniRef100, for four different E-value cut-offs

(10�40; 10�10; 10�4, 1). PConsC uses a random forest method to

perform the classification of the sets of predictions. PConsC2

enriches the predictions obtained by PConsC by means of a deep-

learning method, which is based on the notion that protein contacts

are likely to be in proximity to other protein contacts in the contact

map. We have used PConsC2 with standard parameters (Skwark

et al., 2014) to perform predictions on a smaller dataset of 41 pro-

teins, but the tool failed to produce an output for approximately

25% of the cases. PConsC2 requires 16 multiple sequence align-

ments as input and these were generated using the default MSA

protocol described in (Skwark et al., 2014).Given the time taken to

generate 16 multiple sequence alignments and the likely failure rate,

we decided not to use PConsC2 to perform predictions for our larger

dataset of 3458 proteins.

MetaPSICOV is a meta-predictor based on contact predictions

output by Freecontact (v1.0.21), PSICOV (v2.1) and CCMPred

(v0.1.0). Unlike PConsC/PConsC2, in metaPSICOV the same align-

ment is used for all three methods.

MetaPSICOV outputs predictions from two stages in its proced-

ure. The prediction from the second stage is an enhancement of the

first stage and is reported to be more precise (Jones et al., 2014).

However, predictions from metaPSICOV Stage 1 were shown to

yield better modelling results (Jones et al., 2014). MetaPSICOV is

also capable of outputting predictions for pairs of residues forming a

backbone hydrogen bond, which is referred to as metaPSICOV-HB.

In the analyses described in this chapter, we have used metaPSICOV

v1.01 with standard parameters (Jones et al., 2014).

Bbcontacts uses predicted contact maps as output by CCMPred

to identify contacts between b-strands. We have used CCMPred

v0.1.0 (Seemayer et al., 2014) to generate predicted contact maps

and used Bbcontacts with standard parameters to infer beta-strand

contacts (Andreani and Söding, 2015).

2.4 Number of predictions considered
For the sake of establishing a fair comparison between all methods,

we have considered only up to L predicted contacts in our analyses.

The software bbcontacts usually outputs less than L=2 predicted

contacts so its precision and spread were computed based on the

number of predictions available.

2.5 Data sets
For the comparison of the precision of different contact predictors,

we have used a test set comprised of 3458 proteins. These proteins

were selected randomly from the Astral 2.05 database (PDB SCOPe

40% ID) (Chandonia, et al., 2004). This dataset contains at least

one member of 1668 distinct SCOP folds and each of these folds is

represented by 1.95 sequences, on average. Given that model gener-

ation is a computationally intensive task, we have selected a smaller

set of 41 proteins for which structure prediction was carried out (SI-

Table 1—PDB-Representative dataset). This dataset was constructed

to be representative of the proportions of proteins in each SCOP

class and across different lengths observed in the PDB. We manually

curated the PDB to choose structures that described continuous,

well resolved (resolution less than 2.5 Å), single-chain proteins. For

each length range, a representative structure that fulfilled these crite-

ria was chosen. Care was also taken to select proteins belonging to

different Pfam families.

2.6 Validation metrics
The precision of predicted contacts (also referred to as PPV) is the

percentage of true positives in the predictions output for a given

target.

The spread of correct predicted contacts is defined as the largest

protein segment for which no correct contacts were predicted. The

spread is shown as a proportion of the protein length and it meas-

ures the largest portion of the target structure for which no correct

contact information is available. This allows us to discern between a

set of predictions that is restricted to a portion of the target structure

and a set of predictions that is evenly spread across the protein’s

length.

2.7 Model generation
The contact predictions output by PSICOV, Freecontact, CCMPred,

Bbcontacts, metaPSICOV Stage 1, metaPSICOV Stage 2 and

metaPSICOV HB were used as input for our cotranslational

template-free structure prediction method SAINT2. An outline of

our fragment-based de novo structure predictor SAINT2 is given in

Supplementary Text S1.

We generated 10 000 decoys for each set of predicted contacts

and for all targets in our PDB-Representative dataset. Standard par-

ameters and scoring weights were used during decoy generation (for

more information, refer to Supplementary Text S1). A decoy was

considered to be correct if its TM-Score (Zhang and Skolnick, 2004)

was greater than 0.5, following (Xu and Zhang, 2010).

3 Results

3.1 Comparing nine contact predictors
We tested eight state-of-the-art contact prediction methods

(FreeContact, PSICOV, CCMPred, Bbcontacts, metaPSICOV stage

1, metaPSICOV stage2, metaPSICOV HB and GREMLIN) on the

3458 proteins in our Astral dataset. We compared the precision of

the methods for the top L=10; L=5; L=2 and L predicted contacts

(Fig. 1 and Supplementary Fig. S2), where L is the length of the pro-

tein. Our results show that contact predictions output by

metaPSICOV Stage 2 are, on average, the most precise for the top

L=10; L=5 and L=2 predicted contacts. CCMPred, GREMLIN and

metaPSICOV Stage 2 are, on average, comparable for the top L pre-

dictions. When considering the top L predictions, metaPSICOV

stage 2 achieved more than 50% precision for 2358 cases (68.2%),

whereas CCMPred and GREMLIN achieved more than 50% preci-

sion for 2195 (63.5%) and 2192 (63.4%), respectively. A precision

of at least 50% has been used to determine if a set of contact predic-

tions can be useful for model generation (Jones et al., 2012).

We have assessed the overlap between metaPSICOVs training set

and our Astral dataset. We found that 54 out of the 624 proteins

used to train metaPSICOV were also present among the 3458 pro-

teins in our dataset. Furthermore, we encountered 112 distinct

SCOP folds that were represented in both sets, corresponding to less

than 10% of the unique folds described by our Astral dataset.

Removal of overlapping proteins and folds did not lead to signifi-

cant changes on the precision observed for metaPSICOV compared

to other methods.
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We have also performed a comparison including the predictor

PConsC2 for the 41 proteins in our PDB-Representative dataset.

PConsC2 failed to produce an output for nine cases. The results for

the remaining 32 cases can be seen in Supplementary Figures S3 and

S4, where metaPSICOV stage 2 still presented the highest average

precision for the top L=10; L=5; L=2 predicted contacts. For this

dataset, the precision of PConsC2 and metaPSICOV stage 2 for the

top L predictions were comparable.

Long-range contacts have been suggested to be more useful than

short-range contacts for de novo protein structure prediction (Jones

et al., 2012). Here, we define a long-range contact as one between

two residues that are more than 23 residues apart. We have quanti-

fied the precision and the proportion of short and long-range

predicted contacts generated in our Astral dataset (Supplementary

Fig. S5). While CCMPred, GREMLIN and metaPSICOV stages 2

achieved similar average precisions for both short and long-range

predictions, metaPSICOV stage 1 and 2 are more consistent in pro-

ducing good predictions. For short range contacts, metaPSICOV

stage 2 produced predictions with at least 50% precision for 69.2%

of the cases compared to 64.1% (CCMPred) and 64.4%

(GREMLIN). For long range contacts, metaPSICOV stage 1 pro-

duced predictions with at least 50% precision for 65.2% of the cases

compared to 58.9% (CCMPred) and 58.8% (GREMLIN).

It has been reported that the precision of predicted contacts is de-

pendent on protein length and on the number of available sequences

(Ovchinnikov et al., 2015). We assessed the effect of the number of

sequences in the MSA on the precision of contacts predicted by the

eight different contact predictors. Since Bbcontacts did not generate

L/2 predictions for more than 50% of the cases, data for this method

has been omitted. We used the predictions generated by the seven re-

maining methods to build a confidence interval for the number of se-

quences necessary to achieve a precision of at least 50% for

generated predictions (Fig. 3). We performed a linear regression

using the number of effective sequences (Neff) as a dependent vari-

able and using the precision of each predictor as an independent

variable. We then use our linear model to compute the confidence

interval for Neff assuming an observed precision of 50%. We have

used the definition of Neff in (Kamisetty et al., 2013). Our results

show that metaPSICOV Stage 2 is the method that requires the low-

est Neff to achieve 50% precision for the top L predicted contacts,

requiring a Neff between 418 and 451. CCMPred (GREMLIN)

required a Neff between 477 and 490 (480 and 492). These values

are estimates only.

We then used the three contact predictors that achieved the high-

est precision (CCMPred, metaPSICOV stage 2 and GREMLIN) to

assess the correlation between protein length and the precision of

predicted contacts. Counter to what was previously reported

(Kamisetty et al., 2013), we found no correlation between the preci-

sion of contact predictions and protein length (Supplementary Fig.

S6). We also normalized the number of sequences in the MSA ac-

cording to protein length and found that this did not lead to any im-

provement in the correlation.

3.1.1 Precision of predicted contacts and SCOP class

We assessed the precision of the predicted top L contacts within

each of the six main SCOP classes (Fig. 2). MetaPSICOV Stage 2

had the highest average precision for 3 out of 6 SCOP classes,

CCMPred/GREMLIN having the higher average precision for All-a

and membrane proteins. The precision of all methods was generally

bad for proteins belonging to the All-a and membrane SCOP class.

Interestingly, metaPSICOV predictors performed worse for these

two SCOP classes than for other classes. Generally, most methods

performed well for a=b proteins and poorly for membrane proteins,

but this is likely to be a reflection of the number of effective se-

quences in the MSAs according to SCOP class (Supplementary Fig.

S8) in our dataset. Since Bbcontacts outputs a number of predictions

smaller than L/5 for most cases, we also assessed the precision of the

predicted top L=10 contacts within each SCOP class (Supplementary

Fig. S9). For the top L=10 predictions, metaPSICOV stage 2 had the

highest precision for 5 out of 6 SCOP classes and CCMPred had the

highest average precision for membrane proteins.

To further investigate the cause of the lower precision of contacts

predicted for All a proteins, we also assessed the precision of con-

tacts predicted for different secondary structure types (Supplemen

tary Fig. S10). This analysis was also meant to ascertain if there is a

Fig. 1 Precision of eight contact predictors for 3458 proteins in our Astral data-

set. Precision is shown for the top L=10 predicted contacts (top) and top L pre-

dicted contacts (bottom). Precision for top L=5 and top L=2 predicted contacts

can be seen in SI Figure S2. A comparison including the meta-predictor

PConsC2 for a smaller data-set of 32 proteins in shown in SI Figure S3
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specific secondary structure type for which contact prediction is

harder. Here, a contact predicted between two loop residues is

described as loop-loop. Analogously, the remaining categories are

loop–helix, loop–strand, helix–helix, helix–strand and strand–

strand. When considering contacts formed between different second-

ary structure categories, metaPSICOV Stage 2 presented the highest

average precision for four categories (loop–loop, loop–helix, loop–

strand and helix–strand) and CCMPred/GREMLIN presented the

highest average precision for helix–helix and strand–strand catego-

ries. Our results show that helix–helix contacts are not predicted sig-

nificantly less well when compared to other secondary structure

types, despite the fact that contacts predicted for All-a proteins tend

to be less precise than for the other SCOP classes.

As observed for our Astral dataset, the true protein contacts are

not evenly spread out across different secondary structure catego-

ries. It would be desirable to have the same proportion of predicted

contacts per secondary structure type as observed for the true con-

tacts. Therefore, we assessed the proportion of contacts predicted by

each method for each secondary structure category (Supplementary

Fig. S11). As expected, both bbcontacts and metaPSICOV-HB are

enriched for predicted contacts formed by at least one b-strand resi-

due. CCMPred and GREMLIN achieved the proportions that were

the most similar to the true contact distribution for the secondary

structure categories. MetaPSICOV stages 1 and 2 underpredict con-

tacts formed between loop residues and overpredict strand-strand

contacts. This lower prediction rate for the difficult to predict loop-

loop contacts may be one of the reasons why the metapredictors are,

on average, more precise.

3.2 Determining the best contact predictor to assist in

template-free protein structure prediction
We have used the top L predicted contacts as output by seven of the

eight contact predictors to assist in template-free protein structure

prediction using the cotranslational predictor SAINT2. Predictions

generated by GREMLIN were excluded from this analysis as they

were redundant to predictions generated by the analogous method

CCMPred.

For each contact predictor, we have used their predicted contacts

with SAINT2 to generate 10 000 decoys for the 41 proteins in our

PDB-Representative dataset. In total, 7� 41� 10 000 ¼ 2 870 000

decoys were generated, using more than a decade of CPU-core

hours. The TM-Score of the best decoy produced by SAINT2 as-

sisted by predictions from each method and for each protein in our

dataset are shown in Supplementary Figures S12 and S13, along

with the results produced by SAINT2 without using any predicted

contacts.

An initial assessment of the modelling results suggested that the

best models produced by SAINT2 present similar qualities, regard-

less of the contact predictor used in model generation. Correct mod-

els (TM-Score>0.5) were generated for 18 out of 41 cases and only

two methods (CCMPred and metaPSICOV Stage 1) produced cor-

rect models for all of these 18 cases. SAINT2 without any contact

information produced a correct model for six cases and produced

the best model across all methods for only one case (Supplementary

Fig. S20).

We assessed the difference in TM-Score between the best pos-

sible model against the best model produced by each of the contact

predictors (Fig. 4). Our results show that metaPSICOV Stage 1 gen-

erated a model within 0.05 TM-Score units of the best possible

model for 39 of the 41 cases.

When considering the SCOP Class of the targets (Supplementary

Fig. S14), the best models produced with SAINT2þmetaPSICOV

Stage 1 and SAINT2þmetaPSICOV Stage 2 were better than the

ones generated by SAINT2þ any other contact predictors for a=b
and aþ b proteins. Comparing results for each SCOP class,

metaPSICOV stage 1 produced, on average, better models for 3 out

of 4 SCOP classes, with metaPSICOV stage 2 outperforming

metaPSICOV stage 1 for All a proteins. Contrary to the precision of

Fig. 2 Precision of top L predicted contacts according to target’s SCOP class as output by eight contact predictors for 3458 proteins in our Astral dataset. Precision

for the PDB-representative dataset including PConsC2 is shown in SI Figure S7

Fig. 3 Confidence Intervals (95%) for the estimates of the number of effective

sequences (Neff) required to produce contact predictions with a precision

greater than 50% for seven contact predictors
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predicted contacts, SAINT2 produced better models for All-a pro-

teins and worse models for All-b proteins compared to other SCOP

classes. For All-a proteins, a small number of correct predicted con-

tacts appears to be sufficient for accurate model generation. This

may be due to a-helical fragments being inherently easier to model

than b-strand fragments (de Oliveira et al., 2015).

We assessed the influence of incorrect restraints on model quality

by comparing the modelling results obtained using the most precise

predictor (metaPSICOV stage 2, average precision¼66.5%) against

the least precise predictor (PSICOV, average precision¼36.5%).

This assessment was performed by comparing the precision of pre-

dicted contacts against the model quality produced by each ap-

proach for our PDB-representative dataset of 41 proteins

(Supplementary Fig. S15). Our findings show a weak correlation be-

tween model quality and precision of predicted contacts, as previ-

ously reported in (Kosciolek and Jones, 2014). We also observed

nine cases where a set of predictions with lower precision led to bet-

ter models being produced. This suggests that the influence of incor-

rect restraints cannot be easily quantified.

3.3 Satisfied predicted contacts correlate with model

quality
Predicted contacts have been shown to be useful in performing qual-

ity assessment of generated decoys (Kamisetty et al., 2013). This is

usually done by computing a score based on how many of the pre-

dicted contacts have been satisfied in a given model.

We have assessed whether satisfied predicted contacts, correct or

otherwise, show good correlation with model quality. This compari-

son was performed in terms of short-range and long-range predicted

contacts (Supplementary Fig. S16). For this analysis, we have se-

lected only three contact predictors, CCMPred and metaPSICOV

Stages 1 and 2, as their predictions led to the best models generated

by SAINT2 in a majority of cases. Our results reveal that there is a

correlation between model quality and the proportion of predicted

contacts that are satisfied. Ranking decoys using the proportion of

predicted satisfied contacts did not produce good results

(Supplementary Fig. S22).

Given that the spread of predicted contacts has also been re-

ported to be crucial for accurate topology modelling (Kim et al.,

2014), we investigated the correlation between model quality and

the spread of satisfied long-range predicted contacts (Supplementary

Fig. S17). Our results show no correlation between these two fea-

tures, however there are only two cases in which the predicted con-

tacts are not sufficiently evenly spread (one correctly predicted

contact every 12 residues) (Kim et al., 2014).

3.4 Detecting incorrect models using satisfied predicted

contacts
We have assessed whether the proportion of satisfied predicted con-

tacts can be used to discriminate between correct (TM-Score > 0.5)

and incorrect models. For this analysis, we used the 10 000 decoys

generated using SAINT2 and metaPSICOV stage 1 for each of the

41 protein in our PDB-representative dataset. We have considered

the proportions of satisfied long-range, short-range and all-range

contacts. Our results show that correct models tend to satisfy more

of the predicted contacts than incorrect models (Supplementary Fig.

S18). Separation was more pronounced for the satisfied predicted

long-range contacts.

We attempted to classify decoys as correct or incorrect based on

a varying cutoff of satisfied predicted contacts. We built three naive

classifiers based on the proportion of satisfied predicted long-range,

short-range and all-range contacts. Using the optimal cutoff of

28.7% satisfied predicted long-range contacts to discard decoys, we

obtain a false negative rate of 2478 out of 29 985 correct models

while the proportion of correct decoys in the ensemble increases

from 7.3% to 50.6%. Using the optimal cutoff for satisfied short-

range (all-range) predicted contacts led to 4820 (2890) false nega-

tives and increased the proportion of correct decoys to 30.6%

(41.1%). Our results show that the proportion of satisfied

Fig. 4 Difference in the TM-Score between the best possible model and the

best model produced using each of seven contact predictors for the 41 pro-

teins in our PDB-Representative dataset. We used SAINT2 with the predicted

contacts output by each contact predictor to generate 10 000 decoys per tar-

get. Cases for which the best model produced using a given method is more

than 0.1 (or more than 0.05, but less than 0.1) TM-Score units away from the

best possible model are coloured in dark grey (light grey). Data is also shown

for SAINT2 without using any predicted contact information (no contacts)
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long-range predicted contacts is the best indicator amongst the three

ranking methods to perform model classification (Fig. 5).

It is desirable not to discard too many correct models for any

particular case. Therefore, we assessed the impact of discarding

decoys on the TM-Score Best and TM Score Top 5 (Supplementary

Fig. S19). Our results show that, for the cases where a correct model

was produced, we discarded the best decoy for only one case using

our satisfied long-range predicted contact cutoff. When considering

the TM-Score Top 5, that is the five decoys that SAINT2 scoring

function would have ranked as the best, there is little difference be-

fore and after discarding decoys. This suggests that discarding

decoys in this fashion is not detrimental to SAINT2’s final model

quality. For the cases where a correct answer was identified by

SAINT2’s scoring function, there was one case where discarding

models classified as incorrect led to a significant improvement on

the quality of the best decoy selected by SAINT2.

There were eight cases where all the decoys were discarded. For

all eight cases, no correct model was produced by SAINT2, which

suggests that the precision of satisfied predicted long-range contacts

can be used in a case independent fashion to identify where model-

ling has failed (no correct models in the entire decoy set). This ap-

proach has an advantage over existing scoring-function methods

since scores are usually not comparable across different test cases.

4 Discussion

We have compared eight different co-evolution contact prediction

methods in terms of the precision of their top L predictions and

shown that metaPSICOV Stage 2 and CCMPred/GREMLIN have

the highest average precision amongst tested methods. When con-

sidering the top L=10, top L=5 and top L=2 predicted contacts,

metaPSICOV Stage 2’s precision is higher than other methods. As

expected, we observe a decrease in precision for all methods when

more contact predictions are considered. We also find that

metaPSICOV stage 2 achieves a precision greater than 50% for

more cases. It is therefore the most consistent amongst the top 3 pre-

dictors. Our findings confirm previous results (Kosciolek and Jones,

2014; Monastyrskyy et al., 2015) that metaPSICOV Stage 2 is, on

average, the most precise contact predictor amongst a plethora of

tested methods.

Given that long-range contacts have been reported to be more

useful for de novo protein structure prediction, we have also as-

sessed the precision of each contact predictor in terms of short-range

and long-range contacts. MetaPSICOV Stage 1 has the highest preci-

sion for long-range predicted contacts and its long-range predicted

contacts are overall more precise than its short-range predicted con-

tacts. Yet, metaPSICOV Stage 1 outputs a smaller proportion of

long-range contacts when compared to other methods such as

metaPSICOV Stage 2 and CCMPred/GREMLIN. Our results also

show that PSICOV tends to output more long-range predicted con-

tacts than short-range ones and its proportion of long-range contacts

was the highest amongst all methods.

In our analyses, we observed that all methods are generally

worse at predicting contacts for proteins belonging to the All a and

membrane SCOP class. Where the low precision for membrane pro-

teins can be explained by a significantly lower Neff for that SCOP

class, the average Neff for All a and All b protein in our set was

comparable. The poor precision for All a proteins is also not ex-

plained by the precisions observed for predicted contacts between

a-helical residues (helix-helix secondary structure type), which are

comparable to other SS types.

We have used the contact predictions output by seven of the

methods as input to SAINT2, a fragment-based de novo protein

structure predictor. Our results show that metaPSICOV Stage 1 can

be used to produce models that are consistently as good as the best

models produced amongst all methods. Surprisingly the more precise

predictions on the set (output by metaPSICOV stage 2) performed

marginally worse than metaPSICOV stage 1 during the modelling

stage. This suggests that there might be other factors at play during

Fig. 5 Naive classification of decoys as incorrect models amongst 10 000 decoys generated by SAINT2 and metaPSICOV stage 1 for the 41 proteins in our PDB-

Representative dataset. The density estimates of the proportions of satisfied predicted long-range contacts for the two groups are shown on the left. The dashed

line indicates the threshold (28.7%) that minimizes classification errors. The density estimates of the proportion of satisfied predicted short/all-range contacts is

shown in SI Figure S18. To ascertain which measure led to the best classification of decoys, we varied the rejection threshold to build a ROC curve for each of the

measures (right). Decoys that did not meet the varying cutoff of satisfied predicted short/long-all-range contacts were classified as incorrect. Predicted long-range

contacts are shown to attain the best balance between sensitivity and specificity
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model generation other than precision, such as the precision of pre-

dicted long-range contacts and spread of predicted contacts.

In our pipeline, we have considered the top L predictions as re-

straints for SAINT2. We explored using only L=10 restraints, a

more precise subset of predictions, and observed worse modelling

results. Given the weak correlation between model quality and pre-

cision of predicted contacts/spread of correct contacts, the determin-

ation of a confidence threshold for the number of restraints to be

included is non-trivial and deserves further investigation.

When considering the SCOP class of the targets, we failed to pro-

duce good models for the majority of All-b proteins using any set of

predictions, despite the fact that contact predictions for this SCOP

class had the highest precision. This reveals a limitation of SAINT2

concerning the accurate prediction of All-b protein structures, an

issue that will need to be addressed in the future.

We have shown that the proportion of satisfied predicted con-

tacts can be used effectively to classify models as correct or incor-

rect. A naive classification scheme using the proportion of satisfied

long-range predicted contacts leads to the best results. One of the

best models produced by SAINT2 was classified as incorrect by this

approach. The classifiers built were simplistic, but we use them only

to highlight a potential application of satisfied predicted contacts.

Despite the correlation shown between model quality and satis-

fied long-range predicted contacts, considering only long-range con-

tacts during model generation led to poorer models being produced

(Supplementary Fig. S21). We believe this to be because short-range

contacts contain useful information about local structure that is not

necessarily captured by the fragments in our fragment library.

We observed no improvement in SAINT2’s TM-Score Top 5

after models were discarded based on their proportion of satisfied

predicted long-range contacts. SAINT2 uses a scoring function to

rank decoys. Previous CASP iterations have shown that clustering

methods tend to perform better at quality assessment than single-

decoy methods such as SAINT2’s. For clustering-based approaches,

enriching the decoy ensemble with correct models could lead to im-

provements. It should also lead to reductions in computational time

as decoys marked as incorrect can be ignored in all subsequent steps.

Overall, our findings corroborate the finding that the use of pre-

dicted contacts can improve de novo model generation and that

these predictions should be used whenever sufficient sequence infor-

mation is available. However, we show that contact predictors with

a significant difference in precision can be used to generate models

of similar quality, which suggests more care should be given as to

how these contacts predictions are used during the model generation

steps. Finally, we show that contact predictions can be used to im-

prove model quality assessment either by identifying cases where

modelling has failed or by classifying between good and bad decoys,

which are both steps forward towards the implementation of a

qualitative decoy scoring scheme.
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