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Abstract: Marine sponges are a very attractive and rich source in the production of novel bioactive
compounds. The sponges exhibit a wide range of pharmacological activities. The genus Amphimedon
consists of various species, such as viridis, compressa, complanata, and terpenensis, along with a handful
of undescribed species. The Amphimedon genus is a rich source of secondary metabolites containing
diverse chemical classes, including alkaloids, ceramides, cerebrososides, and terpenes, with various
valuable biological activities. This review covers the literature from January 1983 until January 2018
and provides a complete survey of all the compounds isolated from the genus Amphimedon and the
associated microbiota, along with their corresponding biological activities, whenever applicable.
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1. Introduction

The broadness in the discovery of natural marine products have increased over the last two
decades with the number of new compounds discovered per year similarly increasing [1]. One of the
richest sources of marine natural products, among all the marine organisms investigated in literature,
are the marine sponges. Nearly thirty percent of all marine natural products discovered in history
come from marine sponges [2–4]. Sponges have been considered an important source of new bioactive
natural products [5], although the role of microbial symbionts as the producers of sponge metabolites
needs more further research in the future. The number of metabolites reported from sponges varies
from year to year, e.g., in 2014, 283 new structures were described from the phylum Porifera. By 2015,
the number of metabolites (291) remained similar to 2014 and constant in comparison to previous
years [6]. In 2016, 224 new compounds were reported from sponges. This reduction may represent the
focus changing from studying sponges to studying microorganisms. However, sponges remain one
of the important groups in the discovery of new bioactive compounds [7]. Wide ranges of microbes
are associated with sponges, these include heterotrophic bacteria, cyanobacteria, dinoflagellates, and
diatoms [8]. These microbes all play several roles in the sponges and affect sponge health, growth rates,
and the ability to defend against predators [9]. The interaction between sponges and the associated
microorganism could help in the nutrition of the sponge [10], or in the fixation of nitrogen [11].
The most important role, however, is the production of secondary metabolites as antifungals and
antibiotics [12]. The genus Amphimedon (Kingdom: Animalia; phylum: Porifera; class: Demospongiae;
sub class: Heteroscleromorpha; order: Haplosclerida; family: Niphatidae) is reported to be a very rich
source of bioactive metabolites.
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Various chemical and biological investigations, particularly for the different extracts of the
undescribed species of the genus Amphimedon, can be found in previous literature. These investigations
confirmed that the genus, Amphimedon, is rich in different classes of natural products such as alkaloids,
and rich in different subclasses such as manzamine alkaloids [13,14], purine-based alkaloids [15],
pyridine-based alkaloids [16], 3-alkylpyridine glycosides [17], and macrocyclic lactones/lactams [18].
In addition, ceramides and cerebrosoides were isolated from the marine sponges of the genus
Amphimedon [19]. Moreover, fatty acids were also reported from Amphimedon sp. [20].

The marine sponge Amphimedon sp. has been collected from different regions, including
Okinawa and Fukuoka in Japan [19,21]. Biological investigations of the alkaloids and fatty acids
isolated from Amphimedon have shown that some of these compounds possess antimicrobial [22],
antitrypanosomal [23], and anticancer [24] properties. In addition, discovery of the natural metabolites
from the four sponges viridis, compressa, complanata, and terpenensis were reported in previous literature.
In this review, we present an overview on the chemical structures of the marine metabolites from
the marine sponges of the genus Amphimedon, their associated microorganisms, biological activities,
and their places of collection whenever applicable.

2. Amphimedon compressa

Cyclostellettamine [25] is considered an important precursor of the manzamine alkaloids.
Its related compound 8,8′-dienecyclostellettamine 1 is an alkyl pyridine alkaloid, as shown in Figure 1,
and was isolated from the marine sponge Amphimedon compressa, which was collected in Florida.
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Compound 1 shows potent antibacterial and antifungal activities against six of the seven tested
microorganisms, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Cryptococcus neoformans,
Methicillin-resistance staphylococcus aureus, and Aspergillus fumigatus with IC50 values of 0.4, 1.3, 2.1,
2.5, 0.25, and 0.3 mg mL−1, respectively.

Amphitoxin [26] was isolated from different marine sponges belonging to the order Haplosclerida,
which is found in relatively high quantities in extracts of Amphimedon compressa, collected near the
coast of San Salvador Island. Amphitoxin is a polymeric compound containing 3-alkyl- and 3-alkenyl
pyridinium units and contains a mixture of high-molecular-weight pyridinium salts. It is similar in
structure to a polymeric pyridinium alkaloid, which has recently been isolated from a sponge belonging
to the genus Callyspongia (C. fibrosa). However, the amphitoxin of Amphimedon compressa lacks the
carbon–carbon double bond in the side-chain and its molecular weight has not yet been established
precisely. The amphitoxin showed ichthyotoxic activity towards Xiphophorus variatus (moon fish) and
insecticidal activity against Cylas formicarius elegantulus (sweet potato weevil) in concentrations of 0.2,
0.8, and 0.4 ppm and corresponding mortality rates of 30, 20 and 10%, respectively, with a life span of
72 h. The toxicity towards the moon fish was evidenced by the high mortality rates. In amphitoxin
concentrations of 1000 and 100 ppm, the lifespan of the moon fish is <30 min and <60 min, respectively,
thus demonstrating a mortality rate of 100%. [27].

(Z)-17-tricosenal 2, 19-hexacosenal 3, 16-tricosenoic acid 4, 18-tricosenoic acid 5, 16-tricosenoic
acid 6, 19-pentacosenal 7, 19-pentacosenoic acid 8, 20-hepacosenoic acid 9, and 21-octacosenoic acid
10, as shown in Figure 2, are mono-unsaturated phospholipid fatty acids isolated from Amphimedon
compressa [28].
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In addition to the previously isolated fatty acids, methyl 2-methoxyhexadecanoate 11 (Figure 3),
2-hydroxydocosanoic acid 12 and 2-hydroxytricosanoic acid 13 [29] have been isolated from
Amphimedon compressa [30].
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Acetamidoglucosyl ceramide 14, as shown in Figure 3, was isolated from Amphimedon compressa
collected from the coast of Key Largo, Florida [31].

3. Amphimedon viridis

1,3-Dimethylisoguanine 15 [32] is a purine-based alkaloid, as shown in Figure 4, which was
isolated from Amphimedon viridis. The alkaloid induces contractions when obtained by a transmural
electrical stimulation in a guinea pigs’ longitudinal muscle/myenteric plexus in a dose-dependent
manner [33].
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Theophylline 16 [32] is another purine-based alkaloid isolated from Amphimedon viridis, which was
previously isolated from the plant source Camellia sinensis [34]. Furthermore, cerebrosoides
amphicerebroside B-F 17–21, as shown in Figure 5, [35] were obtained from this sponge and were
collected from the Red Sea.
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4. Amphimedon complanata

Amphimedon complanata is a species of sponge rich in fatty acids, such as 11,l5-icosadienoic acid 22,
7-methyl-6-hexadecenoic acid 23, and 6,11-icosadienoic acid 24 [36], and was isolated from a sponge
collected near the shelf edge of La Parguera at a depth of 80 ft, as shown in Figure 6.

For the first time in nature 2-methoxy-13-methyltetradecanoic acid 25,
2-methoxy-14-methylpentadecanoic acid 26, 2-methoxy-13-methylpentadecanoic acid 27, and
ethyl 2-methoxy-13-methyltetradecanoate 28 were identified and isolated from the marine sponge
Amphimedon complanata, collected in Puerto Rico, as shown in Figure 6 [37].
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5. Amphimedon terpenensis

6-Bromo-5E,9Z-pentacosadienoic acid 29 and 6-bromo-5E,9Z-tetracosadienoic acid 30, as shown
in Figure 7, are brominated acids and were isolated from Amphimedon terpenensis.
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6. Undescribed Marine Sponges of the Genus Amphimedon

One of the classes repeatedly isolated from Amphimedon sp. is the manzamine alkaloids.
In 1986, Higa and coworkers isolated the manzamine A prototype for this group, a novel cytotoxic
β-carboline alkaloid from marine sponge Haliclona sp. collected from Manzamo, Okinawa [38].
The isolation of manzamines (B–D), from the marine sponge Haliclona sp. subsequently followed [39],
as well as ircinals (A–B) from an ircinia sponge [40]. In the last two decades more than 80 β

-carboline-containing manzamine alkaloids and manzamine-related alkaloids have been isolated from
marine sponges following manzamine A discovery [41]. Manzamines are very attractive bioactive
natural metabolites due to their wide range of biological applications as well as insecticidal [42],
cytotoxic [43], and anti-inflammatory properties [44].
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The first example is zamamiphidin A 31 (Figure 8) [13] which was obtained from the
Amphimedon sp. collected at Zamami, Okinawa. The compound exhibited antibacterial activity
against Staphylococcus aureus (MIC, 32 µg/mL) but did not show any activity against Escherichia coli,
Bacillus subtilis, or Micrococcus luteus (MIC, >32 µg/mL). The compound also displayed antifungal
activities against Aspergillus niger, Trichophyton mentagrophytes, Candida albicans, and Cryptococcus
neoformans (IC50 > 32 µg/mL). The compound did not show cytotoxicity against L1210 murine leukemia
or KB human epidermoid carcinoma cells (IC50 > 10 µg/mL).
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Zamamidine A-C 32–34 (Figure 9) [45,46] are other manzamine alkaloids with inhibitory activities
against Trypanosoma brucei brucei (IC50 values of 1.04 mg/mL, 1.05 mg/mL, and 0.27 mg/mL,
respectively) and against Plasmodium falciparum with IC50 values of 7.16 mg/mL, 12.20 mg/mL,
0.58 mg/mL, respectively. Zamamidine D 35 [22], as shown in Figure 9, is the first manzamine alkaloid
possessing a 2,2′-methylene bis-tryptamine unit as the aromatic moiety instead of a β-carboline
unit. It showed antibacterial activity against Escherichia coli, Stapylococcus aureus, Bacillus subtilis,
and Micrococcus luteus with MIC values of 32, 8, 8, and 8 µg/µL, respectively. In addition,
it showed antifungal activity against Aspergillus niger, Trichophyton mentagrophytes, Candida albicans and
Cryptococcus neoformans with IC50 values of 16, 8, 16, and 2 µg/µL, respectively.
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Keramaphidin B 36 and keramaphidin C 37 [21,47,48], as shown in Figure 10, were isolated from
Amphimedon sp. which was collected from the Kerama Islands, Okinawa.
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Ircinol A 42, ircinol B 43 [14], and ircinic acid A 44 (which is the 1-O-methyl carboxylic acid analog
of ircinal A) [13], as shown in Figure 12, were isolated from Amphimedon sp. collected from the Kerama
Islands, Okinawa.
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Keramamine C 45 [47], manzamine H 46, and manzamine L 47 displayed cytotoxicity against
murine lymphoma LI210 cells and human epidermoid carcinoma KB cells with IC50 values of 3.7 and
11.8l µg/mL, respectively. Antibacterial activity against the bacteria Sarcina lutea, Staphylococcus aureus,
Bacillus subtilis, and Mycobacterium 607 with MICs values of 10, 10, 10, and 5 µg/mL, respectively [21].

New manzamine-related tetrahydro-carboline alkaloids with a methylene carbon bridge
between N-2 and N-27 such as manzamine M 48 [49], manzamine D 49 [21], ma’eganedin A 50,
and nakadomarin A 51 are novel cytotoxic alkaloids from Amphimedon sp. collected in Okinawa.
Nakadomarin A 51 showed cytotoxicity against murine lymphoma L1210 cells (IC50 1.3 µg/ mL) and
exhibited activity against cyclin dependent kinase 4 (IC50 9.9 µg/mL) [50], as shown in Figure 13.Mar. Drugs 2018, 16, x FOR PEER REVIEW  9 of 21 
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Another compound class isolated from Amphimedon sp. are purine-based alkaloids such as
6-imino-1,9-dimethyl-7,9-dihydro-1H-purine-2,8(3H,6H)-dione 52, 6-imino-1,3-dimethyl-7,9-dihydro
-1H-purine-2,8(3H,6H)-dione 53, 6-imino-3,9-dimethyl-7,9-dihydro-1H-purine-2,8(3H,6H)-dione 54,
and 6-imino-9-methyl-7,9-dihydro-1H-purine-2,8(3H,6H)-dione 55 [15], as shown in Figure 14.
The compounds showed neuropharmacological activities with CD50 values of 2.4, 54, 18, 18 nmol,
respectively, in mouse via the modulation of inhibitory transmission actions in the mammalian CNS.
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Pyridine-based alkaloid compounds were isolated with high yield from Amphimedon sp.
An example is pyrinodemin A 56 [51], which showed potent cytotoxicity against the murine leukemia
LI210 with an IC50 value of 0.058 µg/mL and against KB epidermoid carcinoma cells with an IC50

value of 0.5 µg/mL. The related compounds pyrinodemin B–D 57–59 [16] exhibited potent cytotoxicity
against murine leukemia with IC50 values of 0.07, 0.06, and 0.08 µg/mL, respectively. The analogs
pyrinodemin E, F 60, 61 [52], pyrinodemin G, H 62, and 63 [53] exhibited cytotoxicity against P388
and L1210 murine leukemia cells with IC50 values of 5.7 and 8.8 µg/mL, and 9.6 and 2.5 µg/mL,
respectively, in vitro. Finally, pyrinodemin I 64 was also isolated from Amphimedon sp., as shown in
Figure 15.Mar. Drugs 2018, 16, x FOR PEER REVIEW  10 of 21 

 

 
Figure 15. The chemical structures of the compounds (56–64). 

Nakinadine A 65 [54] which was isolated from a sponge collected in Nakijin, Okinawa, is an 
example of a bis-3-alkyl pyridine alkaloid with a β-amino acid moiety. The compound showed 
cytotoxicity against L1210 murine leukemia (IC50 1.3 μg/mL) and KB human epidermoid carcinoma 
cells (IC50 2.5 μg/mL) in-vitro, as shown in Figure 16. The related nakinadine B–F 66–70 [55], were 
also isolated from a sponge collected in Nakijin, Okinawa. Nakinadine B 66 and nakinadine C 67 
were shown to exhibit cytotoxicity against L1210 murine leukemia with IC50 values of 3.0 and 5.0 
μg/mL, respectively, and against KB human epidermoid carcinoma cells with IC50 values of 7.0 and 
>10 μg/mL, respectively, in-vitro, while nakinadines D–F 68–70 did not show these activities (IC50 > 
10 μg /mL). 

Figure 15. The chemical structures of the compounds (56–64).



Mar. Drugs 2019, 17, 19 10 of 20

Nakinadine A 65 [54] which was isolated from a sponge collected in Nakijin, Okinawa, is an
example of a bis-3-alkyl pyridine alkaloid with a β-amino acid moiety. The compound showed
cytotoxicity against L1210 murine leukemia (IC50 1.3 µg/mL) and KB human epidermoid carcinoma
cells (IC50 2.5 µg/mL) in-vitro, as shown in Figure 16. The related nakinadine B–F 66–70 [55], were
also isolated from a sponge collected in Nakijin, Okinawa. Nakinadine B 66 and nakinadine C 67 were
shown to exhibit cytotoxicity against L1210 murine leukemia with IC50 values of 3.0 and 5.0 µg/mL,
respectively, and against KB human epidermoid carcinoma cells with IC50 values of 7.0 and >10 µg/mL,
respectively, in-vitro, while nakinadines D–F 68–70 did not show these activities (IC50 > 10 µg /mL).Mar. Drugs 2018, 16, x FOR PEER REVIEW  11 of 21 
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Hachijodine E–G 71–73 [24] are also 3-alkylpyridine alkaloids isolated from Amphimedon sp.
collected off the coast of Hachijo-jima Island. They also showed cytotoxic activity against P388 murine
leukemia cells with IC50 values of 2.3, 1.0, 1.0 µg/mL, respectively, as shown in Figure 17.
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Figure 17. The chemical structures of the compounds (71–73).

(1E,11Z)-N-Hydroxy-14-(pyridin-3-yl) tetradec-11-en-1-imine 74, (1E,5Z)-N-hydroxy-14-(pyridin-3-yl)
tetradec-5-en-1-imine 75, (1E)-N-hydroxy-13-(pyridin-3-yl) tridecan-1-imine 76, and (1E)-N-hydroxy-12-
(pyridin-3-yl) dodecan-1-imine 77 [16], as shown in Figure 18, are compounds which possess antifungal
and antimicrobial activities.
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Tetrahydrohalicyclamine A 78 and 22-hydroxyhalicyclamine A 79 (Figure 19) [56], are
3-alkylpiperidine alkaloids isolated from the Amphimedon sp. in Southern Japan. These compounds
displayed cytotoxic activity inhibiting the growth of P388 cells with IC50 values of 2.2 and 0.45 µg/mL,
respectively. Amphimedine 80 [57] is a pentacyclic aromatic alkaloid isolated from the Amphimedon sp.
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Figure 19. The chemical structures of the compounds (78–80).

A group of brominated alkaloids, namely amphimedonoic acid 81, psammaplysene E 82,
and 3,5-dibromo-4-methoxybenzoic acid 83 were isolated from Amphimedon sp. collected from the
Mitsio Islands, Madagascar, as shown in Figure 20 [58].
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amphimedoside E 88 [17] are 3-alkylpyridine glycosides isolated from the Amphimedon sp. collected 
from the Hachijo-jima Island, as shown in Figure 21. Amphimelibioside A 89, amphimelibioside B 
90, amphimelibioside C 91, amphimelibioside D 92, amphimelibioside E 93, and amphimelibioside F  
94 [19], as shown in Figure 22, are new ceramide dihexosides and were isolated from Amphimedon sp. 
collected near Fukuoka, Japan. 
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Figure 20. The chemical structures of the compounds (81–83).

Amphimedoside A 84, amphimedoside B 85, amphimedoside C 86, amphimedoside D 87,
and amphimedoside E 88 [17] are 3-alkylpyridine glycosides isolated from the Amphimedon sp. collected
from the Hachijo-jima Island, as shown in Figure 21. Amphimelibioside A 89, amphimelibioside B
90, amphimelibioside C 91, amphimelibioside D 92, amphimelibioside E 93, and amphimelibioside F
94 [19], as shown in Figure 22, are new ceramide dihexosides and were isolated from Amphimedon sp.
collected near Fukuoka, Japan.
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Isolated macrocyclic lactone/lactams are amphilactam A–D 95–98 [18], as shown in Figure 23.
These four compounds were found to be active against nematodes in vitro with LD99 activities of 7.5,
47, 8.5, and 0.39 µg/mL, respectively.
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Amphimic acid A, B 99, 100 displayed inhibitory activity against DNA to poisomerase I with IC50

values of 0.47 and 3.2 µM, respectively Amphimic acid C 102 and 5Z,9Z,21Z-triacontatrienoic acid
were isolated from the Amphimedon sp. 103 [59], as shown in Figure 24.
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The terpene diisocyanoadociane 103 [60], as shown in Figure 25, is an example of a compound
from another substance class isolated from Amphimedon sp.
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7. Bacteria Associated with the Genus Amphimedon

Marine sponges contain a huge diversity of fatty acids which are hypothesized to be composed
from bacterial origin. Regarding Amphimedon terpenensis, the brominated long-chain fatty acids 29
and 30, were more distributed in the sponge and its associated bacterial symbionts [61]. However,
the role of these fatty acids in marine sponges is unclear, but they may be involved in the relationship
between the sponge and their associated bacteria and in protecting the bacterial symbionts from
sponge phagocytosis. Amphitoxin [62] is a pyridinium alkaloid isolated from Amphimedon chloros,
which was previously described as Amphimedon viridis. The amphitoxin exhibited broad-spectrum
activity against bacteria derived from seawater. Furthermore, the sponge-associated bacteria alpha
proteobacteria were resistant against this compound, as well as six different bacterial strains associated
with the sponge A. viridis [63]. This inhibition may explain the ability of the bacteria to live in close
association with their host sponge while having a chemical defense against other microbial pathogens.
Moreover, actinomycetes such as Kocuria, Microbacterium, and Micrococcus were cultivated from the
Amphimedon sp. that had been collected offshore of the Red Sea, Egypt, but were never chemically
investigated [64].

Several types of mycobacteria, including a strain closely related to M. tuberculosis, have been
isolated from Amphimedon queenslandica. The strain Salinispora arenicola was also isolated from
Amphimedon queenslandica. This strain can synthesize antimycobacterial compounds [65].

As the polyketide class is well-known for their antibiotic activities, the polyketide synthetase
genes of the sponge-derived mycobacteria were examined [66] and found to catalyze the synthesis of
mycobacterial outer membrane lipids.

The diversity in the regions in which Amphimedon and its different species were collected, play
a role in the production of manzamine alkaloids 30–50. They are widely believed to be produced
by a symbiotic relationship between the sponge and common or closely related microorganism(s),
which may account for the generation of the manzamine alkaloids [67]. Furthermore, there is
evidence that sponge-associated microbes have a significant role in the bioconversion of manzamines
to the growing number of alkaloids found in sponges producing manzamines and is provided
by the biotransformation of 8-hydroxymanzamine A and its enantiomer to manzamine A and
ent-12,34-oxamazamine F, respectively [41].

Classes of chemical compounds, such as fatty acids, were used as markers for the the
chemodiversity in the genus Amphimedon. Several unique fatty acids were isolated from this genus
as 17, 18, and 19-hexacosenoic acids. Commonly, there were two biosynthetic pathways that were
reported in marine sponges such as 18: ln-7 to 26: ln-7, and the 18: ln-9 to 26: ln-9 routes. While the
18: ln-8 to 26: ln-8 pathway has only recently existed in these invertebrates [28,68] the long chain
monounsaturated fatty acids were rare in nature due to their existence in small amounts, especially in
microgram quantities [28]. The biosynthesis of the long chain brominated fatty acids in Amphimedon
terpenensis has previously been explained in past literature. The substituent of bromine was introduced
following chain elongation and desaturation of a 16:0 precursor. The formation of 24:2 brominated
and 26:2 brominated acids might have been predicted, however, the isolation of a 25:2 brominated
acid suggests that sponges may additionally have the capacity to extend chains, desaturate, and
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functionalize an odd carbon chain length fatty acid. Odd carbon chain fatty acids, such as 15:0 and 17:0,
generally have a branched structure rather than straight chain structure which were usually found in
bacteria. Amphimedon terpenensis contains both cyanobacterial and bacterial symbionts and thus an
additional consideration is which of the three cell types, sponge, bacteria, or cyanobacteria contains
the brominated fatty acids [69].

Terpenes biosynthesis is under investigation as a rearranged diterpenoid diisocyanoadociane and
was isolated from the Amphimedon sp. that was collected at the Great Barrier Reef in Australia [60].
Terpenes biosynthesis could be explained by the sponge-associated microorganisms which enable
the enzymes to synthesize isoprenoids or alternatively, from the modification in a sponge mediated
cell of a symbiont-produced precursor such as isoagelaxanthin [70]. Cyanide incorporation by the
Amphimedon sp. was first established by Karuso and Scheuer [71] and demonstrated that these sponges
utilize carbon and nitrogen from the cyanide precursor. The role of the symbionts may be incorporated
in the biosynthesis of isonitriles as the production of diisocyanoadociane from Amphimedon sp. in high
rates is due to the cyanide production by the symbionts utilization in the sponges or, a metabolic
process which can proceed without symbionts.

An important class of metabolites that were reported from the genus Amphimedon are manzamine
alkaloids owing to their fascinating biological activities. Manzamine alkaloids were biogenetically
synthesized from the condensation of ircinals A or B from the icrinia sponge [48]. Keramaphidin B,
isolated from Amphimedon sp., might be the biogenetic precursor of the ircinals and may be produced
by hydrolysis of the N2/C3 bond of the 2, 3-imino form of keramaphidin B. In the continuous search for
biogenetic precursors of manzamine alkaloids keramaphidin C and keramamine C might be plausible
biogenetic precursors of manzamine C, especially considering that keramaphidin C is an important
intermediate in the biogenetic pathway of manzamine C generation.

Several Amphimedon metabolites were targets for chemical synthesis such as nakadomarin A,
owing to its interesting biological applications including antibacterial, cytotoxic and antimicrobial
properties [72]. Synthesis was carried out by using a thioamide based strategy [73]. Marine diterpenoid
diisocyanoadociane is another example that was synthesized by using intramolecular Michael reaction
due to its potent antimalarial activity [74].

8. Conclusions

Marine sponges contain treasures of undiscovered natural metabolites by having a wide
spectrum of pharmacological activities. Among the several Amphimedon species discovered, A. viridis,
A. compressa, A. complanata, and A. terpenensis are the richest producers of natural products with
various pharmaceutically relevant bioactivities. The research on this genus is interesting and has
made variable progression over the years. However, in recent years there is increasing interest in
studying sponge-associated microorganisms in order to explain this complex relationship and in order
to reveal the facts of whether metabolites originate mainly from the sponge or from their associated
microorganism(s). One hundred and four natural products from various marine sponges belonging
to the genus Amphimedon were reported in literature as well as in the Marinlit databases until 2018.
Undescribed species of the sponge represent the highest source of secondary metabolites and thus,
the discovery of new species of this sponge indicate that there are still possibilities in isolating new
secondary metabolites with predicted strong pharmacological activities. The genus Amphimedon and its
associated microorganism(s) showed their potential to produce great diversity of chemical leads from
the different chemical classes. Alkaloids showed the highest distribution among the different chemical
classes followed by fatty acids and then ceramides and cerebrosoides and finally, the lowest percent
were the macrocyclic lactones/lactams, as shown in Figure 26. Among the various types of alkaloids
pyridine type alkaloids and manzamine alkaloids were the highest followed by purine alkaloids and
finally 3-alkyl pyridine glycosides, as shown in Figure 27. These chemical leads exhibited a huge
diversity of bioactivities such as antibacterial, antifungal, and anticancer activities.
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Amphimedon and its associated microorganisms have a broad range of pharmacological activities
and, therefore, we must carry out further investigations for the genus and their associated
microorganisms as they play an important role in the discovery of new natural products.
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