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a b s t r a c t

The brain is an information processing machine and thus naturally lends itself to be studied using com
putational tools based on the principles of information theory. For this reason, computational methods 
based on or inspired by information theory have been a cornerstone of practical and conceptual progress in 
neuroscience. In this Review, we address how concepts and computational tools related to information 
theory are spurring the development of principled theories of information processing in neural circuits and 
the development of influential mathematical methods for the analyses of neural population recordings. We 
review how these computational approaches reveal mechanisms of essential functions performed by neural 
circuits. These functions include efficiently encoding sensory information and facilitating the transmission 
of information to downstream brain areas to inform and guide behavior. Finally, we discuss how further 
progress and insights can be achieved, in particular by studying how competing requirements of neural 
encoding and readout may be optimally traded off to optimize neural information processing.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The brain is a highly sophisticated computing machine that 
processes information to produce behavior. In the words of Perkel 
and Bullock: “The nervous system is a communication machine and 
deals with information. Whereas the heart pumps blood and the 
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lungs effect gas exchange […] the nervous system processes in
formation.” [1]. As an information processing machine, the brain 
naturally lends itself to be studied with computational tools based 
on or inspired by the principles of information theory. These 
methods have played over the years a major role in the practical and 
conceptual progress in understanding how neurons process in
formation to perform cognitive functions. This approach has spurred 
the development of principled theories of brain functions, such as 
the theory of how neural circuits in sensory areas of the brain may 
be designed to encode efficiently the natural sensory world [2–4], or 
how correlations between neurons shape the information encoding 
capabilities of neural networks [5,6]. They have also led to the de
velopment of many influential neural recording analysis techniques 
that unveil the codes, computations and rules used by neurons to 
encode and transmit information [7–10].

Here, we review how such computational methods inspired by 
information theory have sustained the progress in neuroscience and 
have influenced the study of neural information processing. In par
ticular, we review how recent work has improved models of efficient 
coding towards biological plausibility (e.g., including realistic neural 
spiking dynamics), enabling a better comparison between mathe
matical models and real data as well as a clearer understanding of 
the computational principles of neurobiology. We also review how 
these computational approaches have begun to reveal how popula
tions of neurons perform multiple functions. While earlier compu
tational and theoretical work has focused on understanding the 
principles of efficient encoding of neural information [11–13], more 
recent work has begun to consider how the information encoded in 
neural activity is transmitted to downstream neural circuits and 
ultimately read out to inform behavior [6,14]. In particular, we re
view recent computational modeling and analytical work that has 
begun to uncover the competing effects that correlations between 
neurons exert on information processing, and examine how the 
multiplicity of functions that a brain area needs to perform (e.g. 
encoding and transmission of information) may place constraints on 
the design of neural circuits. Finally, we discuss how recent advances 
in understanding the intersection of encoding and readout of in
formation may help us formulate better theories of information 
processing that take into account multiple functions that neural 
circuits may perform.

2. Computational methods for encoding of information

A first key question is information encoding, that is, the study of 
how the activity of neurons or neural ensembles encodes informa
tion [15]. The study of neural encoding focuses on the information 
available in neural activity, without considering how it is trans
mitted downstream or how it is utilized to inform behavior. How
ever, since no information can be transmitted without it first being 
encoded, the study of information encoding is a key prerequisite for 
understanding information processing in the brain. In this section, 
we review its theoretical foundations, focusing on theories of op
timal information encoding and insights gained from the analysis of 
empirical neural data. In the following, we consider the information 
that neurons convey about features of sensory stimuli in the external 
world.

2.1. Efficient coding - foundations and mathematical theories

A prominent property of neural activity that has shaped studies 
of neural information processing is that responses of individual 
neurons vary substantially across repeated presentations of an 
identical sensory stimulus (“trials”) [7,16]. This variability, commonly 
referred to as “noise” (even if in principle it can contain informa
tion), makes it challenging to understand the rules mapping external 
stimuli into neural spike trains. Information theory [17], the 

fundamental theory of communication in the presence of physical 
noise, has thus emerged as an appropriate framework for studying 
the probabilistic mapping between stimuli and neural responses 
[18,19,15,20–23].

Information theory provides a means of quantifying the amount 
of information that the spike trains of a neuron carry about a sensory 
stimulus. The mutual information between the (possibly time- 
varying) stimulus s(t) and the (possibly time-varying) neural re
sponse r(t) can be quantified in terms of their joint probability dis
tribution p(s, r) and of their marginal probabilities p(s) and p(r), as 
follows [17,24,25]:

D D=I S R s r p s r
p s r

p r p s
( ; ) ( , )log

( , )
( ) ( )

,
S R 2 (1) 

where the integrals are over all possible realizations of the stimulus 
s ∈ S and the neural response r(t) ∈ R, and the base-2 logarithm is 
used to measure information in units of bits. Eq. (1) is written in 
terms of continuous probability density functions, but it can be 
straightforwardly extended to discrete probability distributions. 
Note that continuous probability density functions are often used in 
theoretical models and are sometimes estimated approximately 
from data using, for example, kernel estimators [26], but in most 
cases neural information studies use discrete probabilities that are 
easier to sample with limited amounts of data. The neural response r 
(t) can either denote a spike train r(t) = ∑k δ (t − tk) or a continuous 
measure of neural activity (firing rate). Eq. (1) measures the diver
gence in the probability space between the joint distribution p(s, r) 
and the product of the marginal distributions of the neural activity r 
(t) and the stimulus s(t). If the neural activity and the stimulus are 
independent, this divergence equals zero, and the observation of the 
neural activity would not carry any information about the stimulus. 
Because it uses the full details of the stimulus-response prob
abilities, mutual information places an upper bound to the in
formation about the stimulus that can be extracted by any decoding 
algorithm of neural activity [17,24]. Note however that the mutual 
information is computed for a specific set of stimulus features and a 
specific probability distribution of stimulus values, and thus does 
not quantify the channel capacity of the neuron. The latter is defined 
as the maximum over all possible probability distributions of all 
stimulus features of the mutual information carried by neural ac
tivity [17], and it is difficult to determine experimentally due to the 
practical impossibility to test neuronal responses with all possible 
stimulus features and stimulus distributions. However, mutual in
formation computed as in the above equation places a lower bound 
to the channel capacity of the neuron.

It has been hypothesized that specialized neural circuits dedi
cated to sensation have evolved to encode as much information as 
possible about the sensory stimuli encountered in the natural en
vironment [3,13,27,15]. This hypothesis has led to the generation of 
theories of efficient coding, that postulate that the properties of 
neurons in sensory areas are designed to maximize the information 
that these neurons encode about natural sensory stimuli, often with 
the additional hypothesis that neurons maximize information en
coding in a metabolically efficient way [28,29]. Within this frame
work, neural circuits are thought to be designed for efficiently 
encoding sensory stimuli with the statistical properties of the nat
ural environment, with the constraint of keeping the overall neural 
activity level limited for metabolic efficiency. In what follows, we 
review foundations of theory of efficient encoding and the compu
tational tools that this theory involves.

2.1.1. Minimizing stimulus reconstruction errors and efficient 
information encoding

The mutual information between stimuli and neural responses 
(Eq. (1)) provides a complete quantification of how well the external 
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sensory stimuli can be reconstructed from the spike trains of a 
neuron. However, the information theoretic equation is complicated 
to solve because it includes the full probability of stimuli and neural 
responses and it is difficult to sample experimentally or to describe 
using mathematical models. This poses a major challenge for the
ories of efficient encoding.

Progress in this respect was made by the pioneering work of 
Bialek and colleagues, who studied how to mathematically re
construct the time-varying sensory stimulus from the spike train of 
the movement-sensitive H1 neuron in the visual system of the fly 
[2]. They defined the estimated stimulus s tˆ ( ) as a convolution of 
discrete spike times {tk} with a set of time-dependent, continuous 
and causal filters {w(α)(t)} as

= + +s t w t t w t t t tˆ ( ) ( ) ( , ) ,
k k k l k l

(1)
,

(2)
(2) 

where the α-th sum on the right hand side represents the α-th order 
expansion, so that w(1)(t) and w(2)(t) are respectively the linear and 
quadratic filters. The authors estimated the optimal causal filter that 
minimize the reconstruction error between the real stimulus s(t) and 
its estimate s t^( ) as:

=E dt s t s t( ) ˆ ( ) ,
t

2
(3) 

where the integral is over the duration of the experiment. The filters 
are constrained to be causal, since, for biological realism, the re
constructed stimulus s tˆ ( ) can only depend on the present and past 
values of the stimulus, but not on future values. Mathematically, this 
implies that the filters are non-zero only for times t  >  0. Bialek and 
colleagues found that linear filters w(1)(t) provide a highly accurate 
reconstruction of the stimulus. Moreover, adding higher-order non- 
linear (e.g. quadratic) filters improved only marginally (by less than 
5%) the reconstruction accuracy [2,11]. By comparing the rate of 
information (in bits per second) that can be gained about the sti
mulus from the linear decoder with the rate of information obtained 
using the information theoretic equation, they found that the rate of 
information extracted with the linear convolution was close to the 
value obtained from Shannon’s formula (Eq. (1)). Since, as reviewed 
above, the Shannon information sets an upper bound on the in
formation that can be extracted by any decoder, it means that linear 
decoding optimized by minimizing a quadratic reconstruction error 
function can extract almost as much sensory information as the 
information-theoretic limit in this sensory neuron. Similar findings 
were observed in mechanoreceptor neurons in the frog and in the 
cricket [11].

This result has several important implications. First, the shape 
and duration of the optimal filters obtained from the experimental 
data were similar to the post-synaptic responses of real neurons. 
This suggests that this type of algorithm may be implementable in 
the brain. Second, it suggests that efficient neural systems can be 
designed by replacing the complex problem of maximizing mutual 
information with the simpler problem of minimizing a quadratic 
reconstruction error, a property that will be extensively exploited in 
ensuing work. Indeed, finding the optimal set of filters w(α) and 
computing the stimulus reconstruction s tˆ ( ) do not require the 
knowledge of the distribution of the prior p(s) or the joint dis
tribution p(s, r), thus greatly simplifying the problem of neural en
coding as posed in Eq. (1).

2.1.2. Efficient encoding of natural stimuli with artificial neural 
networks

The minimization of quadratic cost functions fostered the for
mulation of efficient coding models of receptive fields in the primary 
visual cortex. In a seminal work, Olshausen and Field studied how 
model neural networks could efficiently encode information about 
complex natural images [12,30]. The stimulus was modeled as a 
black-and-white static natural image s(y1, y2) with spatial axes y1 

and y2. They assumed that the image can be estimated as a linear 
superposition of basis functions wi(y1, y2):

=
=

s y y r w y yˆ ( , ) ( , ),
i

N
i i1 2 1 1 2 (4) 

where ri is the activity of the i-th neuron in the network and N is the 
number of neurons. The basis functions wi represent the receptive 
fields of visual neurons. Their hypothesis was that efficient proces
sing of natural images with a neural network has to satisfy two re
quirements.

The first requirement is sparsity of neural response. It would be 
desirable that each image is represented by only a small number of 
basis functions out of a large set of available ones. In algorithmic 
terms, this is advantageous because of simplicity. In neural terms, 
this is advantageous because activation of neurons has a metabolic 
cost, so that activating as few neurons as possible keeps this 
cost low.

A second requirement is that the reconstructed image s y yˆ ( , )1 2 in 
Eq. (4) closely resembles the actual image s(y1, y2). This implies that 
the neural network carries high information about the natural 
images or, equivalently, that the network makes minimal errors in 
reconstructing the images. These two constraints can be formulated 
as the minimization of the following cost function:

= +
=

E s y y s y y r( ( , ) ˆ ( , )) ,
y y i

N
i, 1 2 1 2

2
11 2 (5) 

where N is the number of neurons in the network. The first term on 
the right-hand side of Eq. (5) maximizes the information about the 
images carried by the neural activity, while the second term is a L1 
regularizer which enforces sparse solutions, with the constant ν  >  0 
controlling the tradeoff between these two terms. The basis func
tions wi(y1, y2) do not need to be linearly independent, that is, some 
basis functions can be similar to each other and describe similar 
elements of the image. Yet, this does not lead to redundancy in the 
neural representation of images because, due to the sparsity con
straint, similar basis functions are unlikely to be used in the re
presentation of the same image. Thus, implementing efficient coding 
in this way maximises the information that the network carries 
about the stimulus and minimises redundancy between neurons.

Remarkably, the sparse linear code found by this algorithm 
captures well-established properties of receptive fields in the pri
mary visual cortex (V1), such as being spatially localized and se
lective for the orientation and structure of the stimulus at different 
spatial scales, suggesting that the principle of efficient encoding has 
predictive power for explaining the features of real sensory neurons.

This work has inspired many successive implementations of ef
ficient and sparse coding. Of particular interest for the present 
Review are studies that implemented efficient coding on biologically 
constrained neural networks. Zhu and Rozell [31] applied the effi
cient coding algorithm of Olshausen and Field on a dynamical 
system. Using the same cost function as in Eq. (5), they added time- 
dependence to the coefficient ri and constrained them to be non- 
negative, so that they can be interpreted as neural activity levels of 
neuron i, ri(t)  >  0. Moreover, they interpreted the basis functions as 
1-dimensional vectors wi, which contain all the values of pixel in
tensities across both spatial coordinates of the image. This inter
pretation allows to define the reconstructed stimulus as a positive 

linear combination of basis functions, i.e. =s t r t wˆ ( ) ( )i i i (similarly 
as in Eq. (4) but time-dependent). The dynamical system that 
minimizes the cost function in Eq. (5) is given by a set of dynamical 
equations that describe the temporal evolution of the internal state 
variables Vi(t):

= +

=
=V t w s t w w r t

r t T V t

( ) ( ) ( )

( ) ( ( )),

dV t
dt i i j j i

N
i j j

i i

( )
1

i

(6) 
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where x y is the dot product between the vectors x and y , and the 
function Tϑ(Vi(t)) defines how the internal state variables Vi(t) acti
vate the i-th neuron upon reaching the threshold ϑ, then resetting its 
activity to a predefined value. Eq. (6) includes a leak term, the 
feedforward input w s t( )i where the image s t( ) is multiplied by the 
neuron’s basis function =w w w[ , ]i i i1 2 , and the recurrent 
input w w r t( )j j i i j j, .

The activity of the network aims at minimizing the cost function 
over time, using a fully connected neural network. Minimization of 
the coding error (first term in Eq. (5)) defines the structure of re
current interaction between neurons, where the interaction between 
neurons i and j is inhibitory (I) if the two neurons have a similar 
basis function, and excitatory (E) if the basis functions of the two 
neurons are dissimilar [31,4,32]. This effectively implements com
petition between neurons with similar selectivity, as evidence pro
vided by the most active neuron in favor of the exact value of its 
preferred stimulus ‘speaks against’, or explains away, that provided 
by other less active neurons preferring similar but not identical va
lues of the stimulus, thereby leading to efficient representations of 
the stimulus [33,34]. The reduction of redundancy is here enforced 
not only by the sparsity constraint (as in [3]), but also by a dynamical 
minimization of the coding error that leads to lateral inhibition 
between similarly tuned neurons.

The effects of explaining away the information about the sti
mulus are more prominent as the size of the network increases [35]. 
The larger the number of neurons that represent a single stimulus 
feature, the more likely the information about that feature is re
presented redundantly across neurons, as reported also with em
pirical data [36–38]. Selective and structured inhibition of neurons 
with similar feature selectivity prevents redundancy of information 
encoding and, therefore, keeps the code efficient. Such a neural 
network with efficient coding reproduces several non-classical em
pirical properties of receptive fields in V1 [31,33], where activity of 
neurons with neighboring receptive fields modulates the response of 
neurons with the target receptive field, thus suggesting that dyna
mical efficient coding is relevant to the information processing by 
the neural circuits in V1 [39].

A limitation of these artificial neural network models is that they 
do not satisfy an important property of neural activity, that is, 
neurons carry information in their spiking patterns. To overcome 
this limitation, recent work implemented principles of efficient 
coding using spiking networks [4]. In these models, the cost function 
minimizes the distance between a time-dependent representation 

x t( ), and its reconstruction x tˆ ( ),

= +

= +

dx t
dt

Ax t s t

dx t
dt

x t Wf t

( )
( ) ( )

ˆ ( ) 1 ˆ ( ) ( )
(7) 

where f t( ) is the vector of spike trains across neurons and W is the 
matrix of decoding weights (analogous to the basis functions in Eq. 
(5)), describing the contribution of each neuron’s spikes to the re
presentation of each stimulus feature. The model in [4] distinguishes 
the external stimulus s t( ) from its internal representation x t( ) in 
the neural activity. The encoding mapping between the stimulus 
s t( ) and the internal representation x t( ) is described by the matrix 
A (Eq. (7)). Unlike previous approaches (see Eq. (3) and (5)), the cost 
function in [4] imposes the minimization of the quadratic error 
between the desired x t( ) and the reconstructed internal re

presentation x tˆ ( ) every time a spike is fired, resulting in the fol
lowing cost function

µ= + +
= = =

t x t x t r t r tE( ) ( ( ) ˆ ( )) ( ) ( ( )) ,
m

M
m m i

N
i i

N
i1

2
1 1

2
(8) 

where M is the number of stimulus features encoded by the network 
and ri(t) is the low-pass filtered spike train of neuron i, given by 

= +r t r t f t( ) ( ) ( )i i i
1 [32]. Specifically, this implies that the spike of a 

particular neuron at a particular time is bound to decrease the cost 
function. In this way, the timing of every spike is important and 
carries the information useful for reconstructing the internal re
presentation x t( ).

Note also that the cost function in Eq. (8) has a linear and a 
quadratic regularizer. Regularizers can be implemented using linear 
or quadratic functions of the firing rate [4]. Linear regularizers in
crease the firing threshold of all neurons equally [32]. As a con
sequence, out of neurons with similar selectivity, those with higher 
threshold remain silent, while those with the lower threshold likely 
dominate the information encoding, leading to a sparse code. 
Quadratic regularizers in addition increase the amplitude of the 
reset current and thus affect only the neuron that recently spiked, 
likely preventing it from firing spikes in close temporal succession. 
This dynamical effect thus tends to distribute the information en
coding among neurons in the network, in particular when the 
number of encoded stimulus features M is smaller than the number 
of neurons in the network N, as it is typically assumed in these 
settings.

This model can accurately represent multiple time-dependent 
stimulus features in parallel [4], and its design accounts for several 
computational properties of neural networks in the cerebral cortex. 
In particular, E and I currents in this class of networks are balanced 
over time [40,41]. Moreover, the efficient spiking network imple
ments a neural code that is distributed across the neural population 
[42]. We may consider that the number of features encoded by the 
activity of a sensory network is typically smaller than the number of 
neurons in the network and, as a consequence, several neurons are 
typically equally well suited to improve the internal representation 
of the stimulus through their spikes (yet the lateral inhibition pre
vents redundancy and keeps the code efficient). Redundancy of de
coding weights allows for highly variable spiking responses on a 
trial-by-trial basis, while the population readout remains nearly 
identical [32,43]. This makes it possible to reconcile trial-by-trial 
variability of spiking patterns with reliable information encoding 
and accurate perception.

This efficient spiking network is also robust to different sources 
of noise [40], compensates for neuronal loss [44], and shows broad 
Gaussian tuning curves as observed in experiments [45]. Such a 
network can be used to model state-dependent neural activity 
[32,46] and can be extended to non-linear mapping between the 
external stimulus s t( ) and the internal representation x t( ) [47]. 
However, this type of network is not fully biologically plausible, as 
neurons do not obey Dale’s principle, which states that a given 
neuron is either excitatory or inhibitory. The recurrent interactions 
in the network developed from a single cost function extended from 
Eq. (5) are inhibitory if neurons have similar decoding weights, and 
excitatory if weights are dissimilar, making the same neuron send 
excitatory or inhibitory synaptic currents to other neurons in the 
network, (see Eq. (6)). Recent theoretical work has improved the 
biological realism of spiking network models with efficient coding. 
We review these models in the next section.

2.1.3. Biologically plausible spiking networks with efficient coding
Our recent work [48] extended the theory of spiking networks 

with efficient coding to account for the fundamental distinction of 
biological neuron types into excitatory (E) and inhibitory (I) neurons, 
as well as to endow efficient spiking models with additional prop
erties of biological circuits, such as adaptation currents. Instead of a 
single cost function as in Eq. (5), we analytically developed an E-I 
spiking network using two cost functions, for E and I neurons re
spectively:
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where NE (NI) are the number of E (I) neurons in the network, and 
r t( )i

E (r t( )i
I ) is the low-pass filtered spike train of an E (I) neuron with 

time constant r
E ( r

I). The population read-out of the spiking activity 
is similar to previous models (see Eq. (7)), but here we introduced 
separate read-outs for the E and I populations x tˆ ( )m

E and x tˆ ( )m
I . The 

first terms on the right-hand side minimize the coding error be
tween the desired representation x t( ) and its reconstruction, while 
the second terms are regularizers penalizing high energy ex
penditure due to high firing rates [49,50]. Good network perfor
mance is ensured when the reconstructions by E and I neurons are 
close to each other and close to the desired representation xm(t), 
which means that objectives of E and I neurons work together and 
do not entail a tradeoff between them.

Using Eq. (9), and assuming that a spike of an E or I neuron will 
be fired only if it decreases the error of the corresponding cost 
function, we analytically showed [48] that the optimal spiking net
work can be mapped onto a generalized leaky integrate-and-fire 
neuron (gLIF) model [51]. A gLIF model has been shown to predict 
well the spike times in real biological circuits [52,53], and provides a 
good tradeoff between biologically detailed, computationally ex
pensive models and simpler but analytically tractable ones. In par
ticular, the solution to Eq. (9) yields the following equations for the 
membrane voltage of E and I neurons:
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where µ >a n E I( , , ) 0, { , }i
n

n n r
n , is the strength of spike-triggered 

adaptation, and b(τE, τI)  >  0 is a scalar that depends on membrane 
time constants of E and I neurons. Synaptic currents are given by the 
weighted sum of presynaptic spikes f t( )j

n , n ∈ {E, I}, and of low-pass 

filtered presynaptic spikes z t( )j
E , where the spike train of E neurons 

is convolved with the synaptic filter. The membrane equations 
contain leak currents, feedforward currents to E neurons, recurrent 
synaptic currents between E and I neurons, spike-triggered adapta
tion, and hyperpolarization-induced rebound currents in E neurons 
[48] as the diagonal of the matrix KEE. These currents are known as 
the most important currents in cortical circuits [51] and their ex
pression in [48] can be directly related to biophysical currents in 
cortical neurons. The optimal solution also imposes that the mem
brane time constant of E neurons is larger than the membrane time 
constant of I neurons, which is compatible with measures of bio
physical time constants of pyramidal neurons and inhibitory inter
neurons in cortical circuits [54].

Lateral inhibition in the efficient E-I model in [48] is im
plemented by a fast loop of synaptic currents, E → I, I → I and I → E 
(connections J on Fig. 1A). Connectivity matrices implementing lat
eral inhibition predict that the strength of synaptic connections is 
proportional to the similarity in stimulus selectivity of the pre- and 

the postsynaptic neuron, =J w w( )ij i j
pre post post pre

. These synaptic 
currents decorrelate the activity of E neurons with similar stimulus 
selectivity, which has been empirically observed in primary sensory 
cortices [55,56]. Moreover, such connections can be learned with 
biologically plausible local learning rules [57]. In the simplified 
network with only fast connections, neurons that receive stimulus- 
selective input as a feedforward current participate in network re
sponse, while other neurons remain silent (Fig. 1B).

The general and complete solution to the optimization problem 
in Eq. (9) also includes E → E and E → I synaptic currents that amplify 
activity patterns across E neurons (connections K on Fig. 1A). These 
currents have the dynamics of the low-pass filtered presynaptic 
spikes of E neurons, z t( )j

E . Synaptic strength depends on the simi
larity of decoding vectors, as well as on the transformation between 
the stimulus s t( ) and the internal representation x t( ), given by the 

matrix A in Eq. (7), = +K w A I w( ) ( )ij i E j
pre post post 1 pre

, where I is the 
identity matrix. Depending on the strength and structure of these 
synaptic interactions, the network generates a variety of response 
types, controlled by the rank of synaptic connectivity matrix KEE. The 
rank of synaptic connectivity is here intended as the number of non- 
zero singular values of the connectivity matrix. With low rank of 
synaptic connectivity, only neurons that receive stimulus-selective 
input respond, while higher rank in synaptic connectivity evokes a 
response also in neurons that do not receive stimulus-selective input 
(Fig. 1C). In the latter case, it is the E → E connectivity that drives the 
response of these neurons and implements linear mixing of stimulus 
features in the neural responses.

In sum, the efficient coding theories have brought important 
insights into neural processing of sensory information, from linear 
filters that accurately reconstruct the external stimulus from the 
neural activity in sensory periphery, to analytically derived biologi
cally plausible spiking neural networks of neurons.

2.2. Theory of information encoding at the population level

It is now widely accepted that many important cognitive func
tions do not rely on single cells, but must emerge from the inter
actions of large populations of neurons, either within the same 
neural circuits [58,59] or across different areas of the brain [60]. 
Historically, theories of efficient encoding have followed the same 
path, first focusing on the neural encoding at the level of individual 
neurons and then developing further to account for the encoding 
properties of neural ensembles.

A prominent feature of neural population activity is the corre
lations between the activity of different neurons. Over the years it 
has become clear that these correlations have a substantial impact 
on the information that a neural population encodes [61–63,5,64]. 
Efficient coding theories thus have to consider also how correlations 
between populations of neurons contribute to the total information 
carried by the population. Here, we briefly review formalisms and 
empirical results about the impact of correlations on information 
coding.

A bulk of analytical work, reviewed recently in [65], has derived 
in a closed mathematical form how the total information carried by a 
population of neurons depends on the correlations between neu
rons. As in Eq (1), we denote the total information as I(S; R), where S 
is a shorthand for stimulus and R for the set of spike times fired by 
all neurons in the population. According to the recent systematic 
review of [65], the most complete closed form solution of the de
pendence of population information on correlations has been pro
vided by the Information Breakdown formalism [63]. This formalism 
describes different ways in which correlations affect neural popu
lation information, by breaking down the information into the fol
lowing components (see [63] for further details and definition of 
each term):

= + + +I S R I I I I( ; ) lin sig sim cor ind cor dep (11) 

The linear term Ilin is the sum across neurons of the mutual in
formation about the stimulus carried by each individual neuron. The 
other terms, capturing the differences between I(S; R) and Ilin, reflect 
the effect of correlations between neuronal responses. These corre
lations are traditionally conceptualized as signal correlations and 
noise correlations [6,36]. Signal correlations are correlations of the 
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trial-averaged neural responses across different stimuli, quantifying 
the similarity in stimulus tuning of different neurons. Noise corre
lations, instead, are correlations in the trial-to-trial variations of the 
activity of different neurons over repeated presentations of the same 
stimulus. Noise correlations quantify functional interactions be
tween neurons after discounting the effect of similarities in stimulus 
tuning [61].

The signal similarity term Isig−sim≥ 0 quantifies the reduction of 
information (or increase in redundancy) due to signal correlations, 
present even in the absence of noise correlations. Such reduction of 
information occurs when neurons have partly similar stimulus 
tuning. Barlow’s idea of decreasing redundancy by making neurons 
respond to different features of the external stimuli is conceptually 
related to reducing the negative effect of this term by diversifying 
the tuning of individual neurons to different stimulus features [15].

The last two terms, Icor−ind (stimulus-independent correlation 
term) and Icor−dep (stimulus-dependent correlation term), quantify 
the effect of noise correlations in enhancing or decreasing the in
formation content of the neuronal population. The term Icor−ind, that 
can be either positive or negative, quantifies the increment or de
crement of information due to the relationship between signal cor
relation and noise correlation. This term captures mathematically 
the important finding of neural theory that the relative sign of signal 
and noise correlations is a major determinant of information en
coding [5,61]. The term Icor−ind is positive and describes synergy 
across neurons if signal and noise correlations have the opposite 
sign, while it is negative and describes redundancy if signal and 
noise correlations have the same sign [63]. If signal and noise cor
relations have the same sign, signal and noise will have a similar 
shape and thus overlap in population activity space more than if 
there were no noise correlations (compare Fig. 2A, left with Fig. 2B). 
In such condition, correlated variability makes a noisy fluctuation of 
population activity look like the signal representing a different sti
mulus value, and thus acts as a source of noise that cannot be 
eliminated [66,5,61]. One example is two neurons that respond 
vigorously to the same stimulus, and thus have a positive signal 
correlation, while having positively correlated variations in firing 
across trials to the same stimulus, and thus also have a positive noise 
correlation (Fig. 2A, left). Instead, if signal and noise correlations 
have different signs, such as a positive noise correlation for a pair of 
neurons that respond vigorously to different stimuli and thus have 
negative signal correlation, then noise correlations decrease the 
overlap between the response distributions to different stimuli, and 

therefore increase the amount of encoded information (compare 
Fig. 2A, right, with Fig. 2B).

The term Icor−dep quantifies the information added by the sti
mulus dependence of noise correlations. This term is non-negative 
and it can only contribute synergy [63]. An example of this type of 
coding is sketched in Fig. 2C. If noise correlations are stimulus-de
pendent, they can increase the information encoded in population 
activity by acting as an information coding mechanism com
plementary to the firing rates of individual neurons [67–70]. Since 
Icor−dep adds up to the other components, the stimulus-dependent 
increase of the encoded information can offset the information- 
limiting effects of signal-noise alignment and lead to synergistic 
encoding of information across neurons.

The information breakdown in Eq. (11) is the most detailed 
breakdown of information as function of correlations, and it includes 
as a sub-case other types of decompositions and quantification of 
the effect of correlations on the information encoded by the neural 
population activity. For example, the sum of terms Icor−ind + Icor−dep 

quantifies the total effect of noise correlations on stimulus in
formation and equals the quantity ΔInoise defined in e.g. [71]. 
Moreover, the sum of terms Ilin + Isig−sim quantifies the information 
that the population would have if all single neuron properties were 
the same but noise correlations were absent, and equals the quantity 
Ino−noise of [71]. The sum of terms Isig−sim + Icor−ind + Icor−dep equals the 
synergy term defined e.g. in [72]. Finally, the term Icor−dep equals the 
quantity ΔI introduced in [73] as an upper bound to the information 
that would be lost if a downstream decoder of neural population 
activity would ignore noise correlations.

These results have been obtained using general relationships 
between multivariate stochastic variables, and hold regardless of 
whether these correlations are expressed among activity of neurons 
or among other types of variables. However, most of the findings of 
the above general analytical calculations have been confirmed in
dependently in models specifically made to describe the activity of 
populations of neurons (see e.g. [74,75]).

2.2.1. Computational methods for testing information encoding in 
empirical data

An important take-home message of the above calculations is 
that they show that correlations can in principle increase, decrease 
or leave invariant the amount of information in neural activity. 
Which scenario is realized in a specific biological neural populations 
must be determined on a case-by-case basis by empirical measures. 

Fig. 1. A biologically plausible efficient spiking network that obeys Dale’s law. The network is analytically developed from two objective functions, where a quadratic coding error 
(implementing information maximization) and a quadratic regularizer (controlling firing rates) are minimized at every spike occurrence. The solution to the optimization problem 
is a generalized LIF (gLIF) neuron model. A. Schematics of the network. The set of features of the external stimulus s t( ) determines the feedforward current to the network. E and I 
neurons are recurrently connected through structured synaptic interactions J and K. A linear population read-out computes the reconstructions x tˆ ( )E and x tˆ ( )I . Fast synaptic 
interactions (J) implement lateral inhibition between E neurons with similar selectivity through the I neurons. Slower synaptic interactions (K) implement cooperation among 
neurons with similar stimulus selectivity. B. Activity of a simplified E-I network with only fast synaptic interactions J. Network activity is stimulus-driven. C. Activity of the 
network with both fast and slower synaptic interactions J and K. The response of such a network to the stimulus is highly non-linear, and largely driven by recurrent synaptic 
interactions and spike-triggered adaptation.
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Here, we review how these issues can be addressed in empirical data 
using appropriate computational methods.

A first way is to apply directly the information theoretic equa
tions described above (see e.g. in Eq. (11)) to the experimentally 
recorded neural activity, by numerically estimating the stimulus- 
response probability distributions. Numerical methods than can be 
used for probability estimation may include discretization of the 
spike trains, followed by maximum-likelihood estimators of the 
probability distributions [76]. This approach is very straightforward 
and particularly useful when considering individual neurons or 
small populations. In these cases the probabilities can be estimated 
directly, since limited sampling biases in information estimations 
are small and can be subtracted out [76]. Other methods include 
non-parametric kernel density estimators that do not require data 
discretization [26,77,78].

However, when large populations are considered, a direct cal
culation of information becomes unfeasible, as the size of the re
sponse space grows exponentially with the population size [76]. Due 
to the difficulty of adequately sampling all possible responses with 
the finite number of trials available in an experiment, the sampling 
bias becomes much larger than the true underlying information 
values, and it eventually becomes impossible to subtract it out [76]. 
A practically more feasible approach consists in decoding the activity 
of neural populations using cross-validated classifiers, and then 
quantify the total information in neural activity as mutual in
formation in the confusion matrix [24]. In these cases, the effect of 
noise correlations on information encoding can be computed by 
comparing the information in the real, simultaneously-recorded 
population responses (which contain correlations between neurons) 
with the information computed from pseudo-population responses 
where noise correlations have been removed by trial shuffling (an 
analytical procedure to remove the effect of noise correlations by 
combining responses of neurons taken from different trials to a 
given stimulus [6]).

Although in principle correlations may have either an informa
tion-limiting or -enhancing effect, analyses of empirically recorded 
neural populations reported that enhancements of information by 
stimulus-dependent correlations are relatively rare [6]. Most studies 
reported information-limiting effects in empirical neural data, as 
shown by the fact that stimulus information encoded in a population 
is increased when computing it from pseudo-population responses 
with noise correlations removed by trial shuffling [79–81,42,82,83]. 
This is due to the fact that, in most cases, neurons with similar sti
mulus tuning also have positive noise correlations [84]. The in
formation-limiting effects of correlations become more pronounced 
as the population size grows, leading to a saturation of the in
formation encoded by the population [42,83]. This suggests that 
correlations place a fundamental limit on the amount of information 

that can be encoded by a population, even when the population size 
is very large. From these studies, a consensus has emerged that the 
most common effect of correlations in information encoding is to 
limit the amount of information encoded in a population [85,66,86].

Similarly to what described above for correlations, information 
theory has been applied to study whether the millisecond-precise 
timing of spikes is important for encoding information about ex
ternal stimuli. This has been investigated by presenting different 
sensory stimuli, measuring the associated neural responses, and 
computing the amount of information about the stimuli that can be 
extracted from the neural responses as a function of the temporal 
precision of the spikes [87]. In these studies the temporal precision 
of spikes has been manipulated by either changing the temporal 
binning width used to convert spike timing sequences into se
quences of bits (0 or 1, to denote absence or presence of a spike in 
the time bin) for information calculations, or by randomly shifting 
the spikes in time within a certain range (conceptually similar to the 
shuffling used for correlations). Using these approaches, it has been 
found that considerably more information is available when con
sidering neural responses at a finer temporal scale (for example, few 
milliseconds precision) compared to coarser time resolutions and 
with respect to temporal averages of spike trains [27,88,89,89,87]. 
Informative temporal codes based on millisecond-precise spike 
timing have been found across experiments, brain areas and condi
tions, and are particularly prominent in earlier sensory structures 
and in the somatosensory and auditory systems [88,90–92]. In the 
visual cortex, a temporally coarser code has been observed, encoding 
stimulus information on the times scales of tens to hundreds of 
milliseconds [8].

These findings confirm the importance of developing efficient 
coding theories based on models that encode information in spike 
times with high temporal precision, which we reviewed on theore
tical grounds in earlier sections.

3. Computational methods for readout and transmission of 
information in the brain

While efficient coding theories have been successful in ex
plaining properties of neurons in early sensory areas, they did not 
consider how much of the information encoded in their activity is 
transmitted to downstream areas for further computations or to 
inform the generation of appropriate behavioral outputs. The theory 
of information encoding is sufficient to describe the transmission of 
information if all information in neural activity is read out. However, 
evidence (reviewed in [6]) indicates that not all information encoded 
in neural activity may be read out, and thus the readout may be sup- 
optimal. For example, in some cases, visual features can be decoded 
from activity of visual cortical populations with higher precision 

Fig. 2. Schematic of the effects of correlations in the population responses on information encoding. The cartoons illustrate the response distributions across trials of a population 
of two neurons to two different stimuli (blue and green ellipses). Different structure of the noise correlations and different relative configurations of the noise and signal 
correlations determine the effect of correlations on information encoding. A. Stimulus-independent noise correlations can decrease (left; information-limiting correlations) or 
increase (right; information-enhancing correlations) the amount of encoded stimulus information with respect to uncorrelated responses (panel B). Correspondingly, informa
tion-limiting (resp. -enhancing) correlations increase (resp. reduce) the overlap between the stimulus-specific response distribution with respect to uncorrelated responses. B. 
Same as panel A for uncorrelated population responses. C. Stimulus-dependent noise correlations, that vary in structure and/or in strength across stimuli, might provide a 
separate channel for stimulus information encoding (left) or even for reversing the information-limiting effect of stimulus-independent noise correlations (right).
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than that of behavioral discrimination [93], proving that not all 
neural information is exploited for behavior. Here we therefore ex
amine the theory and experimental evidence for how information in 
neural activity is read out, and then examine the implications for 
possible extensions of theories of efficient coding.

3.1. Biophysical computational theories of information propagation

We review theoretical studies of how features that are relevant 
for information encoding, such as across-neuron correlations, affect 
propagation of information in neural systems.

A simple mechanism by which correlations in the inputs to a 
neuron impact its output activity is coincidence detection [94]. A 
neuron fires as a coincidence detector when the time constant τm 

with which it integrates its inputs is much shorter than the average 
inter-spike interval of the input spikes. In this case, the timing of 
input spikes, not only the average number of input spikes received 
over time, determines whether the coincidence detector neuron 
fires. Input spikes with a larger temporal dispersion may fail to bring 
the readout neuron to reach the threshold for firing, but will lead to 
firing if received within a time window shorter than the integration 
time constant.

Biophysically, although the membrane time constant can be re
latively large at the soma (up to τm=20 ms), the effective time con
stant for integration can be much shorter, down to a few ms, for 
various reasons. Dendrites display highly nonlinear integration 
properties. When synaptic inputs enter dendrites close in space and 
time, they can enhance the spiking output of the neuron supra-lin
early [95,96]. Moreover, background synaptic input may lower the 
somatic membrane resistance [97], reducing the effective value of 
the membrane time constant. As a result, neurons may act as coin
cidence detectors, firing only if they receive a number of input spikes 
within a short integration time window of a few milliseconds. With 
such coincidence detection mechanisms, correlations between the 
spikes in the dendritic tree would enhance the output rate of the 
neurons, because correlations tend to pack spikes closely in time 
(Fig. 3B).

However, until recently few studies have tried to connect en
hanced spike rate transmission to the transmission of information. 
In particular, it has not been addressed whether the advantages of 
correlations for signal propagation can overcome their information- 
limiting effect. Recent work has begun to shed light on these issues. 
A study has proposed that information-limiting across-neuron cor
relations may benefit information propagation in the presence of 
nonlinearities in the output [98]. However, it has left open the 
question of identifying the biophysical conditions and mechanisms 
by which correlations may overcome their information-limiting ef
fects by increasing the efficacy of information transmission.

To address these issues and analyze the tradeoff between in
formation encoded in the input of a neuron and information trans
mitted by its output, we studied a biophysically plausible model of 
information propagation in a coincidence detector neuron [14]. The 
model readout neuron had two inputs and followed a leaky in
tegrate-and-fire (LIF) dynamics with somatic voltage V(t) given by:

= + +
=

dV t
dt

V t V t t
( )

( ) ( ),m r k k
i

i 1

2 ( )
(12) 

where t{ }k
i( ) represents the time of the k-th spike of the i-th input 

unit (Fig. 3A,B). The membrane time constant of the readout neuron 
τm was set to a small value of 5 ms. The two inputs had similar tuning 
to the stimulus, and exhibited positive noise correlations that re
duced the stimulus information available in the inputs to the 
readout neuron, with respect to uncorrelated inputs (Fig. 3A,C). 
Despite input correlations being information-limiting, increasing 
correlations amplified the amount of stimulus information trans
mitted by the spiking output of the readout neuron (Fig. 3F). In the 

model, input correlations amplified both the stimulus-specific mean 
firing rate and its standard deviation across trials, yet the mean was 
amplified more than the standard deviation, resulting in a net in
crease of the signal-to-noise ratio (Fig. 3E).

While input correlations decreased the information encoded in 
the inputs, they enhanced the efficacy by which the information 
propagated to the spiking output of the readout neuron. Importantly, 
this enhancement could be strong enough to offset the decrease in 
information in the input activity to eventually increase the stimulus 
information encoded by the readout neuron [14]. Moreover, our 
model revealed that correlated activity amplified the transmission of 
stimulus information in simulation trials in which the information in 
the inputs was consistent across different inputs. Here, the input 
information is defined as consistent in a trial if the same stimulus is 
consistently decoded from the activity of different inputs in that trial 
(Fig. 3A,D).

In sum, these models suggest that the propagation of spiking 
activity relies on correlations. While correlations are detrimental for 
stimulus information encoding, they create consistency across in
puts (Fig. 3A,D) which enhances stimulus information transmission, 
and thus improve the net information transmission.

3.2. Experimental results on information propagation

The above theoretical results beg the question of whether similar 
tradeoffs between the effects of correlations on information en
coding and readout may be at play in vivo to support the propaga
tion of information through multiple synaptic stages and ultimately 
inform the formation of accurate behavioral outputs.

Our recent study [14] investigated this question by showing that 
information-limiting correlations may nevertheless improve the 
accuracy of perceptual decisions. We recorded the simultaneous 
activity of a populations of neurons in mouse Posterior Parietal 
Cortex (PPC, an association area involved in the formation of sen
sory-guided decisions) during two perceptual discrimination tasks 
(one visual and one auditory task). In both tasks, the activity of 
neural populations exhibited noise correlations both across different 
neurons and across time. In both experiments, and as often reported, 
noise correlations decreased the stimulus information carried by 
neural population activity, as removing correlations by shuffling 
neural activity across trials increased stimulus information [14].

The fact that noise correlations decreased the amount of in
formation encoded in neural activity (and thus decreased the in
formation available to the readout for sensory discrimination) could 
at first sight lead us to conclude that correlations are detrimental for 
perceptual discrimination accuracy. However, and somehow para
doxically, we observed that noise correlations were higher in trials 
where the animal made correct choices, suggesting that they may 
instead be useful for behavior [14]. Similar findings were also re
ported in other studies [79,99].

To resolve this paradox, we hypothesized that the readout of 
information from the neural activity in the PPC may be enhanced by 
consistency, similarly to the biophysical model of signal propagation 
described in the previous section (Fig. 3). To test this hypothesis 
quantitatively, we compared two distinct models of the behavioral 
readout of PPC neural activity. A model of behavioral readout of 
neural population activity is defined as a statistical model (in our 
case, a logistic regression model) predicting the animal’s choices in 
each trial from the patterns of neural population activity recorded on 
the same trial. The first readout model we considered predicted the 
animal’s choices based on the stimulus decoded from the PPC po
pulation activity. The second readout model (termed enhanced-by- 
consistency readout model) used an additional feature of neural 
activity, the consistency of information across neurons (Fig. 3D). 
Similarly to our definition for the computational model of biophy
sical propagation as described in the previous subsection, two 
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neurons (or pools of neurons) provided consistent information on a 
single trial if the stimulus decoded from the activity of each of them 
coincided. As shown in [14], increasing the strength of information- 
limiting noise correlations increases the number of trials with con
sistent information. In the enhanced-by-consistency readout model, 
consistency had the effect of increasing the probability that the 
choice is consistent with the stimulus decoded from the neural ac
tivity. In this model, consistency amplified the behavioral readout of 
stimulus information. We found that in the PPC the enhanced-by- 
consistency behavioral readout explained more variance of the ani
mal’s choices than the consistency-independent readout [14]. The 
fact that the enhanced-by-consistency model better described the 
behavioral readout of PPC activity suggests that propagation of in
formation to downstream PPC targets could be facilitated by corre
lations in PPC activity.

The approach described above summarizes the total effect that 
correlations have on the downstream behavioral readout of in
formation carried by a population. However, it did not address di
rectly whether correlations between neurons within a network 
enhance the transfer of information to another specific network of 
neurons. A tool that may allow to test this question, when si
multaneous measures of activity from different network are avail
able, is the computation of Directed Information [100] or Transfer 
Entropy [101]. These are measures of information transfer between a 
source and a target network that have the property of being directed 
because, unlike mutual information, can have different values de
pending on which network is selected as putative source or putative 
target. These measures quantify mutual information between the 

activity of the target network at the present time and the activity of 
the source network at past times, conditioned on the activity of the 
target network at past times. The latter conditioning ensures that the 
measure is directional and is needed to discount the contribution to 
the information about the present target activity that is due to past 
target activity and that therefore cannot have come from the source. 
These measures have been applied successfully to empirical neural 
data, e.g. to demonstrate the behavioral relevance of information 
transmission [102] or the role of oscillations of neural activity in 
modulating information transfer [103]. However, to our knowledge, 
these techniques have not yet been applied to investigate whether 
correlations aid the transfer of information between networks.

4. Intersecting encoding and readout to understand their overall 
effect on behavioral discrimination accuracy

As reviewed in previous sections, certain features of neural ac
tivity may affect encoding and readout of information in conflicting 
ways. This raises the question of how to measure the combined ef
fect of encoding and readout of information in the generation of 
appropriate behavioral choices. In other words, how can we evaluate 
whether a certain feature of neural activity is disadvantageous or 
useful for performing a certain function, such as the accurate dis
crimination between sensory features to perform correct choices? 
This is easier to address if the considered features of neural activity 
have the same (e.g. positive) effect on both information encoding 
and readout, but it is more difficult to evaluate when they have 
opposite effects, as in the case of correlations reviewed above.

Fig. 3. Biophysically plausible model of the effect of correlations on neural information transmission A. Schematics showing the responses of two input neurons to two distinct 
stimuli. The two neurons have similar tuning and positive noise correlations, resulting in information-limiting noise correlations. The dashed dark line illustrates the optimal 
stimulus decoder, while orange boxes indicate the fraction of trials on which stimulus information is consistent across the two neurons (i.e. the stimulus decoded from the neural 
activity of either neuron is the same). B. Cartoon illustrating the biophysical model of information transmission. The model consists of two input neurons generating two input 
spike trains whose firing is modulated by two stimuli and which have information-limiting noise correlations as in A. The input spike trains were fed to a leaky integrate-and-fire 
readout neuron with a short membrane time constant τm, acting as a coincidence detector. The activity of the readout neuron was then decoded to generate the decoded stimulus 
ŝ to quantify the information about the stimuli modulating the inputs that can be extracted from the output of the readout neuron. The readout neuron fired more often when two 
or more input spikes were received near-simultaneously within one integration time constant (red shaded area). C. Input stimulus information as quantified by the decoding 
accuracy of the stimulus from the input firing rates, as a function of input noise correlations. The stimulus information decreases with correlations (information-limiting 
correlations). D. Relative change (gain) of the fraction of consistent trials, on which the stimuli decoded from either neuron’s activity coincides, as a function of input noise 
correlations (orange boxes in panel A). E. Relative change (gain) in the mean and standard deviation of the readout firing rate as a function of input noise correlations. F. Relative 
change (gain) in the amount of transmitted stimulus information, defined as the ratio between output and input information, with respect to uncorrelated inputs, as a function of 
input noise correlations. In simulations the input rate was set to 2 Hz, the readout membrane time constant to τm = 5 ms. Values of noise correlations equal to 0 and 1 indicate 
uncorrelated and maximally correlated input firing rates, respectively.
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The simplest computational way of relating neural activity to the 
behavioral outcome on a trial-to-trial basis would be to compute the 
information between neural activity and choice. This would involve 
using the mutual information equations (see Eq. (1)) but considering 
the choice expressed by the animal in each trial rather than the 
presented sensory stimulus. However, the presence of choice in
formation per se would not be sufficient to conclude that the neural 
activity under consideration is relevant to inform choices that are 
appropriate to perform the tasks [104]. For example, in a perceptual 
discrimination task, choice information in a population of neurons 
may reflect the fact that neural activity contains choice signals that 
are unrelated to the stimulus to be discriminated, such as stimulus- 
unrelated internal bias toward a certain choice. Similarly, computing 
stimulus information only would not be sufficient to tell if such 
stimulus information is actually used to inform accurate behavior.

Recently, sophisticated computational methods have been de
veloped to address these important questions. These methods are 
based on the idea of correlating the sensory information in neural 
activity (rather than just neural activity regardless of its informa
tion) with the behavioral outcome on a trial-to-trial basis. For ex
ample, a way to establish the relevance of a given neural feature for 
behavior consists in evaluating whether higher values of information 
in the neural feature correlate on a trial-by-trial basis with more 
accurate behavioral performance [105,106,99]. A rigorous informa
tion-theoretic way to quantify this intuition has been developed [9]
using the concept of Intersection Information, which involves in
formation between three variables, i.e. the stimulus (S), the choice 
(C), and the neural responses (R), and uses the formalism of Partial 
Information Decomposition (PID; Eq. (11)) to generalize information 
to multivariate systems [107]. Considering this set of variables, PID 
identifies different components contributing to the information that 
two source variables (e.g. R and S) carry about a third target variable 
(e.g. C). In particular, it disentangles the information about the target 
variable that is shared between the two variables from the in
formation that is carried uniquely by one of the two source variables, 
and the information that is instead carried synergistically by the 
interaction between the two variables. Within this framework, it is 
natural to define as Intersection Information the part of the in
formation between stimuli and neural activity that is shared with 
choice information, as this quantifies the part of stimulus informa
tion in neural activity that is relevant to forming choices [9]. As 
shown in [9], after eliminating artificial sources of redundancy, In
tersection Information is defined in a rigorous way that satisfies a 
number of intuitive properties that one would assign to this mea
sure, including being non-negative and being bounded from above 
by the stimulus and choice information in neural activity [9]. The 
Intersection Information approach is particularly convenient when 
addressing questions about the behavioral relevance of features of 
neural activity that are defined on a single-trial level. For example, it 
has been used to demonstrate that in somatosensory cortex, the 
texture information carried by millisecond-precise timing of in
dividual spikes of single neurons has a much larger impact on per
ceptual discrimination than the information carried by the time- 
averaged spike rate of the same neurons [9,106]. This underlies the 
importance of individual spikes and precise spike timing for brain 
function. The Intersection Information has also been used to identify 
sub-populations of neurons that carry information particularly re
levant to perform perceptual discrimination tasks [79].

A conceptually related way to define intersection information of 
a given feature of neural activity has been proposed in [14]. This 
approach consists in fitting two types of models on data, a model of 
encoding (that is, the relationship between sensory stimuli and 
neural population responses) and a model of readout (that is, the 
transformation form neural activity to choice), and then to compute 
the behavioral performance in perceptual discrimination that would 
be obtained if the discrimination is based on the neural activity 

described by the readout and encoding models. By manipulating the 
statistical distribution of the neural features of interest in encoding 
and in readout, this approach can be used to determine the impact 
on behavioral accuracy of features of neural activity that are defined 
across ensembles of trials, such as correlations. Recent work [14]
adopted this approach to estimate the impact of correlations on 
behavioral performance. In this work, we first determined the 
readout model that best explained the single-trial mouse choices 
based on PPC activity. This was, as reviewed in the previous sub
section, an enhanced-by-consistency readout model. We used this 
experimentally fit behavioral readout model to simulate mouse 
choices in each trial, using either simultaneously recorded PPC ac
tivity (i.e. with correlations) or shuffled PPC activity to disrupt cor
relations. We used these simulated choices to estimate how well the 
mouse would have performed on the task with and without corre
lations. We found that better task performance was predicted when 
keeping correlations in PPC activity, compared to when correlations 
were destroyed by shuffling, suggesting that correlations were 
beneficial for task performance even if they decreased sensory in
formation. This was because correlations increased encoding con
sistency, and consistency enhanced the conversion of sensory 
information into behavioral choices, despite that they limited the 
information about the stimulus available to the downstream 
readout.

The results described above were obtained from periods of the 
trial after the presentation of the sensory stimulus and before the 
mouse executed its behavioral report. Pre-choice activity has the 
potential to be consequential for the upcoming behavioral choice, 
whereas post-choice activity does not. When comparing correlations 
before and after choice, we found that post-choice correlations were 
weaker than pre-choice correlations, and were not strong enough to 
modulate the consistency of information [108]. Thus, PPC had strong 
correlations that created consistent information only before choice 
was executed and in trials in which correct choices were made by 
the mouse.

Together, these results suggest that noise correlations are con
sequential for the behavioral readout of information encoded in 
neural activity, and that correlations can promote accurate behavior 
by enhancing signal propagation, because a better signal propaga
tion can offset the negative impact of correlations on encoding.

5. Discussion

We reviewed how conceptualizing the brain as an information 
processing machine, and using computational tools inspired by in
formation theory to analyze brain activity, has led to major advances 
in understanding how networks of neurons encode information. 
Despite major progress, many questions remain unaddressed and 
call for further development of theories and computational ap
proaches to brain functions. To stimulate future research, we here 
discuss how further theoretical advances may lead to a deeper un
derstanding of neurobiology.

While the idea of efficient coding has been inspired by concepts 
in information theory, in practical terms, the design of efficient 
networks has been based on minimizing quadratic reconstruction 
errors [30]. This may work well with Gaussian distributions of the 
error signal that may be obtained from responses of peripheral 
sensory systems to simple stimuli, but may work less well in other 
cases, e.g. in the presence of higher order interactions between 
spikes or across neurons [109] or in the presence of non-Gaussian 
statistics of stimulus or neural noise. It would be thus important to 
extend efficient coding theories to include maximization of the full 
information of neural activity. Progress in this direction could be 
facilitated by advanced computational methods that analyze the 
encoding and transmission of information by neural circuits re
viewed here. Importantly, these methods can be used for both the 
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analysis of empirical neural data and of simulated responses of 
spiking networks. Bringing together these approaches could be 
useful for comparing quantitatively the information processing fea
tures of real and model neurons, as well as for testing the extent to 
which the optimization of simpler cost functions implies the opti
mization of the full Shannon information carried by neurons. The 
latter might not always be analytically computable, but is often 
computable using numerical methods in a simulated neural circuit. 
These simulations could be performed on a traditional computer, or 
alternatively on neuromorphic silicon chips [110].

So far, most research on the design of efficient neural networks 
has been mainly theoretical, aiming at exploring computational 
properties of artificial neural networks. The ability of these networks 
to describe information processing in real biological circuits has 
been limited. Recent advances have generalized the theory of effi
cient coding to account for biophysical constraints. In our recent 
work, we showed that a biologically plausible formulation of effi
cient coding accounted for measurable, well-established empirical 
properties of neurons in terms of first principles of computation 
[48]. Further extensions of biologically plausible efficient coding 
theory could be used to understand the computational principles of 
how and why cortical circuits drastically modulate their information 
coding according to the brain and behavioral states [111–114]. It will 
be crucial for future research to capture these phenomena in terms 
of efficient coding and use neural network models to investigate the 
mechanisms supporting state-dependent changes in neural dy
namics, potentially leading to insights into their computational role 
in information processing. We speculate that an accurate description 
of neural computations in these cases may require taking into ac
count further biophysical characteristics of cortical circuits, such as 
different types of inhibitory neurons [115] and structured con
nectivity [116,117] than the ones included in current models. Beyond 
the currently developed models where the objective of inhibitory 
neurons is formulated using the population readout, models may be 
developed where individual inhibitory neurons might track and 
predict the activity of individual excitatory neurons.

Efficient coding does not explain how neural circuits may predict 
future sensory signals, a computation that would have a clear benefit 
for forming appropriate behavioral outputs. Recent work has found 
that the primate retina may perform predictive encoding of motion 
by preferentially transmitting information that allows to optimally 
predict the position of visual objects in the near future [25]. This 
predictive code is based on selecting visual inputs with strong 
spatio-temporal correlations, since those are the inputs that allow 
prediction of the future position of visual objects. Thus, efficient and 
predictive coding account for partially opposing objectives of the 
neural code. While efficient coding tends to remove input correla
tions, predictive coding selects correlated inputs for further trans
mission and prediction of future stimuli. It would be important to 
extend the computation of prediction to biologically plausible cor
tical architectures and understand whether the objectives of pre
dictive and efficient coding can be realized within the same neural 
circuit. It would be also interesting to explore this idea within 
models that possess the layer structure of a canonical laminar cor
tical microcircuit [118–120], as previous work has imputed a spe
cialized role of computing and transmitting prediction errors to 
population of neurons in different layers [121].

By minimizing cost functions related to information encoding, 
efficient coding theories have succeeded in explaining some of the 
properties and computations of neurons in early sensory structures, 
whose function is presumably to encode information about the 
sensory environment. Here we reviewed the evidence that popula
tion codes support not only information encoding, but also in
formation readout. We pointed out how multiple neural functions 
may place conflicting requirements on the neural code (notably on 
its correlation structure). In these cases, optimal neural 

computations need to be shaped by tradeoffs between partly con
flicting objectives. In our view, a key goal for extending efficient 
coding theories is to develop a principled theoretical framework that 
accounts for trading off conflicting objectives, explaining how neural 
circuits balance the constraints imposed by information encoding in 
neural ensembles and the propagation of signals to downstream 
areas. This would require the mathematical formulation of a multi- 
objective cost function that trades off partly conflicting require
ments of neural encoding and transmission. While objective func
tions that maximize encoding are conceptually relatively 
straightforward (because they relate neural activity to external 
sensory stimuli, which are relatively easy to manipulate) and have 
been implemented as reviewed above, objective functions related to 
activity readouts are more difficult to conceptualize and ground in 
empirical data. Here, we reviewed work that laid the foundations for 
studying the objective of information transmission with respect to 
readout, highlighting how the readout benefits from correlations in 
the input and by the single-trial consistency of information (induced 
by correlations) for amplifying signal propagation. This work has led 
to explicit analytical formulations of how the readout is shaped by 
correlations, which are amenable to be included in objective func
tions related to the information transmission. Together with careful 
studies of how choices can be decoded from the population activity 
and taking into account the functional role of neurons for the po
pulation signal [43], such studies could provide seed ideas to for
mulate multi-objective efficient coding theories.

We propose that such multi-objective extension of theories of 
efficient coding may be key to extending their success to non-sen
sory areas of the brain. For example, they could be used to explain 
whether the optimal level of correlations in one area depends on its 
placement along the cortical hierarchy [108] or the location in cor
tical laminae [122]. We speculate that for sensory cortices it may be 
optimal to have weak correlations to maximize information en
coding, whereas association cortices might be optimized for stronger 
signal propagation, doing so through stronger correlations. This is 
because sensory cortices may need to encode all aspects of sensory 
stimuli, regardless for their relevance for the task at hand, thus 
placing more emphasis on encoding, which benefits from weaker 
correlations. On the other hand, cortical areas higher up in the 
hierarchy (for example, association areas) may prune away encoding 
of information of aspects of sensory stimuli not relevant to the task 
at hand, and thus may privilege the benefits of correlations for re
liable information transmission. In higher brain areas, the cost in 
terms of limiting information encoding may be less damaging given 
the reduced requirements for encoding stimulus features. Also, 
cortical populations within upper or deeper layers of cortex (those 
that project to other areas) have stronger correlation levels [122], 
suggesting that the differentiation of coding properties across layers 
may not only relate to the information that each layer processes 
[121], but also to the need to amplify (by stronger correlations) the 
signals that are transmitted to other areas.

In this Review we have suggested the importance of adding to 
the studies of population coding and to theories of optimal in
formation processing in the nervous systems multiple constraints 
and objectives, but we have focused on the tradeoff between the 
amount of encoded and transmitted information. Beyond informa
tion encoding and transmission, further relevant objectives of in
formation maximization could include the speed (and not only the 
amount) of information processing. For example, correlations be
tween neurons may contribute not only to the tradeoff between 
encoded and read out information, but also (in case they extend over 
a time range) to the speed and time scales at which information is 
accumulated [123]. Another important extension of this reasoning 
would be to consider how the tradeoffs between different con
straints (including the amount of encoded and read out information) 
vary with the size of the neural population that encodes the stimuli. 
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This population size is in general difficult to determine, although 
some studies have suggested that it is relatively small [38,124]. 
Understanding better how the advantages and disadvantages of 
correlations for encoding and readout scale with population size 
would be beneficial for laying down a theoretical understanding of 
what could be optimal population sizes for specific neural compu
tations.
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