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Abstract: Recently, titanium dioxide (TiO2) nanomaterials have gained increased attention because of
their cost-effective, safe, stable, non-toxic, non-carcinogenic, photocatalytic, bactericidal, biomedical,
industrial and waste-water treatment applications. The aim of the present work is the synthesis of
electrospun TiO2 nanofibers (NFs) in the presence of different amounts of air–argon mixtures using
sol-gel and electrospinning approaches. The physicochemical properties of the synthesized NFs
were examined by scanning and transmission electron microscopies (SEM and TEM) coupled with
energy-dispersive X-ray spectroscopy (EDX), ultraviolet-visible spectroscopy and thermogravimetric
analyzer (TGA). The antibacterial and antibiofilm activity of synthesized NFs against Gram-negative
Pseudomonas aeruginosa and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) was
investigated by determining their minimum bacteriostatic and bactericidal values. The topological
and morphological alteration caused by TiO2 NFs in bacterial cells was further analyzed by SEM.
TiO2 NFs that were calcined in a 25% air-75% argon mixture showed maximum antibacterial
and antibiofilm activities. The minimum inhibitory concentration (MIC)/minimum bactericidal
concentration (MBC) value of TiO2 NFs against P. aeruginosa was 3 and 6 mg/mL and that for MRSA
was 6 and 12 mg/mL, respectively. The MIC/MBC and SEM results show that TiO2 NFs were more
active against Gram-negative P. aeruginosa cells than Gram-positive S. aureus. The inhibition of biofilm
formation by TiO2 NFs was investigated quantitatively by tissue culture plate method using crystal
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violet assay and it was found that TiO2 NFs inhibited biofilm formation by MRSA and P. aeruginosa in
a dose-dependent manner. TiO2 NFs calcined in a 25% air-75% argon mixture exhibited maximum
biofilm formation inhibition of 75.2% for MRSA and 72.3% for P. aeruginosa at 2 mg/mL, respectively.
The antibacterial and antibiofilm results suggest that TiO2 NFs can be used to coat various inanimate
objects, in food packaging and in waste-water treatment and purification to prevent bacterial growth
and biofilm formation.

Keywords: TiO2 nanofibers; electrospinning; biofilm prevention and control; multidrug-resistant
bacteria; biomedical application

1. Introduction

Titanium dioxide (TiO2) is among the investigated photocatalytic nanomaterials and is used
extensively in diverse applications and for diverse purposes [1]. TiO2 nanomaterials are widely
used in waste-water treatment and purification, air-pollutant decomposition, implantable devices,
air-conditioning filters, hydrophilic coatings, self-cleaning and self-disinfecting devices, pesticide
degradation (e.g., herbicides, insecticides and fungicides) and in the production of hydrogen fuel [2,3].
TiO2 is usually non-toxic, highly durable with a high refractive index, high absorption of light and a
lower-cost production with antibacterial activity [4,5]. Because of its strong stability, TiO2 materials
can be applied easily on inanimate items, e.g., metal, glass and biomedical implants [5]. Recently,
TiO2 nanoparticles (NPs) have attracted increased interest in the scientific and industrial community
because of their extensive applications in biological and pharmaceutical areas, purification of
environmental sources, electronic system, solar energy cells, photocatalysts, photo-electrodes and gas
sensors. TiO2 NPs are proven to be employed in food technology, drugs, cosmetics, paint pigment,
ointments and toothpaste [6,7]. Because of their cost-effective, safe, stable, non-toxic, non-carcinogenic,
photo-induced super-hydrophobicity and antifogging properties, TiO2 NPs have been used to kill
bacteria, remove toxic and harmful organic elements from water and air and for self-sterilize glass
surfaces [8–11].

However, it is difficult to separate TiO2 NPs after a photochemical reaction, which limits their
practical applications [12]. TiO2 NPs aggregate easily in solution, which reduces their photocatalytic
efficacy because of the decreased surface area. These limitations can be overcome by preparing TiO2

nanofibers (NFs) using simple, rapid and cost-effective electrospinning (ES) methods [13–18]. TiO2 NFs
have gained increased attention because of their mesoporous structure [19], stability in solution,
little or no aggregation, high surface to volume ratio that enhances photocatalytic reactions and
their ease in separation and collection from solution after photochemical reactions [20,21]. However,
the photocatalytic efficacy of TiO2 NFs is comparatively low and is effective only under ultraviolet
(UV) light because of their relatively large band-gap energy and low-ordered crystalline structure [22].
An exceptional feature of TiO2 nanoparticles (NPs) is their photocatalytic activity that enhances the
bacterial killing when exposed to UV light [7,23]. TiO2 NPs tend to exist in three principal forms, namely
brookite, rutile and anatase, and it has been reported that the anatase form has a high photocatalytic
and antibacterial activity [23–26]. A major biomedical application of TiO2 NPs is to prevent biofilm
formation on medical devices that is related to infections and sepsis [3,27,28]. Several researchers have
focused on the antibacterial and antibiofilm activities of TiO2 NPs under UV light against standard
bacterial strains, e.g., ATCC, MTCC and NCIM. However, limited work has been published on the
antibacterial and antibiofilm activities of TiO2 NFs without application of UV light against drug resistant
isolates. The objective of present investigation is to explore the antibacterial and antibiofilm efficacies
of TiO2 NFs in dark against two major human pathogenic drug resistant bacteria i.e., Gram-positive
methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Pseudomonas aeruginosa by using
different methods.
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2. Experimental Methodology

2.1. Electrospinning and Heating Protocol

Both the sol-gel and electrospinning approaches were used to synthesize electrospun TiO2 NFs.
Briefly, Titanium isopropoxide (IV), acetic acid and ethanol were mixed and stirred with respect to
volume ratio of 3:1:3. After that, 12% by weight of polyvinylpyrrolidone (PVP) was dissolved in the
obtained TiO2 solution. This mixed TiO2/PVP sol-gel was then placed within a plastic syringe for
electrospinning experiment. Additional details are provided in a preliminary study [15]. Thermal
gravimetric analysis (TGA) and differential scanning calorimetry (DSC) for the non-isothermal heating
of electrospun TiO2 NFs were performed on a Mettler Teledo thermal gravimetric analyzer TGA/DSC.
The samples were heated from ambient temperature to 900 ◦C at a rate of 10 ◦C/min with an argon
protective gas of 20 mL/min in various mixtures of air and argon. The thermal experiments were
carried out by utilizing alumina crucibles that were charged with 25 mg of sample and in mixtures of
50% air-50% argon, 25% air-75% argon and 100% argon. It is worth noting that the argon shielding
gas is included in the relative percentage of air to argon gas. For safety reasons, samples that were
contacted with 100% air were heated in an oven under the same conditions [29].

2.2. Characterization of Electrospun TiO2 NFs

The morphological and structural properties of as-prepared NFs were characterized by SEM
(FEI Inspect S50) and TEM (FEI Morgagni 268). The elemental composition was determined by
energy-dispersive spectroscopy (EDX). A strong correlation can be established from the initial
microstructure images. The TiO2 grains were structured as microspheres and a complete description of
the microstructure is provided. The microstructure relates to monitoring by three-dimensional imaging
of the evolution of internal porosity as a function of annealing temperature. A Jasco V-670 UV–visible
diffuse reflectance spectrophotometer (DRS) under a wavelength ranging between 200 and 750 nm was
used to estimate the band gap energy (Eg) of various TiO2 NFs.

The values of band gap energy (Eg) were calculated from the absorption spectra versus wavelength
using the following expression:

Eg =
hC
λ0

(1)

In this expression, h is Planck’s constant (6.626 × 10−34 J.s) and C is the speed of light (3 × 108 m/s).
λ0 (expressed in nm) is the cut off wavelength obtained from the absorption spectra [30]. Accordingly,
λ0 denotes the absorption edge wavelength, obtained from the offset wavelength derived and
extrapolated from the low energy absorption band.

2.3. Evaluation of Antibacterial Activity of Electrospun TiO2 NFs

2.3.1. Bacterial Culture

The laboratory strain of Gram-negative Pseudomonas aeruginosa PAO1 and Gram-positive
methicillin resistant Staphylococcus aureus (MRSA) ATCC 33591 used in this study was obtained
from Molecular Microbiology Laboratory, Institute for Research and Medical Consultations, Imam
Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. The bacterial strains preserved in
glycerol cultures (−80 ◦C) were cultivated on Tryptic soy broth (TSB) at 37 ◦C in a shaker incubator
before being used for microbial studies.

2.3.2. Investigation of Minimum Inhibitory and Minimum Bactericidal Concentration (MIC/MBC)
Values of Electrospun TiO2 NFs

The MIC values of TiO2 NFs against P. aeruginosa and MRSA was estimated by serial two-fold
dilutions of TiO2 NFs from 32 to 1 mg/mL as described previously [31,32]. The determination of MBC
values was also investigated as method described in previous studies [32,33].
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2.4. Effect of TiO2 NFs on Biofilm Formation

The antibiofilm potential of TiO2 NFs against P. aeruginosa and MRSA biofilm was examined
quantitatively in a sterilized 96-well polystyrene (flat bottom) microtiter tissue culture plate using
crystal violet assay as described in our previous study [31,33].

2.5. Effect of TiO2 NFs on the Morphology of P. aeruginosa and MRSA: SEM Analysis

Further, the effects of TiO2 NFs on the morphological features of P. aeruginosa and S. aureus cells
were analyzed by SEM. In Brief, ~106 CFU/mL of P. aeruginosa and S. aureus cells treated with 1 mg/mL
of TiO2 NFs for 18 h were incubated at 37 ◦C [33,34]. After incubation, the treated and untreated
samples were centrifuged at 10,000 rpm for 15 min. The obtained pellets were washed with PBS (1×)
three times and fixed with primary fixative (i.e., 2.5% glutaraldehyde) for 6 h at 4 ◦C and then further
fixed with secondary fixative (i.e., 1% osmium tetroxide) for 1 h. After fixation, the samples were
dehydrated by a series of ethanol [34,35]. The cells were then fixed on the aluminum stubs, dried in a
desecrator and coated with gold. Finally, the treated and untreated samples were examined by SEM.

3. Results and Discussion

3.1. Effects of the Calcining Atmosphere on TiO2 Colour

Figure 1 presents a gradual color change from white to dark grey after heat treatment in 100% air
and in different mediums of air–argon compositions up to 100% argon medium. This change is likely
because of oxygen vacancy defects. The change and the intensification of the color are mainly a result
of defects associated with oxygen vacancies that rise from an increase in argon content [36].
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Figure 1. Color changes in electrospun titanium oxide (TiO2) nanofibers (NFs) in argon-air mixtures.

3.2. Microstructure Analysis of the Prepared NFs

Figures 2 and 3 show the typical SEM and TEM micrographs of the as-spun TiO2 and calcined
NFs. The electrospinning process could produce good quality TiO2 NFs, possibly without nodes and
defects. The diameter of the as-spun fibers varied between 80 and 600 nm, whereas the estimated
average thickness was ~400 nm (Figure 2a). Upon annealing in different mediums of air/argon
(100%-0%, 50%-50%, 25%-75%, and 0%-100%), the fibers shrank, and their morphology changed
slightly from smooth to rough. This figure also shows the presence of a heterogeneous matrix made up
of agglomerated grains for the initial microstructure and leads to faster granular growth. The fibers
size was between 50 and 300 nm (Figure 2b–e). Several thin-fibers of about 50 nm were perceived in
specimens annealed under 25-75% air-argon. The quality and shape of fiber mats were preserved after
calcination as clarified by the TEM images (Figure 3b–e) unlike the electrospun fibers that are often
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composed of oxide nanoparticles (Figure 3a) [37]. The as-spun fibers showed organic species, whereas
the annealed fibers exhibited a solid morphology with high-quality individual particles in the range of
100 nm. The annealing of TiO2 NFs at 900 ◦C in 50%-50% air-argon led to pure TiO2 fibers formation,
which was proven by EDX and TGA characterization techniques. In Figure 4, the EDX spectrum
illustrates high-intensity O and Ti peaks and a small Pt peak from the platinum coating on the TiO2

NFs heated in 50-50% air-argon, which is mainly similar to those observed in specimens annealed in
100% air, 25% air-75% argon, and 100% argon. Figure 5 shows the TGA result for samples heated under
50-50% air-argon medium. The PVP polymer and organic material are completely removed from the
electrospun TiO2 NFs at ~450 ◦C, and ~100 ◦C, respectively.
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Figure 2. Scanning electron microscopy (SEM) of TiO2 NFs calcined in different air and argon
mixture. (a) As-spun TiO2, (b) 100% Air, (c) 50% Air and 50% Argon, (d) 25% Air and 75% Argon and
(e) 100% Argon.
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Figure 5. Thermogravimetric analysis (TGA) performed for electrospun TiO2 NFs prepared under 50%
air-50% argon mixture.

3.3. Wide-Band Gap Analysis of Calcined Electrospun TiO2 NFs

Figure 6 shows the UV-vis DRS spectra of as-electrospun TiO2 NFs calcinated in air-argon media at
900 ◦C and cooling to ambient temperature. Table 1 shows the values of band-gaps at room temperature
for various TiO2 NFs. The band-gap value reduced from 3.33 eV for as-spun and non-calcinated
samples to about 3.09 eV for the ones calcinated in 100% air. Under various air-argon environments,
the value of Eg decreased from about 3.09 to 2.18 eV with an increase in argon content. A previous
study on similar specimens revealed that the growth of vacancies was minimal and the reduction
of Eg value was ascribed to the increase in crystallinity [38]. The measured difference agrees with
that weighted according to the concentration of pure anatase and rutile phases [38–40]. Alterations
in levels and phase mixing and gradual development of oxygen vacancies are two factors that can
reduce the band-gap energy with argon introduction. The measured energy gap was 2.18 eV for
sample heated in 100% argon and for the phase composition for which the difference according
to the concentration would be 3.05 eV. The difference of 0.87 eV is assigned to the development
of oxygen vacancies and allows a greater density of charge carriers. The development of oxygen
vacancies leads to the creation of Ti3+ centers or unpaired electrons that generate vacant states under
the conduction band [41,42]. The development of oxygen vacancies for different argon concentrations
has been previously discussed [38]. When the specimen is annealed in argon, oxygen disappears
and the non-stoichiometric anatase (TiO2−x) forms [43]. The formation of oxygen vacancy defects in
titanium oxide is induced from the occurrence of new localized states of oxygen vacancies between the
conduction and valence bands. The excitation of electrons from the valence band to the vacant oxygen
states can be done in visible light. With rising argon amount, the effective Eg moves thoroughly to the
red region, the specimen is being active under visible light and thus the Eg is reduced. So, the mutual
effects of the formation of oxygen vacancies and crystallinity treatment have prolonged the excitation of
light of electrospun TiO2 NFs from ultraviolet to visible light range without the need of chemical doping.

Table 1. Band gap energies for as-electrospun TiO2 nanofibers (non-calcinated), and TiO2 NFs obtained
after calcination at 900 ◦C in various air-argon media.

Calcination Conditions Eg (eV)

As-electrospun 3.33
100% Air 3.09

50% Air and 50% Argon 2.94
25% Air and75% Argon 2.91

100% Argon 2.18
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Figure 6. UV-vis diffuse reflectance spectrophotometer (DRS) spectra of electrospun TiO2 NFs obtained
before calcination and those obtained after calcination in various air-argon media.

3.4. Antibacterial and Antibiofilm Activity of TiO2 NFs

3.4.1. MIC and MBC

The microbiocidal activities of TiO2 photocatalysis were reported for the first time by Matsunaga
and co-workers in 1985 [44]. They investigated the killing of bacteria and yeast cells in water by
employing TiO2-Pt photocatalysts in near-ultraviolet radiation. They reported that the inhibition of
respiratory activity was the mechanism for cell death.

In this research work, the antibacterial property (MIC/MBC) of TiO2 NFs calcined with different
ratios of air–argon mixtures (i.e., 100% air, 50% air-50% argon, 25% air-75% argon, and 100% argon)
has been investigated against P. aeruginosa and MRSA (Supplementary Figure S1). The MIC/MBC
values of TiO2 NFs heated with different ratios of air-argon mixtures against P. aeruginosa and MRSA
are presented in Table 2. TiO2 NFs heated in the presence of 25% air-75% argon showed a maximum
antibacterial activity and MIC/MBC values against P. aeruginosa were 3 and 6 mg/mL and for MRSA it
was 6 and 12 mg/mL, respectively (Table 2). Based on the MIC and MBC results, it was observed that
Gram-negative P. aeruginosa was more susceptible to TiO2 NFs than Gram-positive MRSA. These results
agree with results from previous studies [45,46], and may occur owing to differences in their cell wall
structures and to bacterial strain growth rate [45–47]. Pigeot-Rémy and co-workers [48] investigated
the effects of TiO2 particles against E. coli K-12 in the dark and reported that the attachment of NPs to
bacterial surfaces causes membrane damage and perturbation, which may increase the permeability of
the outer cell membrane and the resultant damage to the envelope of bacterial cells leads to bacterial
cells death.

Table 2. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
(mg/mL) values of tested electrospun TiO2 nanofibers against Methicillin resistant S. aureus and P.
aeruginosa.

Electrospun TiO2
Nanofibers Code

Calcination Conditions
Methicillin Resistant S. aureus P. aeruginosa

MIC MBC MIC MBC

(a) 100% Air 7 14 7 14
(b) 50% Air and 50% Argon 7 14 7 14
(c) 25% Air and 75% Argon 6 12 3 6
(d) 100% Argon >16 >32 >16 >32
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3.4.2. Effects of Electrospun TiO2 NFs on the Morphology of Bacterial Cells

Morphological alterations in Gram-negative P. aeruginosa (Figure 7) and Gram-positive MRSA
(Figure 8) after exposure to TiO2 NFs were further examined by SEM. The untreated P. aeruginosa
had a normal, rod-shaped structure and regular, smooth and intact cell surface (Figure 7). However,
the morphology of P. aeruginosa cells was altered considerably, and cells were damaged to different
extents after treatment with TiO2 NFs. After 18 h of treatment, the cell envelope and cell wall were
rough, irregular, abnormal in form and main damage was categorized by the creation of “pits” and
depressions that probably lead to a loss of bacterial cell membrane integrity (Figure 7). Similarly,
the untreated Gram-positive MRSA was normal with smooth and regular cell surfaces (Figure 8).
However, MRSA cells treated with TiO2 NFs exhibited noticeable alterations and damage and the
clusters of NFs were linked and anchored on the surface of bacterial cells (Figure 8). Irregularities,
shallows and depressions on the cell envelopes and cell walls of certain MRSA cells suggest that
bacterial damage occurred (Figure 8). SEM analysis showed that TiO2 NFs were more effective against
P. aeruginosa bacterial cells in comparison with MRSA and were severely injured compared with
Gram-positive MRSA. The obtained results may be due to morphological dissimilarities in the cell
walls of bacteria. Gram-negative bacterial cells display thin layers of peptidoglycan that facilitate the
mobility of metal-ion NPs within cells and facilitate the interaction among NPs and walls of bacterial
cells. Gram-negative bacteria exhibit a negative charge due to their high content of lipopolysaccharides.
This negative charge attracts and interacts with positive metal ions, which may lead to the NP
penetration, intracellular damages and protein and DNA destruction [46]. It was suggested that the
interaction of TiO2 NPs with bacterial cells in the dark caused bacterial membrane integrity destruction,
especially of lipopolysaccharides [48]. TiO2 NPs form pores in bacterial cell walls and membranes,
which increases the permeability and leads to cell death [10]. However, other published work has
shown that the contact among metal oxides and bacterial cells provokes oxidation and formation
of reactive oxygen groups including O2

•–, •OH, and H2O2. These free radicals attack bacteria cell
walls and alter the membrane integrity and permeability, which leads to bacterial cell death [48–51].
It has been reported that the destruction of cell envelope by incorporation of TiO2 NPs inside the cells
damages bacterial DNA and RNA, which could provoke cell death [48]. The antimicrobial activity of
TiO2 in the absence of photoactivation has been also reported. Nakano and co-worker [51] stated that
TiO2 deactivates bacterial DNA and enzymes via coordination of electron-donor groups, like hydroxyls,
indoles, carbohydrates, amides, and thiols in the absence of light. Pit formation in bacterial cell
walls and envelopes that enhanced the permeability lead to bacterial cell death [51,52]. It has been
reported that there is proportional relationship between the light and the antimicrobial activity of
TiO2. Senarathna et al [53] and Lee et al [54] reported that the presence of sunlight enhanced the
antimicrobial activity of TiO2 against S. aureus might be due to generation of free radicals [53,54].
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(B) 100% Air, (C) 50% Air and 50% Argon, (D) 25% Air and 75% Argon; and (E) 100% Argon.

3.4.3. Inhibition of Biofilm Formation by TiO2 NFs

The antibiofilm potential of TiO2 NFs heated under different air-argon environments was evaluated
at various amounts of 0.25, 0.5, 1.0 and 2.0 mg/mL against MRSA and P. aeruginosa biofilms using crystal
violet microtiter assays in a 96-well flat-bottom polystyrene plate at OD595 nm. Plots in Figure 9A,B
show that TiO2 NFs inhibit the biofilms formation by MRSA and P. aeruginosa in a dose-dependent
manner. It was reported that a rise in TiO2 concentration provoked a reduction in the cultivability of
bacteria [48]. As shown in Figure 9A,B, TiO2 NFs heated in a 25% air-75% argon mixture exhibited the
highest biofilm inhibition of about 75.2% for MRSA and 72.3% for P. aeruginosa, respectively at 2 mg/mL
of TiO2 NFs. These results agree with those reported in previous studies [55,56]. In a previous study,
epoxy/Ag-TiO2 nanocomposites were found to inhibit biofilm creation of S. aureus ATCC 6538 and
E. coli K-12 by 67% and 77%, respectively [56].
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Figure 8. Effect of electrospun TiO2 NFs on the morphological aspect of S. aureus as examined by
scanning electron microscopy: (A) control without any treatment and treated with TiO2 NFs calcined
in (B) 100% Air; (C) 50% Air and 50% Argon; (D) 25% Air and 75% Argon, and (E) 100% Argon.
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Figure 9. Effect of TiO2 NFs calcined in various air–argon environments (a) 100% Air, (b) 50% Air
and 50% Argon, (c) 25% Air and 75% Argon, and (d) 100% Argon on biofilm formation abilities of
(A) P. aeruginosa and (B) methicillin-resistant Staphylococcus aureus (MRSA).

4. Conclusions

This study focuses on the heat treatment of TiO2 NFs to develop photoactive titanium
photocatalysis in the visible spectrum and to evaluate their antibacterial and antibiofilm potential
against Gram-negative bacteria P. aeruginosa and Gram-positive MRSA. The Eg value was 3.09 eV
for specimens heated in 100% air and 2.18 eV for the ones heated in 100% argon. The value of Eg

decreased systematically with rising argon amount in the various air-argon mixtures. The increase in
the amount of argon brings the state under the TiO2 conduction band. TiO2 NFs calcined in a 25%
air-75% argon environment showed maximum antibacterial and antibiofilm activities. The MIC/MBC
and SEM results show that TiO2 NFs were more operative against Gram-negative P. aeruginosa than
Gram-positive S. aureus. The inhibition of biofilm formation by TiO2 NFs shows that TiO2 NFs inhibit
the biofilms formation by MRSA and P. aeruginosa in a dose-dependent manner. From the obtained data
on antibacterial antibiofilm analysis, it has been concluded and suggested that TiO2 NFs can be used
in hydrophilic coatings, coating of various inanimate object surfaces, such as metals, glass, medical
devices and equipment to prevent biofilm formation on medical devices or medical device-related
infections and sepsis, and also can be applied in food packaging, wastewater treatment and purification,
self-cleaning and self-disinfecting, killing of bacteria and the removal of toxic and damaging organic
compounds from water and air.
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