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Institució Catalana de Recerca i Estudis Avançats (ICREA), Centre for Genomic Regulation (CRG) and

Universitat Pompeu Fabra (UPF), 88 Dr Aiguader, Barcelona 08003, Spain

A subject of extensive study in evolutionary theory has been the issue of how neutral, redundant copies

can be maintained in the genome for long periods of time. Concurrently, examples of adaptive gene dupli-

cations to various environmental conditions in different species have been described. At this point, it is

too early to tell whether or not a substantial fraction of gene copies have initially achieved fixation by posi-

tive selection for increased dosage. Nevertheless, enough examples have accumulated in the literature that

such a possibility should be considered. Here, I review the recent examples of adaptive gene duplications

and make an attempt to draw generalizations on what types of genes may be particularly prone to be

selected for under certain environmental conditions. The identification of copy-number variation in eco-

logical field studies of species adapting to stressful or novel environmental conditions may improve our

understanding of gene duplications as a mechanism of adaptation and its relevance to the long-term

persistence of gene duplications.
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1. BACKGROUND
(a) Motivation

Few dispute that gene duplication is the main source of

functional diversity on the genotype level. The wealth of

sequence data to this effect [1–3] has been preceded by

theoretical considerations that it is far easier to create

new functions from pre-existing ones rather than from

scratch. At the heart of the interest towards gene dupli-

cations is the principle that after a duplication ‘each

copy can evolve independently and diversify their effects’

[4, p. 64] leading to functional novelty [2,3,5]. As any

mutation, a duplication event by itself may also have con-

sequences on organism’s fitness. However, two factors

overshadowed the study of the short-term immediate fit-

ness effects of gene duplication. First, the contrast in

the difficulties in studying copy-number variation

(CNV) that persist to this day [6], and the abundance

of long-term evolutionary data on paralogous sequence

divergence [1–3,7] shifted the attention to where the

data were. Second, and perhaps crucially, the conceptual

appeal of gene duplications leading to novel functions was

strong enough to overshadow that of the short-term

implications of duplications.

The trend of focusing on the long-term implication to

the detriment of the study of short-term effects was

initiated by Ohno [5] when he proposed that extra gene

copies are redundant. His reasoning was that since one

copy already performs the necessary function extra copies
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are redundant and free from selection, as they do not

add anything to the organism’s capacity in performing

this function. As it became clearer that gene copies of var-

ious degree of divergence are present in genomes, the main

question in the field became how can completely redun-

dant gene copies be maintained in the genome long

enough to evolve into a new function without being elimi-

nated by mutation. Thus, the theoretical community made

extensive use of the redundancy hypothesis with a string of

papers looking at this question in some detail [8–15] with

many models not formally taking account the process of

fixation of a segregating gene duplication.

At the same time, data from the microbiological com-

munity were being published suggesting adaptive impacts

of gene duplications under certain environmental con-

ditions (see [16–18] for review); however, these data

remain largely anecdotal and have not led to a genome-

wide survey of selection on gene copy number. The diver-

sification of the community into those that study the

short-term versus the long-term effects of gene dupli-

cation may have had a linguistic component as some

researchers tended to discuss ‘gene duplication’, while

others studied ‘gene amplification’ with the relevant

papers rarely being cross-cited. However, the fascination

with the long-term consequences and the simplicity of

the complete redundancy hypothesis, which essentially

created the neutral theory of gene duplications, resonated

in the community at the time when the neutral theory was

popular and few authors took into account the adaptive

point of view.

Although it is clear that some gene duplications have

been fixed in the course of evolution by positive selection
This journal is q 2012 The Royal Society
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[16–26], whether or not it plays a significant role in the

fixation of an appreciable fraction of gene duplications

has yet to be comprehensively addressed at a genome-

wide scale. The purpose of this review is to highlight

recently described examples of adaptive short-term effects

of gene duplication. Given recent reviews on whole

genome duplication [27], negative impact of gene dupli-

cations [28–30] and various theories and models on

gene duplications [31,32], I will avoid these issues here.
(b) Duplication and dosage

The main issue behind whether or not positive selection for

an environmental adaptation can be the driving force

behind the fixation of gene duplications is whether or not

gene duplications are truly redundant. Under the verbal

model commonly attributed to Ohno, the variable that

affects fitness is an abstract, qualitative function, such

that a gene either performs a function or not [5]. By con-

trast, the adaptive hypothesis holds that function is a

quantitative measure of gene action that can be influenced

by the amount of gene product in the cell, which in turn

can be influenced by the gene copy number [31,32]. How-

ever, even if the dosage of the product in the cell influences

function, it is possible that a gene duplication is still

quantitatively redundant if the product dosage is tightly

regulated by negative feedback loops that keep the product

dosage constant against gene copy number.

In the last few years, data accumulated demonstrating

that while a gene duplication may not necessarily double

gene dosage, it still generally leads to its increase [33–35].

It thus seems that one of the ways in which a new gene

copy number may affect function is through a quantitative

gene dosage effect. The complete redundancy model may

still stand based on the possibility that even if dosage is

increased the increase does not have an effect on fitness.

The evidence against this notion is patchy and not

genome-wide. However, several authors have made the

claim that many CNVs are selected against in the

genome owing to an increase in gene dosage, including

cases of CNVs contributing to disease [28–30,36,37]

and, therefore, will not be discussed here. At the very

least, the data seem to show that situations when a gene

duplication affects gene dosage and this, in turn, affects

fitness are common. Other mechanisms that can lead to

an adaptive response of a gene duplication have been

described [32]; however, the dosage response is concep-

tually the simplest and for the purposes of this review it

is assumed that the fitness effect of a gene duplication,

when present, lies primarily in that the increased copy

number causes an increase in protein dosage.
(c) Adaptive gene duplications

Three genomic approaches may detect the action of selec-

tion on a specific gene duplication. Unfortunately, all three

of these approaches have their limitations. First, one can

study whether or not recent copies with equal function

are maintained by selection by measuring the ratio of

non-synonymous to synonymous evolution (dN/dS)

between diverging sequences. If both are maintained by

negative selection, then their initial emergence may have

occurred through the action of positive selection. The

logic is based on the argument that if a substitution A .

G is deleterious then reverse G . A substitution is
Proc. R. Soc. B (2012)
beneficial. Similarly, if in a gene copy dN/dS , 1, indicat-

ing that it is currently under negative selection and that its

deletion is likely to be deleterious, then contingent on the

frequency of gain-of-function mutations and lack of a new

function its emergence may have been beneficial. However,

when comparing very closely related gene copies with low

sequence divergence, which is necessary to reduce the like-

lihood of this copy already performing a new function, it is

not possible to measure a statistically significant departure

from neutrality based on just a few substitutions, rendering

the dN/dS measure relatively useless. Additionally, when

comparing the dN/dS between diverged gene copies, it is

possible that a measurement of dN/dS , 1 reflects selec-

tion maintaining a novel function that emerged in the

process of the duplication divergence rather than selection

maintaining two copies with identical function. Thus,

while many studies of dN/dS between gene copies purport

to reveal the action of one mechanism or other in the early

evolution of gene duplications [1] such data do not necess-

arily provide convincing evidence for or against the action

of positive selection in the fixation of such copies. Of

course, it may be possible to test whether or not very

recent gene copies are under selection by looking at the

ratio of non-synonymous-to-synonymous polymorphisms

in the same manner as dN/dS looks at the ratio of substi-

tutions. However, in order to apply this approach, it is

necessary to sequence the gene copies independently of

each other, which is not possible with currently available

sequencing technologies [6].

The second approach is to measure the levels of varia-

bility around the emerging gene copy and search for

traces of hitchhiking effects. Only one study in Arabidopsis

thaliana successfully applied this approach and found evi-

dence of hitchhiking around recent gene copies [38].

However, this remains to my knowledge the only study

of this type, possibly owing to the difficulties associated

with assembling very recent gene duplications in whole

genomes, which is generally necessary for such a study.

Finally, given enough data on fixed gene duplications

and segregating CNVs, it may be possible to perform a

McDonald–Kreitman test [39] to try to quantify the

fraction of gene copies fixed by positive selection. This

was crudely done several years ago [36], and the results

remain unconvincing owing to the complications in

finding a genome-wide set of accurately annotated poly-

morphic gene duplications to apply the test. It is likely

that different genes duplicate at different rates due to differ-

ence in length [36] and the influence of short repeats that

may substantially increase the rate of duplication of a

DNA segment located between them [40]. This issue is

coupled to the relative difficulty in identifying polymorphic

versus fixed gene copies in genomes [6]. Thus, picking the

right set of duplicated and polymorphic gene copies for a

non-biased analysis may not be feasible at this point.

In sum, because it does not yet appear possible to sys-

tematically test the possibility of positive selection driving

the fixation of gene duplications, we may study only specific

cases and attempt to make generalizations based on them.
2. EXAMPLES OF ADAPTIVE GENE DUPLICATIONS
(a) Transport of nutrients

Nutrient limitation has been observed in many species

under different conditions and has been reviewed
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previously [18–21]. A clear example of a gene duplication

conferring an adaptive response to nutrient limitation is

that of the yeast hexose transporter. Under growth

conditions with low glucose, the appearance of a new

hybrid copy from two closely related paralogues, HXT6

and HXT7, increases the level of expression of the

hexose transporter and, crucially, the rate of glucose

transport into the cell [41]. Furthermore, the authors

have shown in competition experiments that the strain

with the gene duplication outcompetes the parental

strain. The reason why this case is particularly exemplary

is because the duplicated HXT6 and HXT7 genes are

recent gene duplications themselves, with several more

distantly related paralogoues in the genome [18]. It is

therefore just a simple step from the experiments of

Brown et al. [41] to the hypothesis that the paralogues

HXT6 and HXT7 have appeared as a result of an adap-

tive duplication owing to selection favouring extra

dosage of the transporters of glucose under various stress-

ful or low-glucose environmental conditions [18,42].

Extensive experiments carried out by Gresham et al.

[43] also show that many strains evolve amplifications

either of the HXT6 or the sHXT7 gene in glucose-limited

populations, although some strains adapted to starvation

by different mechanisms.
(b) Protection from heat

Adaptation to heat stress has been shown to occur

through gene duplication of several stress-related genes

in Escherichia coli [44]. Some but not all of the genes con-

tained in the duplicated regions showed increased levels

of expression and the duplication events coincided with

substantial increases in fitness, although not explaining

all of it. Furthermore, the duplication of evgA, a master

transcriptional regulator that is a part of the signal trans-

duction system and upregulates 37 genes, allowed E. coli

to withstand temperatures of over 508C [45]. The mol-

ecular mechanisms behind such robustness to heat

remain unclear. Similar observations have been made in

yeast and Arabidopsis, such that strains subjected to selec-

tion in high temperatures showed an increase propensity

for chromosomal segmental duplications [46,47].
(c) Protection from cold

A study of the genome-wide expression levels and the cor-

responding copy numbers provides convincing evidence

for cold adaptations in Antarctic cod. In addition to the

expansion of the antifreeze glycoprotein (AFGP) gene

family in this species [48] a comparison of the levels of

expression between the Antarctic cod and its warm

water dwelling relatives revealed 177 genes with substan-

tial overexpression in the Antarctic cod [49]. Through

DNA hybridization, it was shown that 118 genes, many

of which were from the same set with upregulated

expression, have been duplicated in the Antarctic cod,

some of them hundreds of times. Duplications were

10 times more common in Antarctic cod suggesting that

upregulation through gene duplication of many different

functions, including the well-characterized AFGP genes

and FBP32II, an F-type lectin that is considered to be a

close relative of the fish type II antifreeze proteins,

played a role in cold adaptation of this species [49].
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(d) Dosage balance and restoration of fitness

Genes rarely act in isolation and it is thought that an opti-

mal dosage of interacting proteins must be maintained for

maximal fitness. This logic has been applied to explain

why interacting proteins are more likely to be retained

together after the whole genome duplication in yeast

[50], however, it is also possible that a gene duplication

may be favourable because it restores the correct dosage

balance in a dosage sensitive system. Two such examples

are found in the literature. In yeast, there are two pairs of

closely related paralagous histone H2A and H2B proteins,

coded by the HTA1–HTB1 and HTA2–HTB2 tandem

genes pairs, respectively. When the dosage of the H2A

and H2B drops owing to the deletion of the HTA1–

HTB1 locus, one of the compensatory mechanisms

restoring normal dosage and phenotype is a duplication

of the paralagous HTA2–HTB2 locus [51].

Another interesting case was described by Pränting &

Andersson [52]. In Salmonella typhimurium, a mutation

in a haem-biosynthesis enzyme (hemC) increases resist-

ance of the bacterium to protamine, however, this

resistance comes at a cost of the reduction of growth. In

the course of a laboratory evolution experiment, the first

step of a series of events after the fixation of the resistance

mutation was the amplification of the mutant hemC

gene that restored some of the fitness [52]. Once

the gene accumulated other compensatory point mutations

that created a hemC gene that conferred resistance to

protamine, but without the reduction in the rate of

growth, the gene copy number was restored to normal. A

similar adaptive response to the reduced fitness of a

mutation leading to antibiotic resistance and a subsequent

transitory compensatory increase in gene copy number of

the mutated gene was found in Salmonella enterica [53].
(e) Protection from salt

Adaptation to stress by high salt content may also occur

through gene duplication. In one selection experiment,

an increase in expression of several stress-response genes

was observed, however, this increase does not appear to

have anything to do with individual gene duplications as

such were generally not observed in the course of the

experiment [54]. However, a consistent polyploidy of

the yeast strains was observed that may play a role in

the adaptation [54,55]. Similarly, polyploidy has been

linked to resistance to high salt concentrations in citrus

[56] and sorghum [57] suggesting that polyploidy may

be a general physiological adaptive response to osmotic

stress [54].
(f) Heavy metals

Duplication-induced metal resistance in different species

seems to be related mainly to the export of the cations

outside the cell [18,36]. Among recent publications, a

study showed that Ralstonia pickettii adapted to high copper

concentrations in copper-contaminated lake sediment

tends to accumulate the copper in the outer membrane,

and the genome revealed the duplication of a region with sev-

eral metal resistance and transporter genes [58]. A detailed

analysis of genome evolution of Cupriavidus metallidurans, a

species particularly renowned for its tolerance of heavy

metals, revealed two primary mechanisms, the increase in

copy number of genes responsible for metal efflux, through
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HGT and duplication, and a general decrease in metal

uptake [59]. A particular strain of the fungal pathogen

Cryptococcus neoformans, var. grubii subclade VNI A5

MLST, was found to contain a tandem array of several

copies of the arsenite efflux transporter that confers

copy-number-correlated levels of arsenite resistance [60].
(g) Antibiotics and drugs

Many bacteria amplify genes as an adaptive response to anti-

biotic treatment [36,61,62]. Similarly, it is commonly

acknowledged that gene amplifications are known to occur

in cancer tumours in response to various drug treatments

(see Kondrashov & Kondrashov [36] for review). However,

the amplification of genes in response to various drug treat-

ments is not limited to somatic cells and microbes. In the last

several years, abundant data have been collected on the

amplification of genes in response to various treatments

of Leishmania [63] and malaria [23]. The Plasmodium

falciparum multidrug resistance gene (pfmdr1) is a target

of adaptive evolution in nature in response to the widespread

use of chloroquine and other anti-malarial drugs. The

pfmdr1 protein is an ABC transporter involved in the

transport of chloroquine outside of the cell, however, it is

more directly involved in the adaptation of the malaria

parasite to mefloquine, a different anti-malarial drug.

Interestingly, pfmdr1 is a homologue of the human multiple

drug resistance (mdr) protein that in tumours has a crucial

role of expulsion of different drugs from the cell [64,65].

The pfmdr1 gene is amplified in P. falciparum in response

to anti-malarial drug treatment, which can confer resistance

to mefloquine and other anti-malarial drugs [66–68]. It is

now understood that pfmdr1 gene duplication occurred

independently in nature multiple times [66,69], and malaria

with increased resistance to different drugs is found

throughout the world from Africa [70] to Asia [71,72] and

South America [73]. Finally, at least one amplification

event of the pfmdr1 gene shows evidence of having occurred

through the action of positive selection [74] and adaptive

amplification in P. falciparum has been shown in at

least one other gene [75], GTP-cyclohydrolase I

(gch1), which is involved in the synthesis of substrates

upstream of other enzymes that are commonly targeted

by antifolate drugs.

Gene amplification as a mechanism of adaptation to

drugs is also common in Leishmania [63]. The amplifica-

tions of the genes generally occur as extra-chromosomal

circular DNA units [63,76], possibly due to the relatively

minor role of transcription initiation in this organism

[76]. This may be the reason why gene amplification

and the subsequent increase in gene dosage seem to be

a common basis for Leishmania being resistant to different

drugs [77]. A genome-wide assay of E. coli strain in 237

toxic environments, mostly antibiotics, found 115 genes

an artificial amplification of which leads to the increased

fitness in the toxic environments [78]. As with the case

of metal toxicity, the function that most widely corre-

sponded to an increase in fitness under the toxic

condition was that of efflux pumps and transporters clo-

sely followed by genes with regulatory functions and

many of the identified genes have not been previously

implicated in toxic response. Furthermore, the amplifica-

tion of several genes conferred resistance in more than
Proc. R. Soc. B (2012)
one toxic environment suggesting a wider role of pro-

miscuous functions in the evolution of resistance.

(h) Pesticides and complex organic compounds

The application of pesticides and herbicides promotes the

adaptive duplication of enzymes that digest the chemical

([79] and see [25] for review). A well-studied example is

that of the mosquito Culex pipiens that was subject to pesti-

cide treatment on the southern coast of France. Adaptation

to pesticide treatment evolved by the duplication of two

non-specific esterases (Est-2 and Est-3), and Ace.1, a

locus encoding acetylcholinesterase that is the main target

of the applied organo-phosphate insecticides [36,80].

However, the duplication of Ace.1 comes at a substantial

fitness cost [80], which has led to intricate evolutionary

dynamics in the evolution of this locus with subsequent

duplications being maintained in heterozygous states

across the population owing to a low fitness of the dupli-

cations in homozygous state [81]. Furthermore, similar to

the strong selection pressure of the anti-malarial drugs lead-

ing to independent multiple duplications of the pfmdr1

gene, the Ace.1 resistance duplication also appeared mul-

tiple times independently around the world [82,83]. The

combination of independent origin and the persistence of

the duplication in heterozygous form despite the low fitness

of homozygous states indicate positive selection for the

original emergence of the heterozygous duplication.

(i) Adaptation to domestication

Different cow breeds have been analysed for differences

in CNVs with different functional families featuring

prominently in the differences. First, CNVs of immune-

related genes coding for UL16-binding proteins have

been described in different breeds of cattle [84,85] and

fixed copies of these genes have been shown to be dupli-

cated in the recent ancestor of the Bos lineage [86].

Furthermore, recently duplicated genes have been associ-

ated with recent domestication-related phenotypes [86]

such as milk proteins and proteins related to ruminant

digestion. A recent genome-wide study of three cattle

breeds identified approximately 400 genes located in

CNVs, many of which were related to different environ-

mental interaction and domestication related functions,

including parasite and pathogen resistance, lipid transport

and metabolism [85]. In a few cases, the types of gene

function could be linked to breed-specific phenotypes,

suggesting that several aspects of cattle health and pro-

ductivity have been selected through CNV in the course

of cattle domestication.

(j) Adaptive duplications in humans

In our own species, several examples have been described

of a polymorphic duplication conferring either a distinct

phenotype or a fitness advantage. Thus, individuals with

more copies of the CCL3L1 gene, a ligand for the HIV-

suppressive CC chemokine receptor, have lower suscepti-

bility to HIV infection and slower progression to AIDS

after infection [87]. A widely reviewed example is that

of the salivary amylase gene (AMY1) that plays a role in

the initiation of starch digestion. Individuals from popu-

lations with higher starch content in their traditional

diets have a higher copy number of this protein providing

an apparent fitness benefit [88]. The high prevalence of
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CNV in the human genome coupled with data that many

of them may be adaptive [37,89–91], suggest that more

examples of adaptive gene duplication in the human

population are yet to be described.
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(k) Generalizations

Adaptive duplications in different species continue to be

described in the literature (see table 1 for additional

examples) implying that gene duplication as a form of

adaptation to various environmental conditions is not a

rare mechanism, although by far not an exclusive one.

Perhaps several generalizations can be made regarding

when an adaptive duplication may be expected to play a

role in various adaptations in nature. First, in instances

when the protein products of the genes physically interact

with molecules associated with a variable environment

such as toxins or nutrients. Second, when the proteins

coded by the duplicated genes function in the same path-

way as those that physically interact with such molecules.

Finally, adaptive duplication seems to involve those genes

which product needs to be produced rapidly or constantly

at a high level, such as antifreeze or storage proteins.

The main logic for hypothesizing that fixed gene dupli-

cations played an adaptive role in dosage response to

stressful environment has been the functions of gene dupli-

cations with characterized adaptive role and the functions

of fixed gene copies that are observed in the genome

[16–18,21,22,36,104–116]. However, it may be instruc-

tive to reverse the logic and predict the types of genes

that may confer an adaptation in some environmental con-

ditions based on the functional repertoire of the gene

duplications observed in the genome.

One of the main duplicated gene families are the olfac-

tory receptor proteins [18,117–119] so perhaps their

duplication may lead to an increase in sensitivity to a par-

ticular odour may be adaptive under certain conditions.

The match in the sensitivity range of duplicated opsin

genes and coloration [120,121] suggests that the dupli-

cation of an opsin gene may cause an adaptive increase

in sensitivity to light of a certain wavelength. Duplications

of genes involved in pathogen resistance [105,108–

111,122,123] and pathogenicity [110,124] suggest that

gene duplications may have a role in rapid coevolution

between host and pathogen or symbiont. Recent gene

duplications in drought-resistant plants [125] suggest

that genes involved in osmotic stress response are also

good candidates. Duplication of the globin genes

[107,126] may be adaptive in low-oxygen environments,

such as high altitude, by optimizing oxygen transport.

Common duplications of different defence toxins and

venoms [116,127–132] suggest that toxin dosage and

their effectiveness may be regulated through gene dupli-

cation. Similarly, the duplication of proteins involved in

the degradation of toxins, for example enzymes that neu-

tralize pyrrolizidine alkaloids [133], may confer a fitness

advantage to a herbivore feeding on a plant with high

concentration of specific toxins. The duplication of devel-

opmentally related genes [134] may confer an adaptive

advantage in the anatomical modification of the body

plan for a new environment. The production of caroten-

oids [135] or light emission by luciferase [136] may be

dosage-mediated by gene duplication leading to extra pig-

ment or higher intensity of light. The duplication of
Proc. R. Soc. B (2012)
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proteases expressed in the female reproductive tract of

Drosophila mojavensis [137] and sperm-related proteins

in Caenorhabditis elegans [18] suggests that dosage

increase through gene duplication may be adaptive as a

strategy in sexual conflict.
3. DISCUSSION
The development of the theory of gene duplications

reflects that of the neutral theory of molecular evolution.

The strong claim of neutrality of gene duplications made

by Ohno [5] reflected a point of view that all gene dupli-

cations are neutral. Most theoretical models that followed

maintained that the redundancy of the gene duplication

leads to its neutrality. In the last few years, it became evi-

dent that many gene duplications are deleterious from the

moment of their origin [28–30,138]. However, this can

be easily accommodated in the redundancy-based

theories on long-term evolution of gene duplication in

the form of a weak claim of neutrality: those gene

duplications that are fixed are neutral. Because no quan-

titative genome-wide estimates of the fraction of gene

duplications that are fixed by positive selection have

been made, population genetic theories explaining

the evolution of gene duplication have not incorporated

selection on gene copy number in the models [31,32].

At the present moment, the literature reflects a point of

view that gene duplications are more neutral than amino

acid substitutions. A large fraction of amino acid substi-

tutions is thought to be fixed by positive selection

[139], yet most authors continue to explain the origin

and maintenance of gene duplications by referring to

theories of their maintenance that assume complete

redundancy and a neutral path to fixation. However, pre-

sumably a gene duplication is mutation of stronger impact

than a point mutation and, therefore, it should on average

have a more profound impact on fitness than a substi-

tution [19,20]. This somewhat paradoxical situation is

reflected in the literature on CNVs where authors avoid

reference to the existing theories on gene duplication

[28–30,36,37].

Owing to the fascination with the idea of complete

genetic redundancy, classical population genetic and evol-

utionary models of gene duplications generally failed to be

useful in the description of CNV in natural population

(but see [140–142]). Perhaps the same fate of irrelevance

awaits the theoretical field once ecological genomics starts

addressing the question of adaptation to stressful environ-

mental conditions on a genome-wide scale in multiple

non-model organisms. To model such adaptation, the

necessary theoretical models may be more complicated

than those simply incorporating a quantitative measure of

genetic redundancy as they may also have to be time-depen-

dent; in several cases, it appears that a gene duplication that

is adaptive under a stressful condition comes at a fitness cost

in a benign environment [36,52,80,143,144].

The cost and utility of sequencing technology makes it

possible to obtain a genome sequence of reasonable qual-

ity for all but the most complicated genomes. The

application of such technology to natural populations is

bound to reveal new mechanisms of ecological adap-

tation. Given the abundance of examples of adaptive

gene duplications that emerge in the course of adaptation

to stressful environments, researchers studying the
Proc. R. Soc. B (2012)
adaptation of species to novel or stressful environments

would be well advised to consider taking a closer look at

recent gene duplications and copy-number polymorph-

isms. Meanwhile, the relative role of positive selection

versus drift in fixation of gene duplications remains an

open question.
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