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ABSTRACT: With the demand for carbon dioxide emission
reduction, the sustainable conversion of useless biomass into high-
value energy storage devices has received excellent scientific and
technological attention. The high synthesis cost and low specific
capacitance limited the supercapacitor application. Therefore,
biomass-derived sulfur-doping porous carbon (SPC) has been
synthesized from ulothrix using simple pyrolysis and chemical
activation methods. The unique activated carbon material exhibits a
high specific surface area (2490 m2 g−1), and the effect of the
activator addition ratio was systematically investigated. The
optimized SPC-2 displayed a high specific capacitance (324 F g−1

at 1 A g−1) and excellent cycling stability (90.6% retention after
50 000 cycles). Furthermore, a symmetric supercapacitor (SSC)
based on SPC-2 demonstrated a high energy density (12.9 Wh kg−1) at an 800 W kg−1 power density. This work offers a simple,
economical, and ecofriendly synthetic strategy of converting widespread, useless biomass waste into high-performance
supercapacitor applications.

1. INTRODUCTION
With the increasing demand for portable power storage
systems in automobiles, electronic goods, and capital
machinery, researchers have expended a great amount of effort
to develop electric energy storage devices with high energy
density and output power. As a novelty electric device filling
the gap between batteries and traditional capacitors, super-
capacitors have satisfactory energy densities and power
densities.1 The performance of supercapacitors depends mainly
on the electrode materials, and a variety of novel nano-
structured carbon materials have been widely adopted.2 They
can be classified into electrical double-layer capacitors
(EDLCs)3 according to the charge-storage mechanism, and
another type consists of pseudocapacitors. For these electrical
double-layer carbon materials, a large surface, suitable pore
structure, and high conductivity are essential to storing electric
charge.
To meet these requirements, researchers mainly consider the

improvement from the aspects of proper carbon sources,4 the
activation procedure,5 and heteroatom doping.6 Many kinds of
precursors were selected as carbon sources to boost the surface
properties, such as biomass-derived carbon,7−10 polymer-
derived carbon,11,12 carbide-derived carbon,13 and MOF-
templated carbon.14,15 Among these, biomass has been taken
into account by many researchers because of its large specific
area, abundant pore structure, ecofriendliness, and extensive
sources.16 For example, various biomass products such as
walnut shells,17,18 pomelo peels,19 bamboo bagasse,20 willow

catkins,21 cornstalks,22 bean curds,23 and garlic seeds24 were
made into porous carbon. Woody biomass mainly consists of
cellulose, hemicellulose, and lignin.25

Activation is a crucial process for pore formation in biomass
materials.26 A large amount of carbon exists in the heating
process and maintains its original morphology, which is the
best natural template.27,28 Meanwhile, gases escape, forming
channels. After chemical activation, biomass becomes porous
carbon with large specific surface areas and develops a pore
structure.
Besides, biomass carbon has the advantage of self-doping

because these natural products have many organic substances.
The tissues can convert to heteroatom doping in the carbon
matrix during pyrolysis, avoiding extra reagents. And these
heteroatoms, such as nitrogen,29 oxygen, sulfur,30 and
phosphorus,31 can efficiently enhance electrical conductivity
and wettability.
Ulothrix is widely grown in most parts of our planet, and its

excessive growth is often regarded as a sign of water body
eutrophication. The government pays the bill to clean it up
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every year, whereas it has potential resource utilization value.
As shown in Scheme 1, ulothrix is green and filiform, serving as
the natural template for carbon microbelts. The floristic stoma,
along with the abundant pores formed in the carbonization and
activation process, results in rich hierarchical apertures. In
addition, fibrin and amino acids in the plant tissue can be

considered to be sulfur and nitrogen species to obtain self-
doping carbon materials. These doped atoms can efficiently
enhance the conductivity of carbon skeletons, which is helpful
for electrochemical performance.
Herein, a sulfur-doped porous carbon with a large specific

surface area is obtained by pyrolysis and following chemical

Scheme 1. Illustration of the Synthesis Process of SPC

Figure 1. (a) XRD patterns and (b) Raman spectra of the SPC.

Figure 2. SEM images of (a, b) ulothrix, (c, d) pyrolytic carbon, (e, f) SPC-1, (g, h) SPC-2, and (i, j) SPC-3. (k, l) TEM images of SPC-2.
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activation. The unique characterizations of the SPC are the
following: (i) ulothrix with a proper microbelt shape and rich
organic matter is selected as the natural template; (ii) the
synthetic process is simple and easy without the use of extra
temples and a postdoping procedure; and (iii) the carbon
product has a large surface area and uniform sulfur doping.
Such a low-cost, ecofriendly, high-performance carbon
converted from useless plant tissue to a high-value product is
economically beneficial and highly feasible.

2. RESULTS AND DISCUSSION

2.1. Characterization of Materials. An illustration of the
synthesis of the SPC is shown in Scheme. 1. By cleanly heating
ulothrix in an inert atmosphere at 500 °C for 1 h, the pyrolytic
carbon powder was prepared. Then the pyrolytic carbon mixed
with KOH was heated to 800 °C for 2 h. Finally, the SPC was
acquired by using excess hydrochloric acid, washing the
products until the pH was below 7, and drying in vacuum at 80
°C for 12 h. The XRD patterns of the SPC samples are shown
in Figure 1a, and all three curves show two typical diffraction
peaks at 24 and 43°, corresponding to the (002) and (100)
planes of the graphite phase (PDF no. 89-8487). These weak,
broad peaks indicate that after pyrolysis and activation the SPC
is considered to be amorphous carbon with a low degree of
graphitization.32 The Raman spectra (shown in Figure 1b) of
SPC samples exhibit two base peaks at 1340 and 1595 cm−1,
which correspond to the disordered graphite carbon phase (D
band) and the graphitic carbon phase (G band),33 respectively.
The intensity ratios of the D/G band for SPC-1, SPC-2, and
SPC-3 are 0.929, 0.963, and 0.974, indicating the imperfect
structure of the graphitic carbon.34

The morphology of the samples was explored by using the
SEM (Figure 2). It is clear that the clean ulothrix (Figure 2a,b)
displays a belt shape that is about 40−80 μm wide and a few
micrometers thick. After pyrolysis (Figure 2c,d), the particles
displayed many wrinkles on a smooth surface as the plant
tissues lost water. By comparison, SEM images of the activated
SPC samples are shown in Figure 2e−j. All SPC samples
indicate many small irregular particles with hierarchical pore
structure, and various sizes of holes and channels can be found.
It is clear that mesopores of a few nanometer sizes can be
found in the high-resolution image of SPC-1 (Figure 2f),
resulting from the high-temperature activation process. For
SPC-2 and SPC-3, there were more pores on the surface. TEM
images further display the mesoporous structure of the carbon
sheets (Figure 2k,l). The specific surface areas, pore size
distributions, and pore volumes of the SPC samples are
calculated on the basis of the N2 adsorption test results (Table
1). The specific surface areas of SPC-1−SPC-3 are 1944, 2490,
and 2018 m2 g−1, and the pore size distributions of SPC-1−
SPC-3 are located at 4.32, 5.33, and 6.10 nm, respectively,
revealing the mesoporous structure in the carbon sheets.

Nitrogen adsorption/desorption isotherms and pore size
distribution diagrams are shown in Figure S1.
To verify the elemental makeup of the samples, XPS

measurements were conducted, and the spectra of SPC-2 are
shown in Figure 3. The C, O, and S element contents (atom

%) are 79.74, 16.46, and 2.2%, respectively. The full spectrum
shows obvious O 1s, C 1s, and S 2p peaks. The C 1s narrow
peak can be indexed to the fitting peaks at 288.64, 285.96, and
284.67 eV, and the S 1s peak can be fitted to three peaks: S1 at
163.8, S2 at 164.9, and S3 at 168.7 eV. The S1 and S2 peaks
correspond to S 2p3/2 and S 2p1/2 of the C−Sx−C covalent
bond, and the S3 peak can be indexed to the oxidized sulfur
C−SOx−C bond following previous reports.30,35,36 For the O
1s spectrum, the O1 peak at 531.87 eV can be attributed to the
carbon−oxygen bond (CO). The O2 peak at 533.23 eV
corresponds to the binding energies of oxygenated C−S
functionalities (C−S−O).25 These results demonstrate that
sulfur atoms are successfully incorporated into the carbon
network and play an essential role in enhancing the
electrochemical performance of SPC.

2.2. Electrochemical Performance of the SPC Electro-
des. The electrochemical performance of SPC electrodes was
first evaluated by CV measurement. As shown in Figure 4a, all
of the CV curves at a scan rate of 100 mV s−1 have a
rectangular shape, indicating typical electric double-layer
capacitor behavior. The CV curves at different scan rates of
SPC-1 and SPC-3 are shown in Figure S2. Among them, SPC-
2 has the highest oxidation peak and the largest enclosed area.
The GCD measurement resulting in a current density of 1 A
g−1 are performed in Figure 4b, and all of the GCD curves
show a symmetric triangle shape. From the discharge time, the
specific capacitance can be acquired. At 1 A g−1, the SPC-1−
SPC-3 electrodes have specific capacitances of 97.02, 325.51,
and 215.75 F g−1, respectively. The GCD curves at different
current densities of SPC-1 and SPC-3 are shown in Figure S3.
On the basis of the GCD measurement result, the
corresponding specific capacitances of the SPC electrodes at
different current densities are shown in Figure 4c. At 0.5 A g−1,
the SPC-1−SPC-3 electrodes display the highest specific

Table 1. Specific Surface Areas, Pore Size Distributions, and
Pore Volumes of SPC

sample
surface area
(m2 g−1)

pore volume
(cc g−1)

pore diameter
(nm)

SPC-1 1944 0.615 4.32
SPC-2 2018 0.532 5.33
SPC-3 2490 0.835 6.10

Figure 3. (a) XPS survey spectrum and high-resolution scans of (b) C
1s, (c) S 1s, and (d) O 1s of SPC-2.
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capacitances of 116.31, 390.38, and 327.50 F g−1. Even at 20 A
g−1, the specific capacitances were 40.71, 212.46, and 110.29 F
g−1. EIS measurements were performed to estimate the
impedance of the SPC electrode (Figure 4d). All of the EIS
curves consisted of a steep slope in the low-frequency zone and
a depressed semicircle in the high-frequency zone. The charge-
transfer resistance (Rct) was fitted by Zview software based on
the equivalent circuit inserted in Figure 4d.37 The charge-
transfer resistance (Rct) values of the SPC electrode were 0.21,
0.22, and 0.84 Ω. The intrinsic resistance (Rs) values of the
SPC electrode were 0.91, 0.81, and 1.05 Ω. It is clear that SPC-
2 has the lowest inherent resistance.
Cycling performance tests were conducted to evaluate the

lifespan of the SPC electrodes. As shown in Figure 4e, in
10 000 charge/discharge cycles, the SPC electrodes showed
very little decay in electrochemical capacity. After the long
cycles, the SPC-1−SPC-3 electrode still retain 88.2, 210.2, and
129.6 F g−1, and the corresponding capacity retentions are
92.0, 91.0, and 87.8%.
Because the SPC-2 electrode exhibited the highest capacity

of the studied electrode, it was further estimated at different
scan rates (Figure 5a). The oxidation and reduction peak
current increased with increasing scan rate. Meanwhile, the
curves retain a rectangular shape, suggesting electric double-
layer behavior. GCD tests were also performed at different
current densities to evaluate the rate performance of SPC-2. As

shown in Figure 5b, at current densities of 1, 2, 4, 8, 10, and 20
A g−1, it delivers 325.51, 247.57, 221.04, 213.89, 212.50, and
212.46 F g−1, respectively. The SPC-2 electrode has 73.9%

Figure 4. Electrochemical properties of SPC electrodes: (a) CV curves, (b) GCD curves, (c) specific capacitance at different current densities, (d)
Nyquist plots (the inset shows a close-up part of the high-frequency region and the stimulated diagram of the equivalent circuit), and (e) cycling
performance.

Figure 5. Electrochemical performance of the SPC-2 electrode: (a)
CV curves at different scan rates, (b) GCD curves at different current
densities, and (c) 50 000 cycling curve at 5 A g−1.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06253
ACS Omega 2022, 7, 10137−10143

10140

https://pubs.acs.org/doi/10.1021/acsomega.1c06253?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06253?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06253?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06253?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06253?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06253?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06253?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06253?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06253?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


retention from 2 to 20 A g−1, exhibiting a satisfying rate
performance. A cycling test was performed to estimate the
lifetime of the SPC-2 electrode, as shown in Figure 5c. A
specific capacitance of 211.5 F g−1 was obtained after 50 000
long cycles, exhibiting an excellent electrochemical stability of
90.6%.
2.3. Electrochemical Performance of the SSC Device.

A symmetric supercapacitor device was fabricated by using
SPC-2 as both positive and negative electrodes. The mass ratio
of the two electrodes is 1:1. CV scans were performed for the
SSC device at 0−1.1 V to 0−1.8 V at 200 mV s−1 to determine
the upper limit of the voltage range. As shown in Figure 6a,

when the voltage surpasses 1.4 V, the current oxidation
increases sharply, implying oxygen evolution. For the 1.8 V
curve, a weak reduction current peak appeared, indicating a
parasitic reaction between the electrolyte and electrode
material.38 As the energy density increases with the working
voltage, an operating voltage window of 0−1.4 V was chosen.
CV curves at different scan rates are shown in Figure 6b. It can
be seen that all of the curves display good capacitive behavior
within this range. The GCD curves at different current
densities are shown in Figure 6c, and the corresponding
specific capacities are plotted in Figure 6d. The SSC device
delivered particular capacitances of 138, 116, 91, 63, and 52 F
g−1 at current densities of 2, 4, 8, 16, and 20 A g−1. In addition,
the EIS curves of the ASC are also given (Figure S4). The
charge-transfer resistance and intrinsic resistance of the ASC
are 2.48 and 2.53 Ω, respectively.
The SSC’s energy and power densities are shown in the

Ragone plot (Figure 7). The SSC device delivers the highest
energy density of 12.9 Wh kg−1 at a power density of 800 W
kg−1 while retaining an energy density of 4.6 Wh kg−1 at a
power density of 8000 W kg−1. These values are compared to
the revealed biomass-derived carbon-based aqueous SSCs
properties,39−45 implying the promising prospect of the SSCs.

3. CONCLUSION
We have employed facile pyrolysis and then an activation
process to synthesize sulfur-doped porous carbon. The SPC
materials with a high specific surface area (up to 2490 m2 g−1)
have a high sulfur doping content. The optimized SPC-2
material displays the largest specific capacity (324 F g−1 at 1 A
g−1) and excellent long cycling performance (90.6% retention
after 50 000 cycles). Furthermore, a symmetric supercapacitor
based on SPC-2 demonstrated the highest energy density (12.9
Wh kg−1) and the highest power density of 8000 W kg−1,
showing promising application prospects.

4. EXPERIMENTAL SECTION
4.1. Synthesis of the Mesoporous Carbon. Ulothrix was

collected from the Anhui University of Science and
Technology campus. First, the clean, dry ulothrix was
pyrolyzed in an N2 atmosphere at 500 °C for 1 h. After that,
the samples were mixed and ground with KOH powder in a
mortar with mass ratios of 1:1, 1:2, and 1:3. Then the mixtures
were activated in the N2 atmosphere at 800 °C for 1 h at a 3
°C min−1 heating rate. After cooling to room temperature, the
samples were washed several times with excess 2 M HCl
solution and deionized water. Finally, the products were dried
overnight in a vacuum at 120 °C. The as-prepared activated
porous carbons were named SPC-1, SPC-2, and SPC-3.

4.2. Characterization of Materials. The SPC samples
were characterized by using a powder X-ray diffractometer
(Smartlab SE, Cu Kα radiation), SEM (Hitachi, Flex-
SEM1000), and Raman spectroscopy (Renishaw, inVia). The
specific surface areas of the samples were characterized by
using a surface area and porosimetry analyzer (Gold APP
Instruments Co. Ltd., V-Sorb 2800P). The SPC samples were
also studied by using an X-ray photoelectron spectrometer
(ThermoFisher Scientific, ESCALAB 250Xi).

4.3. Electrochemical Measurements. The working
electrode was prepared by milling the SPC sample with
poly(vinylidene fluoride) (binder, 10 wt %) in N-methyl-2-
pyrrolidinone to form a homogeneous slurry. Then, the slurry
was spread on a piece of Ni foam (1 × 1 cm2) and dried under
vacuum at 80 °C overnight. After that, a Hg/HgO electrode
and a Pt foil were used as the hreference electrode and counter
electrode in a 2 M KOH electrolyte.

Figure 6. Electrochemical performance of the symmetrical super-
capacitor (a) CV curves at different operating potentials, (b) CV
curves at different scan rates, (c) GCD curves at different current
densities, and (d) specific capacitance at different current densities.

Figure 7. Ragone plot (energy density vs power density) of the
symmetrical supercapacitor.
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Cyclic voltammetry (CV), chronopotentiometry (CP), and
electrochemical impedance spectroscopy (EIS) tests were
conducted on a CHI660E electrochemical workstation to
evaluate the electrochemical performance of the electrde. The
cycling stability performance tests were conducted on a
CT2001A LAND battery test system. The qualities of active
materials were acquired from the mass change of the Ni foam,
and the average loading mass was about 2 mg cm−2.
A symmetric supercapacitor was fabricated by using the SPC

as both positive and negative electrodes. A piece of cellulose
paper was used as a separator, and a 2 M KOH solution was
used as the electrolyte. The specific capacitance of the
symmetric supercapacitor was calculated on the basis of the
total mass of the active materials, and the calculation formulas
of the specific capacitance, energy density, and power density
are shown in the Supporting Information.
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