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Abstract

Although there is a rapidly growing literature on dynamic connectivity methods, the primary focus 

has been on separate network estimation for each individual, which fails to leverage common 

patterns of information. We propose novel graph-theoretic approaches for estimating a population 

of dynamic networks that are able to borrow information across multiple heterogeneous samples 

in an unsupervised manner and guided by covariate information. Specifically, we develop a 

Bayesian product mixture model that imposes independent mixture priors at each time scan and 

uses covariates to model the mixture weights, which results in time-varying clusters of samples 

designed to pool information. The computation is carried out using an effcient Expectation-

Maximization algorithm. Extensive simulation studies illustrate sharp gains in recovering the 

true dynamic network over existing dynamic connectivity methods. An analysis of fMRI block 

task data with behavioral interventions reveal subgroups of individuals having similar dynamic 

connectivity, and identifies intervention-related dynamic network changes that are concentrated 

in biologically interpretable brain regions. In contrast, existing dynamic connectivity approaches 

are able to detect minimal or no changes in connectivity over time, which seems biologically 

unrealistic and highlights the challenges resulting from the inability to systematically borrow 

information across samples.
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1. Introduction

There has been a steady development of graph-theoretic approaches to compute dynamic 

functional connectivity (FC) that is fueled by an increasing agreement that the brain network 

does not remain constant across time and instead undergoes temporal changes resulting from 

endogenous and exogenous factors (Filippi et al., 2019). For example, task-related imaging 

studies have shown that the brain networks will re-organize when the subjects undergo 

different modulations of the experimental tasks during the scanning session (Chang and 

Glover, 2010; Lukemire et al., 2020). Similarly, dynamic FC has also been observed during 

resting-state experiments (Bullmore and Sporns, 2009). These, and other recent studies, have 

found increasing evidence of underlying neuronal bases for temporal variations in FC which 

is linked with changes in cognitive and disease states (Hutchison et al., 2013).

Dynamic connectivity approaches involve time-varying correlations derived via graph-

theoretic methods, and may be broadly classified into the following categories: (i) change 

point methods (Cribben et al., 2013; Kundu et al., 2018) that assume stable phases of 

connectivity inter-spersed with connectivity jumps at unknown locations, which results 

in piecewise constant connectivity; (ii) Hidden Markov Models (HMMs) involving fast 

transient networks that are reinforced or revisited over time, which have been applied to 

electrophysiological data (Quinn et al., 2018) and more recently to fMRI data (Warnick et 

al., 2018); and (iii) sliding window approaches that enforce temporally smooth correlations 

(Chang and Glover, 2010; Monti et al., 2014) based on the biologically plausible assumption 

of slowly varying temporal correlations with gradual changes in connectivity. While sliding 

window methods are arguably the most widely used, these approaches may be limited by 

practical issues such as the choice of the fixed window length (Lindquist et al., 2014), 

although more recent methods use adaptive forgetting estimation generalization that vary the 

window size to address non-stationarity in the time-series (Monti et al., 2017). On the other 

hand, change point models and HMMs have the advantage of model parsimony by limiting 

the distinct number of parameters. However, the performance of these methods often depend 

on modeling assumptions, and temporal smoothness of connectivity estimates can not be 

typically ensured. More importantly, since most of these existing approaches typically rely 

on single-subject data, they often face challenges in terms of detecting rapid changes in 

connectivity and may result in inaccurate estimates due to a limited information from a 

single individual.

Essentially, almost the entirety of the existing dynamic connectivity literature has focused 

on data from single individuals, due to the fact that temporal changes in connectivity are 

expected to be subject-specific and may not be replicated across individuals. However, 

recent evidence suggests that combining information across individuals in a group provides 

more accurate estimates for connectivity (Hindriks et al., 2016), which adheres to the 

commonly used statistical principle of data aggregation using multiple samples to obtain 

more robust estimates. Kundu et al. (2018) proposed a sub-sampling approach to compute 

time varying dynamic connectivity networks using multi-subject fMRI data, which resulted 

in considerable gains in accuracy under limited heterogeneity across samples, compared to 

a single-subject analyses. Unfortunately, the variations across samples may not be restricted 

in many practical settings. To our knowledge, there is a scarcity of carefully calibrated 
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approaches for pooling information across heterogeneous samples in order to accurately 

estimate a population of (single-subject) dynamic networks. This is perhaps not surprising, 

given that there are considerable challenges involved. From a methodological perspective, 

it is not immediately clear how to effectively borrow information across individuals in 

a data-adaptive manner that also respects the inherent connectivity differences between 

heterogeneous samples. Similarly when estimating dynamic networks with V brain regions 

for N individuals each having T time scans, one encounters computational challenges in 

terms of computing NT distinct V × V connectivity matrices, which is not straightforward 

for high-dimensional fMRI applications. We note that while there is some related literature 

on joint estimation of multiple related static networks (Danaher et al., 2014; Guo et al., 

2011; Lukemire et al., 2020), it is not straightforward to apply these approaches for the 

estimation of population of dynamic networks involving moderate to large sample sizes.

In this article, our goal is to develop a fundamentally novel hierarchical Bayesian product 

mixture modeling (BPMM) approach incorporating covariates (MacEachern, 1999) for 

estimating a population of dynamic networks corresponding to heterogeneous multi-subject 

fMRI data. The importance of using covariates to model known stationary networks has 

already been illustrated in recent literature (Zhang et al., 2018), where the networks 

are specified in advance. These methods suggest a strong justification for incorporating 

demographic, clinical, and behavioral covariates when modeling dynamic networks in 

order to obtain more accurate and reliable estimates (Shi and Guo, 2016). Motivated 

by these existing studies, the proposed BPMM framework estimates unknown dynamic 
networks by leveraging covariate information in order to inform the clustering mechanism 

under the mixture model, which is better designed to tackle heterogeneity across samples 

that ultimately results in more accurate network estimation. Under the proposed model, 

subgroups of individuals with similar dynamic connectivity profiles are identified, where the 

subgroup memberships are also influenced by covariate profiles and change over time in an 

unsupervised manner that is designed to pool information in order to estimate the dynamic 

networks. Another appealing feature of the proposed BPMM approach is the ability to report 

cluster level network summaries that are more robust to noise and heterogeneity in the 

data. Since the proposed approach clusters samples independently at each time scan guided 

by covariate information, it is clearly distinct from HMM approaches that instead cluster 

transient brain states across time scans. To our knowledge, the proposed approach is one of 

the first to estimate a population of dynamic networks incorporating covariate knowledge by 

integrating heterogeneous multi-subject fMRI data, which represents considerable advances.

In order to tackle the daunting task of estimating NT connectivity matrices, each 

of dimension V × V, the proposed approach employs dimension reduction by 

clustering samples under the mixture modeling framework that translates to considerable 

computational gains. In particular, the BPMM approach induces model parsimony by 

reducing the number of unique model parameters from NT × V (V − 1)
2  to 

∑t = 1
T kt × V (V − 1)

2 , 

where kt (<< N) denotes the number of clusters2at the t-time point that is determined in an 

unsupervised manner. Temporal smoothness in connectivity for each network is also ensured 

via additional hierarchical fused lasso priors on mixture atoms in the BPMM, which results 
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in gradual changes in connectivity that is biologically meaningful. In scenarios where sharp 

connectivity changes are anticipated in certain localized time windows (due to changes in 

experimental design in a block task experiment, or other exogeneous or endogenous factors), 

one may estimate these connectivity change points via a post-processing step that involves 

applying the total variation penalty (Vert and Bleakley, 2010) to the dynamic connectivity 

estimates under the proposed approach. Additional post-processing steps involving a K-

means algorithm are also proposed to identify subgroups of individuals with similar dynamic 

connectivity patterns consolidated across time, which is particularly useful in terms of 

obtaining insights related to heterogeneity. Figure 1 provides a visual illustration of the 

proposed approach.

The proposed BPMM is developed for dynamic pairwise correlations as well as dynamic 

precision matrices, which provide complementary interpretations of dynamic connectivity. 

In particular, pairwise correlations encode connections between pairs of nodes without 

accounting for the effects of third party nodes, whereas partial correlations report association 

between nodes conditional on the effects of the remaining network nodes. While our goals 

do not involve assessing the merits of one approach over the other (see Smith et al. (2013) 

for a review), the proposed development is designed to provide users with an option to 

implement either approach as desired and suitable for respective applications. We develop 

an effcient Expectation-Maximization (EM) algorithm to implement the dynamic pairwise 

correlation method separately for each edge, and another EM algorithm for dynamic 

precision matrix estimation that simultaneously involves all network nodes. We perform 

extensive simulations to evaluate the performance of the proposed method in contrast to 

existing approaches that involved a variety of dynamic network structures. The proposed 

methods were also used to investigate dynamic functional connectivity changes due to a 

high intensity, aerobic exercise ‘spin’ intervention when compared to a non-aerobic exercise, 

control intervention, which were administered to a heterogeneous group of sedentary adults 

who performed a fMRI block task experiment. Our goals are to provide connectivity insights 

that are complimentary to previous activation-based findings from the same study (Nocera 

et al., 2017), but involves analytic challenges due to the short duration of the fixation and 

task blocks that induce rapid connectivity changes which are usually diffcult to detect via 

existing methods.

The rest of the article is structured as follows. Section 2.1 develops the proposed 

approach for dynamic pairwise connectivity that performs edge-wise analysis (denoted as 

integrative dynamic pairwise connectivity with covariates or idPAC), Section 2.2 develops a 

post-processing clustering approach for identifying subgroups of individuals with similar 

dynamic connectivity patterns consolidated across time scans based on the estimated 

dynamic correlations under the idPAC method, and Section 2.3 outlines a post-processing 

strategy for estimating network change points. Section 3 extends our framework to estimate 

dynamic precision matrices that uses all the network nodes simultaneously for network 

estimation (denoted as integrative dynamic precision matrix with covariates or idPMAC). 

Section 4 develops a computationally efficient EM algorithm to implement the proposed 

idPAC and idPMAC approaches, and describes choices for tuning parameters. Section 5 

reports results from extensive simulation studies, and Section 6 reports our analysis and 

results from the block-task fMRI experiment. Additional discussions are provided in Section 
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7. Throughout the article, we will use BPMM to denote the overall Bayesian product 

mixture modeling framework used for developing the idPAC and idPMAC approaches, as 

appropriate.

2. Methods

In this section, we propose a novel approach for estimating a population of dynamic 

networks using heterogeneous multi-subject fMRI data with the same number of brain 

volumes across all individuals. For modeling purposes, we will assume that the demeaned 

fMRI measurements are normally distributed with zero mean (Kundu et al., 2018) at 

each time scan, and that pre-whitening steps have been performed to minimize temporal 

correlations (see Supplementary Materials for details). We will fix some notations here. 

Suppose fMRI data are collected for T scans and V nodes (voxels or regions of interest) 

for N individuals. Denote the fMRI measurements across all the nodes at time point t 

as yt
(i) = y1, t

(i) , …, yV , t
(i) ′, and denote the V × T matrix of fMRI measurements for the ith 

individual as Y(i) that has the tth column as yt
(i), i = 1, …, N. Further, denote the vector of q 

× 1 covariates as xi for the ith sample, and represent the collection of fMRI data matrices 

across all individuals as Y.

In what follows, the idPAC method for pairwise correlations (Section 2.1) and idPMAC 

method for partial correlations (Section 3), will involve a combination of likelihood terms 

and priors on the model parameters that are combined into a posterior distribution, which 

is used to estimate model parameters. The posterior distribution for parameter θ given 

data Y is defined as P(θ ∣ Y ) = L(Y ∣ θ) × π(θ)
P(Y )  using Bayes theorem, where L(Y|θ) denotes 

the data likelihood given the parameter value θ, π(θ) represents the prior on θ under 

the Bayesian model, and P(Y ) = ∫ L(Y ∣ θ)π(θ)dθ is the marginal likelihood after integrating 

out all possible values of θ. Full details of the posterior distributions are provided in the 

Appendix.

2.1. Dynamic connectivity via pair-wise correlations

Let the unknown dynamic pairwise correlation of individual i be denoted as 

ρ(i): = ρjl, t
(i) , j < l, j, l = 1…V , t = 1…T , and the corresponding Fisher-transformed pairwise 

correlations be denoted as γjl, t
(i) = arctanℎ ρjl, t

(i) . We propose a Bayesian hierarchical approach 

that models the edge-wise dynamic correlations, using data from multiple individuals. We 

propose the following model for edge (j, l), and jointly for t = 1, …, T and i = 1, …, n,
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yjt
(i)

ylt
(i) ∼ N2

0
0 , σy2

1 ρjl, t
(i)

ρjl, t
(i) 1

, γjl, t
(i)

∼ ∑
ℎ = 1

H
ξℎ, jlt xi N γℎ, jlt

∗ , σγ, ℎ
2 , σγ, ℎ

−2 ∼ Ga aσ, bσ ,

π γℎ, jl1
∗ , …γℎ, jlT

∗ ∝ exp −λ ∑
t = 1

T − 1
γℎ, jlt

∗ − γℎ, jl, t − 1
∗ , ξℎ, jlt

(i) xi

= exp xiTβℎ, jlt
1 + ∑ℎ = 1

H − 1exp xiTβℎ, jlt
,

(1)

where |⋅| denotes the L1 norm, σy2 denotes the residual variance in the likelihood term, the 

Fisher-transformed correlations γjl, t
(i)  are modeled under a mixture of Gaussians prior having 

H components denoted as γℎ, jlt
∗ , ℎ = 1, …, H, with the prior probability for the hth mixture 

component denoted as ξℎ, jlt xi  that depends on covariates, such that ∑ℎ = 1
H ξℎ, jlt xi = 1

for all t = 1, …, T , σγ, ℎ
2  captures the (unknown) variability of the pairwise correlations under 

the mixture prior specification, and Nv(μ, Σ) denotes a multivariate Gaussian distribution 

with mean μ and V × V covariance matrix Σ. Under a hierarchical Bayesian specification, 

σγ, ℎ
−2  is estimated under the conjugate Gamma prior with shape and scale parameters aσ, bσ

respectively. The mixture prior specifies that for any given time scan t, the functional 

connectivity for each individual can take values revolving around any one of the H mixture 

atoms denoted by γ1, jlt
∗ , …, γH, jlt

∗ , that are themselves unknown and modeled under a 

fused lasso prior as in (1). These values are realized with respective prior probabilities 

ξ1, jlt xi , …, ξH, jlt xi  that are modulated via covariates with effect sizes β1, jlt, …, βH, jlt
respectively, where βℎ, jlt ∼ N 0, Σβ  with βH, jlt = 0 fixed as the reference group.

Modeling mixture atoms via fused lasso: The mixture atoms are modeled under a 

fused lasso prior in (1) that encourages temporal smoothness of pairwise correlations by 

assigning small prior probabilities for large changes in the values between consecutive time 

scans. Although temporal smoothness in correlations is encouraged, the Bayesian approach 

is still equipped to accommodate sharp jumps in connectivity that may arise due to changes 

in experimental design or other factors. Such connectivity jumps are detected using a 

post-processing step (see Section 2.3) applied to the estimated dynamic connectivity under 

the proposed model.

Modeling mixture weights via covariates:  In order to effectively tackle heterogeneity, 

we incorporate supplementary covariate information when modeling the mixture weights 

under our mixture modeling framework in (1). By incorporating covariate information, 

the model is designed to achieve more accurate identification of clusters, which then 

naturally translates to improved estimates for dynamic FC at the level of each individual. 

In particular, we model ξ1, jl
(i) , …, ξH, jl

(i)  via a Multinomial Logistic regression (Engel, 

1988), where βℎ, jlt ∼ N 0, Σβ  (with βH,jlt = 0) represents the vector of unknown regression 
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coefficients that control the contribution of the covariates to the mixture probabilities 

for the Hth component (h = 1, …, H − 1), in contrast to the Hth component. A large 

value of these regression coefficients implies increased importance of the corresponding 

covariate with respect to modeling a particular edge under consideration, whereas 

β1, jlt ≈ … ≈ βH − 1, jlt ≈ 0 for all t = 1, …, T , indicates spurious covariates unrelated to the 

dynamic pairwise correlations.

The multinomial logistic regression model incorporating covariates suggests that the log-

odds for each component ξℎ, jlt
(i) xi /ξH, jlt

(i) xi , ℎ = 1, H − 1, can be expressed as a linear 

combination of covariates. When two or more samples have similar covariate information, 

the prior specification in (1) will encourage similar mixture components to characterise 

the dynamic connectivity for all these samples that will result in analogous connectivity 

patterns. However the posterior distribution (that is used to derive parameter estimates) 

should be flexible enough to accurately estimate varying connectivity patterns between 

individuals even when they share similar covariate values, by leveraging information present 

in the data (as evident from extensive numerical studies in Section 5).

Role of clustering in tackling heterogeneity and pooling information:  Under model (1), 

each sample will be assigned to one of the H clusters at each time scan in an unsupervised 

manner and guided by their covariate profiles in order to model the edge-level dynamic 

connectivity. Due to independent clustering at each time scan, these cluster configurations 

change over the experimental session in a data-adaptive manner to characterize connectivity 

fluctuations across individuals. Such time scan specific clusters represent subgroups of 

individuals with similar connectivity profiles over a subset of time scans, which are 

learnt by pooling information across all samples within a cluster. Here, it is important 

to note that model (1) does not impose identical dynamic connectivity across all time 

scans between multiple individuals (that is biologically unrealistic), but instead encourages 

common connectivity patterns within subgroups of samples for a subset of time points that 

are learnt in a data-adaptive manner. Hence, the proposed method is designed to result in 

more accurate estimation compared to a single subject analysis that is not equipped to pool 

information across samples or a group level analysis that does not account for within sample 

heterogeneity. We note that although the estimation is performed separately for each edge, 

the connectivity estimates across all edges are consolidated to obtain connectivity change 

point estimates (Section 2.3) or identify subgroups with common dynamic connectivity 

profiles (Section 2.2).

2.2. Post-processing steps for sub-group detection

In practical neuroimaging applications, it is often of interest to detect dissimilar modes of 

dynamic connectivity patterns that are embodied by distinct subgroups of individuals who 

also differ in terms of demographic or clinical characteristics, or other factors. For example 

in our fMRI task study, one of the objectives is to assess variations in dynamic connectivity 

with respect to subgroups of samples that were assigned different interventions, and who 

also had varying demographic characteristics. Instead of comparing network differences 

between pre-specified subgroups that are likely to contain individuals with heterogeneous 

connectivity patterns, it is more appealing to develop a data-adaptive approach to identify 
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subgroups that comprise individuals with homologous dynamic connectivity, and then 

examine connectivity variations across such subgroups and how these variations are related 

to intervention and other factors of interest. When estimating these subgroups, we do 

not require identical dynamic connectivity patterns for all individuals within subgroups, 

but rather expect them to have limited network differences in terms of edge strengths 

and connectivity change points. An inherently appealing feature of subgroup detection is 

that is allows one to compute cluster level change points and other aggregate network 

features (see Section 2.3) which are more reproducible in the presence of noise and 

heterogeneity, compared to a single-subject analysis. Subgroup level network summaries 

may be particularly beneficial in certain scenarios such as fMRI block task experiments 

where it may be challenging for single-subject analyses to detect rapidly evolving network 

features induced via quick transitions between rest and task blocks within the experimental 

design.

We propose an approach that consolidates the time-varying clusters of samples under the 

BPMM approach to detect subgroups which comprises samples with similar network-level 

dynamic connectivity patterns. In order to identify these subgroups, we first create a N 
× N similarity matrix that measures the propensity of each pair of samples to belong to 

the same cluster over the experimental session. This matrix is created by examining the 

proportion of time scans during which a pair of samples belonged to the same cluster across 

the experimental session, averaged across all edges. Once this similarity matrix has been 

computed, a K-means algorithm is applied to identify clusters of samples that exhibit similar 

dynamic connectivity patterns across the experimental session. The number of clusters K 
is determined using some goodness of fit score such as the elbow method (Thorndike, 

1953), or it is fixed as the maximum number of mixture components (H) under the BPMM 

approach. Finally, we note that the subgroup identification step is not strictly needed under 

the proposed BPMM framework for dynamic network estimation, but it is an optional 

analysis that can be used to identify cluster-level network features in certain scenarios of 

interest.

2.3. Post-processing steps for connectivity change point estimation

The estimated dynamic correlations can be used to detect connectivity change points in 

scenarios involving sharp changes in the network during the session, such as in fMRI task 

experiments. Our strategy involves computing change points for each individual network 

(a) at the edge level that captures localized changes; and (b) at the global level that 

captures major disruptions in connectivity over the entire network. We compute the change 

points using the total variation penalty (Vert and Bleakley, 2010) that was also used in 

CCPD approach by Kundu et al. (2018). However the proposed methods are distinct from 

the two-stage CCPD approach; the latter estimates connectivity change points based on 

empirical time-varying connectivity measures in the first stage, and then in the second 

stage, computes piecewise constant networks conditional on the estimated change points 

that represent connectivity jumps. In contrast, proposed method pools information across 

samples in order to first estimate dynamic correlations that does not depend on change 

points and can vary continuously over time, and subsequently uses a post-processing step 

to compute connectivity change points without requiring piecewise constant connectivity 
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assumptions. An appealing feature of the proposed mixture modeling framework guided 

by covariates is that it is more suitable for tackling divergent dynamic connectivity across 

samples, in contrast to empirical correlations under the CCPD approach.

Denote the vector of estimated correlations over all edges for the ith individual 

and at time scan t as rt
(i) ∈ ℜV (V − 1)/2, t = 1, …, T , i = 1, …, N. Then the functional 

connectivity change points for the ith individual may be estimated using 

connections across all edges via a total variation norm penalty that is defined 

as ut + 1
(i) − ut

(i) = 1
V (V − 1)/2 ∑m = 1

V (V − 1)/2 ut + 1, m
(i) − ut, m

(i) 2
. In particular, the following 

penalized criteria is used as in Kundu et al. (2018) for detecting network level connectivity 

change points:

minu ∈ ℜV (V − 1)/2 ∑
t = 1

T
rt

(i) − ut
(i)

2
+ λu ∑

t = 1

T − 1
ut + 1

(i) − ut
(i) , (2)

where λu represents the penalty parameter and ut
(i) ∈ ℜp(p − 1)/2 represents the piecewise 

constant approximation to the time series of correlations at time point t for the ith individual 

that also assumes the presence of an unknown number of connectivity jumps. The first term 

in (2) measures the error between the observed correlations and the piece-wise constant 

connectivity, while the second term controls the temporal smoothness of correlations for 

V(V − 1)/2 edges. The increment ut + 1
(i) − ut

(i)  in the second term becomes negligible when 

the multivariate time series does not change significantly between times t and t + 1, but it 

takes large values corresponding to significant connectivity changes. The network change 

points computed via (2) represent global changes functional connectivity resulting from a 

subset of edges that exhibit large connectivity changes. It is important to note that not all 

edges are expected to exhibit changes at these estimated change points. When it is of interest 

to compute edge-level connectivity change points, one can simply use criteria (2) separately 

for each edge, so that the total variation term translates to the L1 penalty. However, it is 

important to note that edge-level connectivity changes represent granular fluctuations that 

are typically more challenging to detect in the presence of noise in fMRI.

The number of change points is determined by the penalty parameter λu, with a smaller 

value yielding a greater number of change points and vice-versa. Tibshirani and Wang 

(2008) proposed an estimate of λu based on a pre-smoothed fit of a univariate time series 

using a lowess estimator (Becker et al., 1988). We adapt this approach for a multivariate 

time series to obtain an initial estimate for λu, and then propose post-processing steps to 

tune this estimate in order to obtain change points, as in the CCPD approach in Kundu et al. 

(2018). Full details for these steps are provided in Section 3 of Supplementary Materials.

Cluster-level connectivity change point estimation: For fMRI task experiments 

involving multiple subjects, subgroups of individuals are expected to share analogous 

dynamic connectivity patterns with limited variations across samples, as discussed in 

Section 2.2. The proposed total variation penalty norm in (2) is equipped to leverage 

information across samples within a cluster for identifying cluster level change points, 
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which reflect aggregated dynamic connectivity changes across all samples within a cluster 

at the global network level. These cluster level connectivity changes are obtained by 

aggregating the change points obtained via (2) applied separately to each sample within 

the cluster, and then choosing those change points that show up repeatedly within the 

cluster. One can define a threshold such that all change points that appear with a high 

frequency (above the chosen threshold) across samples within the cluster are determined to 

represent cluster level change points (Kundu et al., 2018). We note that under the proposed 

method, it is entirely possible for individuals within a cluster to have unique connectivity 

changes in addition to the common cluster level change points, which reflect within 

sample heterogeneity. In our experience, this method typically works well in accurately 

recovering aggregated cluster-level connectivity changes, in certain scenarios such as block 

task experiments, or more generally in the presence of subgroups of individuals with similar 

dynamic connectivity patterns.

3. Extension to dynamic precision matrix estimation

We now propose a mixture model for dynamic precision matrix estimation (idPMAC) 

that looks at the totality of all nodes in the network, in contrast to the edge-wise 

analysis in Section 2.1. While the idPMAC also uses a mixture modeling framework, it 

is fundamentally distinct compared to the idPAC method in Section 2.1, with respect to the 

manner in which the mixture prior is specified and in terms of how the network edges are 

constructed and interpreted. The proposed approach estimates the network by computing the 

V × V precision matrix involving V(V − 1)/2 distinct partial correlations that are learnt by 

borrowing information across V nodes at each time scan. The partial correlations measure 

interactions between pairs of regions after removing the influence of third party nodes, 

which is successful in filtering out spurious correlations. Hence a zero partial correlation 

between two nodes implies conditional independence. The proposed idPMAC approach 

enables one to report graph-theoretic network summary measures that capture important 

patterns of network information transmission (Lukemire et al., 2020), which may not be 

straightforward to report using pairwise correlations (Smith et al., 2012).

Denote the V × V precision matrix over all nodes for the ith individual at the tth time point 

as Ωt
(i) =

ωt, 11
(i) ω1, t

(i)

ω1, t
(i)′ Ω11, t

(i) , and note that the partial correlation between nodes k and l is given 

directly as −ωkl/ ωkkωll (ignoring the subject-specific and time-scan specific notations). We 

propose a Gaussian graphical model involving product mixture priors as:
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yt
(i) ∼ N 0, Ωt

(i) , ωv, t
(i) ∼ ∑

ℎ = 1

H
ξℎ, t xi NV − 1 ωℎ, t

∗ , σω, ℎ
2 IV − 1 , ξℎ, t

(i) xi

= exiTβℎ, t

1 + ∑ℎ = 1
H − 1exiTβℎ, t

,

ωt, vv
(i) ∼ E α

2 , π ωℎ, 1
∗ , …, ωℎ, T

∗ ∝ exp −λ ∑
t = 1

T − 1
ωℎ, t

∗ − ωℎ, t − 1
∗ , σω, ℎ

−2

∼ Ga aσ, bσ , βℎ, t ∼ N 0, Σβ ,

(3)

for i = 1, …, N, t = 1, …, T, where Ωt
(i) ∈ MV

+, the space of symmetric positive definite 

matrices, E(α) denotes the Exponential distribution with scale parameter α, and ωv, t
(i)  denotes 

the vector of (V − 1) off-diagonal elements corresponding to the vth row of Ωt
(i) that 

are modeled using a mixture of multivariate Gaussians prior. Specifically, the dynamic 

connectivity at time scan t is likely to be characterised via the hth mixture component 

with prior probability ξℎ, t xi  depending on covariates, where the prior mean and precision 

for this unknown mixture component is given by ωℎ, t
∗  and σω, ℎ

−2  respectively. The idPMAC 

approach in (3) specifies independent mixture priors on the set of all edges related to each 

node and at each time scan, while ensuring that the precision matrices are symmetric and 

positive definite. Full details for the computational steps are presented in Section 4.

Modeling mixture atoms:

Under a hierarchical Bayesian specification, the mixture atoms or component-specific means 

ωℎ, t
∗  are themselves unknown and modeled via a fused lasso prior, which encourages 

temporal homogeneity of partial correlations by assigning small prior probabilities for 

large changes in the values. In addition, systematic changes in connectivity reflected by 

sharp jumps may be still identified via a post-processing step in Section 2.3. The unknown 

prior variance on mixture components σω, ℎ
−2  is assigned a Gamma prior and is estimated 

adaptively via the posterior distribution.

Modeling mixture weights via covariates: The node level mixture weights 

incorporating covariates are modeled via a Multinomial Logistic regression with unknown 

covariate effects β1, t, …, βH, t  corresponding to time scan t that are assigned Gaussian 

priors, and we fix βH, t = 0, t = 1…T , as the reference group. The prior in (3) encourages 

similar clustering configurations resulting in analogous time-varying partial correlations for 

individuals with similar covariate profiles. However in the presence of heterogeneity, the 

posterior distribution under the idPMAC method is still able to identify divergent dynamic 

connectivity patterns even among individuals with same covariate profiles (see numerical 

studies in Section 5).

Role of clustering in tackling heterogeneity and pooling information: Under 

model (3), each column of the precision matrix is assigned to one of the H clusters at 
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each time scan in an unsupervised manner. Hence, the mixture modeling framework allows 

subsets of rows/columns of Ωt
(i) to have the same values depending on their clustering 

allocation at each given time scan, which is an unique feature under the idPMAC approach 

that is not shared by the idPAC method. This feature results in robust estimates by 

pooling information across nodes and samples to estimate common partial correlations, 

and is a necessary dimension reduction step for scenarios involving large networks. 

For example, all weak or absent edges can be subsumed into one cluster which yields 

model parsimony. In addition, divergent connectivity patterns are captured via distinct 

time-varying clustering configurations across individuals as derived from the posterior 

distribution, which accommodates heterogeneity. Hence, the clustering mechanism under 

the idPMAC method not only enables dimension reduction, but also provides a desirable 

balance between leveraging common connectivity patterns within and across networks and 

addressing inherent network differences across individuals.

Post-processing steps: The post-processing steps for sub-group detection and 

connectivity change point estimation under the idPMAC approach can be applied in a 

similar manner as outlined in Sections 2.2 and 2.3. They proceed by replacing the estimated 

pairwise correlations with estimated dynamic partial correlations derived under the idPMAC 

approach in the K-means algorithm and the fused lasso criteria (2) in Sections 2.2 and 2.3 

respectively.

4. Computational details for parameter estimation

Although one can use Markov chain Monte Carlo (MCMC) to sample the parameters 

from the posterior distribution, we use a maximum-a-posteriori or MAP estimators for 

our purposes in this article that bypasses the computational burden under a MCMC 

implementation. The MAP estimators are obtained by maximizing the posterior distribution 

for the model parameters and are derived via the Expectation-Maximization or EM 

algorithm. The EM algorithm is scalable to high-dimensional fMRI applications of interest 

that requires one to compute N × T distinct dynamic networks each involving V × V 
connectivity matrices. Table 1 provides a list of model parameters to be estimated via the 

EM steps for both the dynamic pairwise correlations and the dynamic precision matrix 

estimation methods.

4.1. EM algorithm for pair-wise dynamic connectivity

EM Algorithm: Denote the matrix containing the fMRI time series for the lth node 

as Y l = y1, l, …, yT, l  where yt, l = yl, t
(1), …, yl, t

(N) ′ represents the fMRI observations across 

all samples for node l and time scan t. Further, denote Δh as a latent indicator 

variable for the hth mixture component (that is not observed and is imputed in 

the proposed EM algorithm) and finally, denote by Θjl the collection of all model 

parameters under the specification (1) corresponding to edge (j, l). Note that under 

the proposed multinomial logistic regression model for incorporating covariates in (1), 

one has an equivalent specification under the binary latent variables distributed as 

Δ1, jlt
(i) , …, ΔH, jlt

(i) ∼ MN 1, ξ1, jlt xi; βℎ, jlt , …, ξH, jlt xi; βℎ, jlt , where MN 1; p0  denotes a 
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multinomial distribution with probability vector p0, Bjlt = β1, jlt, …, βH − 1, jlt  and one 

can marginalize out Δ1, jlt
(i) , …, ΔH, jlt

(i)  to recover the original specification in (1). The 

EM algorithm uses the augmented log-posterior derived in the Appendix involving the 

above latent mixture indicators, to compute MAP estimates for the model parameters by 

iteratively applying the Expectation (E) and Maximization (M) steps. The latent indicators 

Δℎ, jlt
(i) , ℎ = 2, …, H, t = 1, …, T , i = 1, …, N  are imputed via the E-Step by using the posterior 

probability of γjl, t
(i)  taking values from the hth mixture component, which is denoted by 

ψℎ, jlt
(i) = Pr Δℎ, jlt

(i) = 1 ∣ −  and updated as:

E-step :  Compute the posterior expectation for the latent cluster membership indicators as 

ψℎ, jlt
(i) = ∑r = 1

H ξr, jlt(xi; βℎ, jlt)ϕ γjl, t
(i) ∣ γr, jlt

∗ , σγ, ℎ
2 −1 ξℎ, jlt xi; βℎ, jlt × ϕ γjl, t

(i) ∣ γℎ, jlt
∗ , σγ, ℎ

2 , 

where ϕ γjl, t
(i) ∣ γ∗, σγ2  denotes the normal density with mean γ∗ and variance σγ2.

The remaining parameters are updated via M-steps using closed form solutions except 

γjl, t
(i)  that is updated using Newton-Raphson steps. These M-steps comprise several 

mathematically involved derivations and are detailed in the Appendix. The E and M 

steps are repeated till convergence, which occurs when the absolute change in the log-

posterior between successive iterations falls below a certain threshold (we use 10−4 in our 

implementation).

4.2. EM Algorithm for dynamic precision matrix estimation

Let us denote the collection of all the precision matrices as Θ, and yt, − v
(i)′  as the (V − 

1)-dimensional vector of fMRI measurements at time scan t over all nodes except node v. 

The prior on the precision matrix can be expressed as π Ωt
(i) = ∏v = 1

V π ωt, vv
(i) π ωvt

(i) , with 

the corresponding prior distributions π( ⋅ ) being defined in (3). Denote by |⋅|1, the element-

wise L1 norm, denote κ1, t
(i) = ωt, 11

(i) − ω1, t
(i)′Ω11, t

(i) − 1ω1, t
(i)  to represent the conditional variance 

corresponding to the fMRI measurements for the vth node given all other nodes, and let 

ωt, vv
(i)  and ωv, t

(i)  respectively denote the diagonal and the vector of off-diagonal elements of the 

vth row in Ωt
(i). Moreover use det(A) to denote the determinant of the matrix A, and write 

St
(i) = yt

(i)yt
(i)′ =

st, 11
(i) s1, t

(i)

s1, t
(i)′ S11, t

(i)  as the matrix of cross-products of the response variable, where 

svv, t
(i)  and sv, t

(i)  denote the vth diagonal element and the off-diagonal elements for the vth row 

respectively. Introduce latent indicator variables Δ1, vt
(i) , …, ΔH, vt

(i)  that follow a multinomial 

distribution with probability vector ξ1, t xi , …, ξH, t xi  such that ∑ℎ = 1
H ξℎ, t xi = 1.

Denote by Ωvv, t
(i) , the (V − 1) × (V − 1) obtained by deleting the vth row and column from 

Ωt
(i). The EM algorithm uses an E step for the latent mixture indicators, as well as a Monte 
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Carlo E step that samples from the posterior distribution in order to obtain estimates for the 

precision matrix. These steps are described below:

E-step for mixture component indicator : For v = 1, …, V, use the expression: 

ψℎ, vt
(i) = ∑r = 1

H ξr, t xi; βℎ, t ϕV − 1 ωv, t
(i) ∣ ωr, t∗ , σω, r2 IV − 1

−1

× ξℎ, t xi; βℎ, t ϕV − 1 ωv, t
(i) ∣ ωℎ, t

∗ , σω, ℎ
2 IV − 1

, where ϕV − 1 ⋅ ∣ ω∗, Σ  denotes 

the probability density function for the (V − 1)-dimensional normal density with mean and 

variance as ω∗, Σ  respectively.

Monte Carlo E-step for precision matrix: We use an E-step to update the precision 

matrix that computes the posterior mean by averaging MCMC samples drawn from the 

posterior distribution, which is equivalent to a Monte Carlo EM method (Wei and Tanner, 

1990). We use this Monte Carlo approximation for the conditional expectation since 

it provides a computationally efficient approach to sample symmetric positive definite 

precision matrices via closed form posteriors. The posterior distribution for the precision 

off-diagonal elements are given as π ωvt
(i) ∣ − ∼ N V ωvt ∑ℎ = 1

H Δℎ, vz
(i) ωℎ, t

∗

σω, ℎ
2 + 2 sv, t

(i) , V ωv, t , 

where V ωvt = σω, ℎ
2 IV − 1 + svv, t

(i) + α Ωvv, t
(i) − 1 + ∑ℎ = 1

H Δℎ, vt
(i)

σω, ℎ
2

−1
 is the posterior covariance. 

Moreover, writing ωt, vv
(i) = κv, t

(i) + ωv, t
(i)′Ωvv, t

(i) − 1ωv, t
(i) , the diagonal precision matrix elements are 

updated via the posterior κvt
(i) ∼ GA 1

2 + 1,
svv, t
(i) + α

2  where α is pre-specified. The above steps 

can be alternated to sample positive definite precision matrices as in Wang (2012), and 

we draw several MCMC samples and average over them to approximate the conditional 

expectation.

The remaining parameters are updated via closed form expressions under the M step, which 

involve mathematically involved derivations and are detailed in the Appendix. The algorithm 

iterates through the E and M steps until convergence.

4.3. Tuning parameter selection

Certain tuning parameters in the BPMM need to be selected properly or pre-specified, in 

order to ensure optimal performance. For both dynamic pair-wise correlations and precision 

matrix estimation, λ is the tuning parameter used in fused lasso penalty for the mixture 

atoms that controls the temporal smoothness of the dynamic connectivity. We choose an 

optimal value for λ over a pre-specified grid of values, as the value of the tuning parameter 

that minimizes the BIC score. In model (1) for the dynamic pairwise correlation, the σy2

is also pre-specified as the initial mean variance over all edges and across all samples. 

Moreover when updating covariate effects, Σβ is pre-fixed as a diagonal matrix with the 

diagonal terms as 100, although it is also possible to impose a hierarchical prior on Σβ 
and update it using the posterior distribution. Extensive simulation studies revealed that 

the proposed approach is not sensitive to the choices of Σβ as long as the variances are 
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not chosen to be exceedingly small. Other hyper-parameters in the hierarchical Bayesian 

specification include α in the prior on the precision matrices (chosen as in Wang (2012)), 

and aσ = 0.1, bσ = 1, that results in an uninformative prior on the mixture variance.

The number of mixture components H also needs to be chosen appropriately. On the 

one hand, a large value of H may be used to address inherent heterogeneity, but it will 

also increase the running time and may generate redundant clusters that overcompensates 

for the variations across samples. On the other hand, a small value of H may restrict 

the approach to overlook connectivity variations across individuals, resulting in inaccurate 

estimates. One may use a data adaptive approach to select H in certain scenarios where it 

is reasonable to assume that the dynamic connectivity can be approximated by piecewise 

constant connectivity. In such cases that potentially involve block task experiments (Kundu 

et al., 2018), one can evaluate criteria (2) separately for each individual under different 

values of H, and fix the optimal choice as that which minimizes the average value of the 

criteria (2) across all individuals. Based on extensive empirical studies, we noticed the need 

for larger values for H when fitting the model for cases involving large number of nodes and 

samples.

5. Numerical experiments

5.1. Simulation set-up

Data generation: We generate observations from Gaussian distributions with sparse 

and piecewise constant precision matrices that change at a finite set of change points. 

Moreover, the network change points are generated based on covariate information where 

individuals with identical covariates have partially overlapping connectivity change points. 

Broadly, we use the following few steps to generate the data, each of which is described 

in greater detail in the sequel: (i) generate a given number of change points for each 

subject using corresponding covariate information; (ii) conditional on the generated change 

points, piecewise constant networks are simulated such that the connectivity changes occur 

only at the given change points; (iii) conditional on the network for a given state phase, 

a corresponding positive definite precision matrix is generated for each time scan where 

non-zero off-diagonal elements represent edge strengths and zero off-diagonals represent 

absent edges; and (iv) the response variable for a given time point is generated from 

a Gaussian distribution having zero mean and the precision matrix in step (iii). Four 

clusters are created with 10 samples each, where the samples with each cluster have the 

same number of connectivity change points, common state phase specific networks and 

identical covariate values. However within each cluster, there are differences in locations of 

connectivity change points and the network edge strengths are free to vary across individuals 

even when they share the same network structure. All samples in the first two clusters have 

3 connectivity change points each, whereas the samples in the other two clusters have 4 

change points, out of a total of T = 300 time scans.

Conditional on the change points in step (i), several types of networks are constructed 

for each state phase in step (ii) that include: (a) Erdos Renyi network where each edge 

can randomly appear with a fixed probability; (b) small-world network, where the mean 
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geodesic distance between nodes are relatively small compared with the number of nodes 

and which mimics several practical brain network configurations; and (c) scale-free network 

that resembles a hub network where the degree of network follows a power distribution. 

Given these networks, the corresponding precision matrix was generated in step (iii) by 

assigning zeros to off-diagonals for absent edges, and randomly generating edge weights 

from uniform [−1,1] for all important edges. To ensure the positive definiteness, the diagonal 

values of the precision matrix were rescaled by adding the sum of the absolute values of 

all elements in each row with one. Finally, the response variables were generated either 

(a) independently at each time point via a Gaussian graphical model, or (b) via a vector 

autoregressive (VAR) model where the response variables are auto-correlated across time. 

In both cases, sparse time-varying precision matrices having dimensions V = 40, 100, 

were used. The ‘VARM’ function in Matlab was used to generate temporally correlated 

observations under a lag-1 VAR model, where the elements in autocorrelation matrix were 

generated from a uniform random variable with range (−0.2, 0.2).

We generated two binary features that resulted in four distinct covariate configurations, 

i.e. (0,0), (0,1), (1,0), (1,1), and all samples with identical covariates were allocated to 

the same cluster. In addition, we also evaluated the performance of proposed method in 

the presence of spurious covariates that are not related to dynamic connectivity patterns. 

Specifically, we introduced anywhere between 1 to 8 spurious covariates for each sample (in 

addition to the two true covariates described earlier), which were randomly generated using 

uniform as well as from random normal distributions. We then investigated the performance 

of the proposed approach over varying number of spurious covariates. While the proposed 

approach is expected to work best in practical experiments involving a carefully selected set 

of covariates that influence dynamic connectivity patterns, our goal was also to investigate 

the change in performance as the number of spurious covariates increase.

Competing methods: We perform extensive simulation studies to evaluate the 

performance of the proposed approach, and compare the performance with (a) change 

point estimation approaches such as the CCPD (Kundu et al., 2018) that can estimate 

single subject connectivity using multi-subject data in the presence of limited heterogeneity, 

and the dynamic connectivity regression (DCR) approach for single subjects proposed in 

Cribben et al. (2013); (b) an empirical sliding window based approach (SD) and the model-

based SINGLE (Monti et al., 2014) method that uses sliding window correlations; and (c) 

a covariate-naive version of the proposed approach using the methods in Section 2.1 and 

Section 3 (denoted as BPMM-PC and BPMM-PR respectively) that employs a multinomial 

distribution to model the mixture weights without covariates. While methods in (a) and (c) 

are designed to report connectivity change points, we were also able to compute change 

points under the sliding window approaches in (b) by applying a post-processing step in (2) 

on the estimated sliding window correlations. Moreover, the data under the VAR case were 

prewhitened via an autoregressive integrated moving average (ARIMA) before fitting the 

proposed models. In particular, the ‘auto.arima’ in R was used to prewhiten the raw data, 

which yielded residuals that were subsequently used for analysis (more details provided 

in Supplementary Materials). The SINGLE approach was implemented using the python 

implementation in pySINGLE, while all other methods were implemented in Matlab.
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Performance metrics: We evaluate the performance of different approaches in terms of 

different metrics. First, we investigated the accuracy in recovering true connectivity change 

points at the network and edge level for each sample, using sensitivity (defined as the 

proportion of truly detected change points or true positives), as well as the number of 

falsely detected change points or false positives. In addition, the performance of the network 

connectivity change points at the cluster level was also evaluated by comparing the true 

connectivity change points for each sample within the cluster with the aggregated cluster 

level change points. We note that since there were variations in connectivity change points 

within each cluster, false positive change points are to be expected under any estimation 

approach; however our goal is to evaluate how well these false positives are controlled and 

the sensitivity in detecting true change points under different methods. In addition, we also 

evaluated accuracy in terms of estimating the strength of connections that is computed as a 

squared loss (MSE) between the estimated and the true edge-level pairwise correlations. The 

pairwise correlations corresponding to dynamic precision matrix approaches for computing 

MSE were obtained by inverting the respective precision matrices.

In order to evaluate the accuracy in dynamic network estimation, we computed the F-1 score 

defined as 2(Precision × Recall)/(Precision + Recall), where Precision=T P /(T P + F P) is 

defined as the true positive rate, and Recall=T P /(T P + F N) represents the sensitivity in 

estimating the edges in the network. Here, T P, F P, F N, refer to the number of true positive, 

false positive, and false negative edges that are obtained via binary adjacency matrices 

derived by thresholding the estimated absolute partial correlations. We employed reasonable 

thresholds (0.05) that are commonly used in literature (Kundu et al., 2018). In contrast, it 

was not immediately clear how to choose such thresholds for pairwise correlations given the 

fact that they tend to be typically larger in magnitude and have greater variability. Hence, 

we did not report F-1 scores corresponding to pairwise correlations, although one could do 

so in principle by choosing suitable thresholds to obtain binary adjacency matrices. Finally, 

we also evaluated the clustering performance in terms of the clustering error (CE) and 

Variation of Information (VI). CE (Patrikainen and Meila, 2006) is defined as the maximum 

overlap between the estimated clustering with the true clustering, whereas VI (Meilǎ, 2007) 

calculates the entropy associated with different clustering configurations.

5.2. Results

The performance in terms of recovering the true clusters of subjects is provided in Table 

2, in the presence of two covariates that are both related to the true connectivity changes. 

It is clear from the results that incorporating covariate information results in near perfect 

recovery of the clusters, in contrast to the covariate-naive version of the method. For V = 

100, the dynamic pairwise correlation approach seems to have a slightly higher accuracy 

in terms of cluster recovery compared to the dynamic precision matrix approach when data 

were generated from a VAR model. However when covariates are not included, the BPMM-

PR method has greater clustering accuracy compared to the BPMM-PC approach, since 

the former is able to pool information across the whole network to inform the clustering 

mechanism, in contrast to an edge-byedge analysis under BPMM-PC. Table 3 reports the 

accuracy in recovering the true network-level change points under the proposed approaches 

at the level of the estimated clusters, as per discussions in Section 2.3. In this case, both 
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idPAC and idPMAC methods are shown to have near perfect recovery of the true network 

connectivity change points when data were generated under GGM, and high sensitivity 

when data were generated under VAR. Moreover when using data from a VAR model, the 

idPAC method has a comparable or higher sensitivity but also higher false positives for V 
= 100 in terms of detecting connectivity change points at the cluster level, compared to the 

idPMAC method. We note that although all samples within a cluster had identical covariate 

information, the proposed approach was able to accommodate within cluster connectivity 

differences that is evident from low false positives and high sensitivity when estimating 

cluster level change points. Moreover as seen from Tables 4–5, the accuracy in recovering 

cluster level connectivity change points is considerably higher than the corresponding results 

at the level of individual networks. These results indicate the usefulness of aggregating 

information when it is reasonable to assume the existence of subgroups of individuals who 

share some similar facets of dynamic connectivity.

Table 4 reports the performance under pair-wise correlation based approaches, i.e. idPAC, 

BPMM-PC, SD, and CCPD. It is clear for the results that the proposed idPAC method 

has a near perfect sensitivity when data were generated under GGM, and a suitably 

high sensitivity under the VAR model, when estimating connectivity change points. The 

sensitivity for network and edge change point estimation, along with the MSE in estimating 

the pairwise correlations are significantly improved under idPAC compared to competing 

approaches in Table 4. The CCPD method is shown to have the lowest false positives when 

estimating the network level change points, but otherwise has poor sensitivity for change 

point estimation and high MSE, which is potentially due to the assumption of piecewise 

constant connectivity. The approach based on sliding window correlations has the poorest 

performance across all the reported metrics, which illustrates their drawback in estimating 

dynamic connectivity.

Table 5 reports the performance under precision matrix based approaches, i.e. idPMAC, 

BPMM-PR, SINGLE, and DCR. It is evident that the proposed idPMAC method has 

near-perfect or high sensitivity for detecting network level change points, corresponding 

to data generated under GGM and VAR models respectively. It also has a suitably high 

sensitivity for detecting edge level connectivity change points under both cases. Similarly, 

the MSE for edge strength estimation and the F-1 scores for network estimation accuracy 

are significantly improved under the proposed method in contrast to competing approaches. 

Figure 2 illustrates that the F-1 score over time under the proposed dynamic precision matrix 

method with covariates is almost always higher across almost all time scans compared to 

competing methods. Moreover the DCR and SINGLE method have the least impressive 

performance in terms of connectivity change point estimation, which also translates to poor 

dynamic network estimation (low F-1 scores).

Our results clearly illustrate the advantages of the proposed methods over existing 

approaches that are not effective in leveraging information across samples. In addition, 

Tables 4–5 also illustrate the gains of incorporating covariate information under the 

proposed idPAC and idPMAC approaches over the covariate naive BPMM counterparts. It 

is interesting to note that the covariate naive BPMM still fares better than existing dynamic 

connectivity methods that fail to pool information across samples in a systematic manner. 
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We also note that while the presence of false positive (FP) connectivity change points are 

expected due to the heterogeneity across samples, the proposed approaches provide desirable 

control of FP even while pooling information across samples with varying networks. In fact, 

the FP under the proposed method are lower than all competing methods except CCPD, 

whose performance is otherwise less impressive in terms of significantly lower sensitivity 

for change point detection, and inferior network estimation as reflected by poor MSE and 

F-1 scores.

When comparing the relative performance between idPAC and idPMAC methods, it is 

evident that the former has comparable or higher sensitivity but lower false positives in 

terms of estimating connectivity change points at the network level, when data are generated 

under a GGM. When data are generated under a VAR model, the idPAC method has higher 

sensitivity but also higher false positives compared to idPMAC, for estimating network 

connectivity change points. This is also true when estimating edge-level connectivity change 

points. In addition, since the idPMAC method estimates all edges simultaneously, the mean 

squared error for estimating edge strengths is often lower compared to the idPAC method. 

Moreover when the number of spurious covariates is increased, both these approaches 

experience a drop in performance (Fig. 3), as expected. It is of note that the number of false 

positive change points under the dynamic pairwise correlation approach increase minimally 

under the scale-free and small-world networks with an increase in the number of spurious 

covariates. However, this robust behavior was not replicated for network change points or 

other metrics of interest under the dynamic pairwise correlation method. In contrast, the 

recovery of the true clusters is shown to be more resilient under the dynamic precision 

matrix approach. This is evident from the top panels in Fig. 3 that show a slower increase in 

the clustering error under the idPMAC method.

The proposed approach is clearly scalable to higher dimensional networks, with the 

dynamic pairwise correlation method being slightly faster than the dynamic precision matrix 

estimation approach. We found the computation time under the proposed approaches to be 

slightly slower than existing dynamic connectivity methods such as DCR, which results 

from additional computations related to clustering and due to incorporation of covariates. 

Table 6 presents the computation time in minutes for all approaches implemented via 

Matlab on a personal desktop computer (Alienware Desktop) that had Intel(R) Core i7–

4930 processor with 32GB RAM (SINGLE was implemented via Python and hence the 

computation time is not reported). We note that the total computation time under BPMM is 

expected to increase with V, T, N, which is true for most dynamic connectivity approaches.

Finally, we also conducted sensitivity analysis of the proposed approaches with respect to 

the model hyperparameters (see Tables 3–4 in Supplementary Materials). We found that 

moderate variations in the values of hyperparameters do not result in considerable changes 

in performance. Further, the clustering error is seen to be more sensitive to changes in 

hyperparameter values, while the metrics corresponding to dynamic network estimation 

seem more resilient to changes in hyperparameters, which suggests a degree of robustness 

for the estimated dynamic network with respect to the choice of hyperparameters. Although 

we do expect the performance of the methods to fluctuate to a greater degree for extreme 
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choices of hyper-parameters, this is not of immediate concern to practitioners who use 

recommended values for the model hyper-parameters suggested in the manuscript.

6. Analysis of task fMRI data

6.1. Description of the study

We analyze a block task data involving a semantic verbal fluency at Veterans Affairs 

Center for Visual and Neurocognitive Rehabilitation, Atlanta. In a 12-week randomized 

controlled trail, 33 elderly individuals (aged 60–80, 11 males, 22 females) were assigned to 

two intervention groups: spin aerobic exercise group (14 participants) and the non-aerobic 

exercise control group (19 participants). During the intervention, individuals belonging to 

the aerobic spin group were required to do 20–45 min of spin aerobic exercise three times a 

week, led by a qualified instructor. For control group, participants were asked to do the same 

amount of non-aerobic exercise per week, such as group balance and light muscle toning 

exercise. A more detailed description of the data is available in Nocera et al. (2017).

For each participant, fMRI scans were conducted with 6 blocks of semantic verbal fluency 

(task) conditions with 8 scans, both pre- and post-intervention. The semantic verbal fluency 

task involved participants looking at different categories (e.g. “colors”) at the center of 

video screen and they were asked to generate and speak 8 different objects associated 

with that category (e.g. “blue”). After task block, a rest block with 3–5 TRs would appear 

and participants were required to read the word “rest” out loud. A total of 74 brain scans 

were acquired using a 3T Siemens Trio scanner with a whole-brain, 1-shot gradient EPI 

scan (240 mm FOV, 3.75 × 3.75 in-plane resolution, TR=5830ms, TA=1830ms, TE=25ms, 

flip angle (FA)=70). Analysis of Functional NeuroImages (AFNI) software and FMRIB 

Software Library (FSL) were used for pre-processing, as in Nocera et al. (2017). Slice-time 

corrections, linear trend removal, echo planar images alignment, and motion correction 

were performed as a part of the pre-processing pipeline. We used 18 brain regions for 

analysis that were shown to be differentially activated between the two intervention groups 

as described in Nocera et al. (2017). These regions are listed in Table 7 and comprise 

more regions in the right hemisphere due to decreased activity in that hemisphere in the 

spin group following the intervention, as compared to the control group. We note that 

since these regions corresponded to group differences due to spin exercise, they can not be 

described as “canonical” regions associated with semantic language function, which would 

also comprise some additional homologous regions in the left hemisphere. Since the purpose 

of the study was to investigate dynamic connectivity changes between brain regions due 

to the intervention, an analysis based on the selected 18 regions was undertaken instead of 

using canonical regions.

6.2. Analysis outline

We performed the analysis separately for the pre-intervention and post-intervention data, 

under both the dynamic pairwise correlations and dynamic precision matrix estimation 

methods. We used age and gender as covariates for the pre-intervention dataset, while also 

using the type of intervention (spin or non-aerobic control) as an additional covariate for the 

post-intervention analysis. Our analysis is designed to: (i) investigate the clustering behavior 
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and inspect how these clusters differ with respect to demographics and the intervention 

type; (ii) investigate the cluster-level network differences using network summary measures; 

(iii) estimate the connectivity change points and examine how well they align with the 

changes dictated by the block task experiment; (iv) infer nodes and edges in the network 

with significantly different connectivity patterns between pre- and post-intervention.

Objective (i) enables us to characterize homogeneous dynamic connectivity patterns 

corresponding to clusters of samples in terms of their demographic and clinical 

characteristics; aim (ii) will be instrumental in interpreting the cluster-level network 

differences that will shed light on network variations across transient network states; aim 

(iii) will provide insights regarding the effectiveness of the proposed approaches in terms 

of recovering connectivity jumps where these changes are influenced by, but often not fully 

aligned with, the changes in the block task experimental design (Hindriks et al., 2016; 

Kundu et al., 2018); and aim (iv) will inform investigators regarding dynamic connectivity 

differences that are associated with the type of intervention. For aim (ii), we were only 

able to report results under dynamic precision matrix estimation, since a graph theoretic 

framework is necessary to compute the network summary measures, which may not be 

feasible under a pairwise correlation analysis.

6.3. Results

Cluster analysis: As seen from Table 8, the analysis under both idPAC and idPMAC 

methods yielded 5 clusters consolidated over all time scans (using the K-means algorithm 

described in Section 2.2, although the size of the clusters were more equitable under 

the idPAC method. The pre-intervention analysis yielded clusters that were largely 

homogeneous with respect to gender. These clusters were also reasonably well-separated 

with respect to age under the idPAC analysis, whereas the age of the participants within 

clusters were more diverse under the idPMAC analysis. The post-intervention analysis 

yielded more heterogeneous clusters with respect to both age and gender, with only 

one cluster comprising all males under both the idPAC and idPMAC analyses. This 

suggests a realignment of the dynamic connectivity after the intervention is administered, 

such that individuals with similar genders and age-groups have synchronous dynamic 

connectivity patterns pre-intervention as identified via subgroups, but the subgroups and 

their composition with respect to age and gender change post-intervention. Our post-

intervention analysis also suggests that the variability across clusters under the idPAC 

method can be largely explained via the intervention type.

Connectivity change point estimation:  Table 8 illustrates the cluster level connectivity 

change point estimation. We observed that under both the idPAC and idPMAC methods, the 

estimated change points were consistent with 4 or more (out of 6) changes in experimental 

design when transitioning from task to rest, except one cluster where 3 of the connectivity 

change points aligned with the experimental design. These patterns were consistent in both 

the pre- and post-intervention analysis; however the number of connectivity change points 

that were strongly aligned with changes in the experimental design were (on average) greater 

in the post-intervention analysis compared to the pre-intervention analysis. This suggests a 

learning effect of the task that was reflected in terms of higher concordance between the 
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connectivity change points and the experimental design post-intervention. On the other hand, 

the cluster-level estimation of change points when transitioning from fixation to task was 

(on average) less aligned with the experimental design compared to the change points when 

transitioning from task to fixation, as seen in Table 8. This is somewhat expected since there 

were only 3–5 time scans in each fixation block, which made it extremely challenging to 

detect connectivity changes when transitioning from fixation to task. However, the proposed 

approach was still able to detect at least two, and often 3 or more connectivity change points 

(out of 6) aligned with the experimental design that suggests a reasonable concordance 

between connectivity jumps and experimental transitions from fixation to task.

In contrast, the CCPD approach detected at most one or two connectivity change points, 

while the DCR method was not able to detect connectivity change points at all, which makes 

these results appear biologically impractical given the nature of the block task experiment. 

Although the changes in connectivity are not expected to be fully aligned with changes in 

the experimental design (Hindriks et al., 2016), one expects a certain degree of synchronicity 

between the two. Our results indicate that this is not captured at all via existing change point 

methods especially when there are rapidly occurring transitions in the experimental design, 

which highlights their limitations. Hence, our analysis clearly illustrates the advantages of 

pooling information across heterogeneous samples and incorporating covariate knowledge 

via a mixture modeling framework, which is simply not possible using existing approaches 

that rely on information from single subjects as in DCR, or that use empirical methods to 

pool information across individuals as in CCPD.

Cluster level network differences:  In order to investigate the differences between the 

networks corresponding to the different clusters, we examined variations in dynamic 

network metrics that capture modes of information transmission in the brain. These network 

metrics include the characteristic path length (CPL) that measures the length of connections 

between nodes, and the mean clustering coeffcient (MCC) that measures the clustering 

tendency averaged over all network nodes. Using permutation testing, we examined p-values 

to evaluate which pairs of clusters exhibited significantly different network summary 

measures. None of the clusters had significantly different CPL values in the pre-intervention 

analysis, but several pairs of clusters exhibited significant CPL differences post-intervention. 

The CPL differences were particularly pronounced between the first and remaining clusters, 

as well as the last and remaining clusters in the post-intervention analysis. These two 

clusters also demonstrated the highest within cluster variability in CPL values amongst 

all clusters. Moreover, the number of pairs of clusters with significantly different MCC 

values increased from the pre-intervention to post-intervention analysis, with 8 out of 10 

pairs of post-intervention clusters reporting significantly different MCC values compared 

to at least one other cluster. Hence, our results suggest greater variability in network 

organization between clusters in the post-intervention analysis compared to pre-intervention, 

which potentially reflects greater network heterogeneity after the 12 week intervention was 

administered.

Network differences pre- and post-intervention:  We applied paired ttest with multiplicity 

adjustment (using Bonferroni correction) in order to infer which edges were significantly 
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different between pre- and post-intervention at 5% level of significance, along with 

identifying which network nodes contained the greatest number of differential edges. Since 

the magnitude of the pairwise correlations and the corresponding edge strength differences 

were higher, we discovered higher number of edges with differential edge strengths under 

the idPAC analysis. For both the idPAC and idPMAC methods, the bulk of the pre- 

vs post-intervention connectivity differences were concentrated in individuals in the spin 

group exclusively that were not present in the control group. We obtained 57 significantly 

different edges under the idPAC analysis, and 38 significantly different edges under the 

idPMAC analysis, which were exclusive to the spin group see Fig. 4. In contrast, the 

number of significantly different edges between the pre- and post-intervention networks 

under the idPAC analysis were 20 corresponding to both the spin and control groups, and 7 

corresponding to the control group only. Moreover the idPMAC analysis did not produce 

any significant edge level differences between the pre- and post-intervention networks 

corresponding to both the intervention groups as well as for the control group only. Our 

results suggest a considerably strong realignment in dynamic connectivity after the 12-week 

intervention that were exclusive to the spin group, compared to negligible changes in the 

control group.

The changes between the pre- vs post intervention networks that occurred exclusively in 

the spin group under idPAC analysis were concentrated in the following brain regions: 

Right Angular Gyrus(8 edges), Left Precuneus(10 edges), Right Cerebellum(9 edges), 

Right Middle Temporal Gyrus(11 edges), and Right Middle Temporal Gyrus(8 edges). 

Similarly the following brain regions had the highest number of differential edges pre- vs 

post-intervention under the idPMAC analysis: Right Middle Frontal Gyrus(16 edges), Right 

Cerebellum(6 edges), Right Pars Triangularis/MFG(8 edges), and Right Middle Temporal 

Gyrus(7 edges). Two nodes, Right Cerebellum and Right Middle Temporal Gyrus had a 

large number of significantly differential edges under both idPAC and idPMAC analyses, 

while the right middle frontal gyrus had, by far, the largest number of differential edges 

(16) under the dynamic precision matrix analysis. In addition, we also observe that more 

nodes in right hemisphere of the brain have significantly differential connectivity, which is 

to be expected since the majority of the 18 brain regions being investigated lie in the right 

hemisphere.

The large number of differential connections with respect to the right cerebellum is believed 

to be attributable to the generation of internal models or context specific properties of 

an object (Moberget et al., 2014), and preferential activation during a semantic challenge 

(D’Mello et al., 2017). The connectivity between the right cerebellum and inferior frontal 

regions has been noted in earlier studies (Balsters et al., 2013), with the inferior frontal 

regions being responsible for ordering language and codifying the motor output for syntax 

(Balsters et al., 2013). Moreover, the differential connectivity in the right middle temporal 

gyrus is along the lines of earlier findings that illustrated the role of the left temporal gyrus 

as a hub for integration of sensory input into a transformation to semantic forms (Davey 

et al., 2016), and the corresponding connectivity differences in the right middle temporal 

gyrus may be attributable to a shift in laterality of involvement (Lacombe et al., 2015) due 

to aging. Finally, the large number of differential edges corresponding to the right middle 

frontal gyrus is potentially associated with semantic priming in older adults (Laufer et al., 
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2011). Given that this region is associated with executive function (Jolles et al., 2013; Wang 

et al., 2019) and is well characterized as being involved in working memory tasks, it is likely 

for connectivity differences to be focused on this region since the semantic task requires a 

continuous reference to working memory.

7. Discussion

In this article, we developed a novel approach that accurately estimates a population of 

subject-level dynamic networks by pooling information across multiple subjects in an 

unsupervised manner under a mixture modeling framework using covariates. The proposed 

approach, which is one of the first of its kind in dynamic connectivity literature, results 

in significant gains in dynamic network estimation accuracy, as illustrated via extensive 

numerical studies. The gains under the proposed method become particularly appealing 

compared to existing approaches in the presence of rapid transitions in connectivity as 

evident from our fMRI block task analysis. The proposed approach works best in fMRI 

task experiments involving a group of heterogeneous individuals executing the same task 

protocols, and in the presence of a carefully chosen set of covariates that are related to the 

dynamic network.

We also illustrate the robust performance of the proposed approach in the presence of a 

limited number of covariates that are not related to changes in connectivity, although the 

performance deteriorates as the number of spurious covariates increase. In the presence of 

a large number of features that may not be necessarily related to dynamic connectivity, 

one can perform a screening step to exclude unimportant predictors from the analysis. 

This step will involve examining the associations between each covariate and the dynamic 

connectivity estimates obtained from the covariate naive BPMM approach, and subsequently 

only retaining the covariates with significant associations for analysis using the full model. 

This approach is expected to work well as long as the screening step does not exclude any 

important covariates and manages to largely filter out spurious covariates that are unrelated 

to the network. In future work, we plan to extend the proposed approach to incorporate 

feature selection that automatically identifies significant covariates that are related to the 

dynamic networks, and down-weights the contribution of unimportant covariates using 

Bayesian shrinkage priors. We note that although our analysis included covariates that do 

not vary with time, the proposed BPMM approach can be easily generalized to include 

time-varying covariates that are collected in-scanner (such as behavioral performance), when 

required.

Moreover for networks with higher densities or those with large variability in the values 

of the non-zero elements in the precision matrix, it is possible that the proposed approach 

may result in sub-optimal performance under a small number of mixture components. This 

is due to the symmetry constraint, which may potentially impose some restrictions on the 

clustering of the precision matrix elements when the number of clusters is small, and hence 

lead to inaccurate estimates. In such cases, a larger number of clusters would be required 

to fit the data well. Another avenue to tackle such potential restrictions is to generalize the 

proposed BPMM approach in equation (3) so as to specify independent mixture priors on 

each element of the upper triangular precision matrix subject to the constraint Ωt
(i) ∈ MV

+

Kundu et al. Page 24

Neuroimage. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which will impose the same marginal distributions on elements (i, j) and (j, i) in the 

precision matrix. We plan to explore such generalizations in future work.

In addition to identifying important connectivity changes, during the fMRI block task 

experiment, our analysis conclusively established major changes between the pre- and post-

intervention networks that were exclusive to the spin group. We note that existing literature 

has established the role of cardiovascular fitness in regulating aging related declines in both 

language and motor control (McGregor et al. (2011), 2013). However, much less is known 

about the effect of exercise intervention on dynamic connectivity, particularly in older 

adults. Because connectivity is a fundamental aspect of neuronal communication required 

for high-level cognitive processes, it is important to understand the potential impact of aging 

and/or aerobic exercise interventions in aging on changes in brain connectivity.

Further, our analysis also discovered subgroups of individuals with homologous dynamic 

connectivity, where the heterogeneity within these subgroups with respect to intervention 

was higher under the idPMAC method compared to the idPAC analysis. This indicates that 

dynamic pairwise correlations were more accurate in classifying participants in terms of 

the intervention administered. It is important to note that the separation of clusters with 

respect to intervention reflects the distinct patterns of dynamic connectivity between the 18 

brain regions specified in our study that are known to be differentially activated in spin and 

control groups (Nocera et al., 2017). However, if additional regions are included that may 

not be necessarily associated with intervention type, it is entirely possible to obtain more 

heterogeneous clusters that have a more equitable composition with respect to intervention 

group. This is due to the presence of network edges between regions that are not necessarily 

associated with intervention and hence behave similarly in both the spin and control groups. 

Future work will focus on a more general analysis involving a larger number of cannonical 

regions known to be associated with the semantic language function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Posterior Distribution for Dynamic Pairwise Correlations

Here, we derive the log-posterior distribution that is used in the EM algorithm to derive 

parameter estimates. The augmented log-posterior distribution for Θjl under (1) is:
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log π Θjl ∣ Y ∝ log P Θjl P Y ∣ Θjl = ∑
ℎ = 1

H
∑
t = 1

T
log π γℎ, jlt

∗

+ ∑
ℎ = 1

H
log π σγ, ℎ

2 + ∑
ℎ = 1

H − 1
∑
t = 1

T
log π βℎ, jlt

+ ∑
i = 1…N

∑
t = 1…T

log P yjt
(i), ylt

(i) ∣ γjl, t
(i) , σy2 × π γjl, t

(i)

∝ ∑
i = 1

N
∑
t = 1

T
− 1

2log 1 −
exp 2γjl, t

(i) − 1
exp 2γjl, t

(i) + 1

2

−
yjt

(i) 2 + ylt
(i) 2 − 2

exp 2γjl, t
(i) − 1

exp 2γjl
(i) + 1

yjt
(i)ylt

(i)

2σy2 1 −
exp 2γjl, t

(i) − 1

exp 2γjl, t
(i) + 1

2

− 1
2 ∑

ℎ = 1

H 1
σγ, ℎ

2 Δℎ, jlt
(i) γjl, t

(i) − γℎ, jlt
∗ 2 + Δℎ, jlt

(i) log σγ, ℎ
2

+ ∑
ℎ = 1

H − 1
Δℎ, jlt

(i) xiTβℎ, jlt − log 1 + ∑
r = 1

H − 1
exiTβr, jlt

+ ∑
ℎ = 1

H − 1
∑
t = 1

T
log π βℎ, jlt + ∑

ℎ = 2

H
−λ γℎ, jl, t

∗ − γℎ, jl, t − 1
∗

− aσ + 1 log σγ, ℎ
2 − bσ

σγ, ℎ
2 .

(A.1)

where log π βℎ, jlt = −
βℎ, jlt

T Σβ
−1βℎ, jlt
2 − 1

2 log det Σβ  represents the logarithm of the prior 

distribution on the covariate effects. The detailed computational steps for deriving the MAP 

estimates corresponding to the above posterior distribution are discussed in Section 4 and in 

the rest of the Appendix.

Posterior Distribution for Dynamic Precision Matrices

The augmented log-posterior distribution for the model parameters can be written as 

log Θ ∣ Y (1), …, Y (N)

∝ ∑
i = 1

N
∑

t = 1

T
log P yt

(i) ∣ Ωt
(i) ∏

v = 1

V
π ωt, vv

(i) ∣ α π ωvt
(i) ∣ ω1, vt

∗ , …, ωH, vt∗ , σω, 1
2 , …, σω, H

2

+ ∑
ℎ = 1

H
∑

l = 1

V
∑

t = 1

T
log π ωℎ, vt

∗ + ∑
ℎ = 1

H
log π σω, ℎ

2 ∝ ∑
i = 1

N
∑

t = 1

T 1
2 logdet Ω11, t

(i) − yt, − 1
(i)′ Ω11, t

(i) yt, − 1
(i)
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+ ∑
i = 1

N
∑

t = 1

T 1
2 −logκ1, t

(i) − s11, t
(i) + α κ1, t

(i) − ω1t
(i)′ σω, ℎ

2 IV − 1 + s11, t
(i) + α Ω11, t

(i) − 1 ω1t
(i) + 2s1, t

(i)′ω1t
(i)

− 1
2 ∑

ℎ = 1

H
∑

v = 1

V 1
σω, ℎ

2 Δℎ, vt
(i) ωv, t

(i) − ωℎ, t
∗ ′ ωv, t

(i) − ωℎ, t
∗ − V (V − 1)

2 ∑
ℎ = 1

H
Δℎ, vt

(i) log σω, ℎ
2

+ ∑
v = 1

V
∑

ℎ = 1

H − 1
Δℎ, vt

(i) xiTβℎ, t − log 1 + ∑
r = 1

H − 1
extTβr, t + ∑

t = 1

T
∑

v = 1

V
∑

ℎ = 1

H − 1
log π βℎ, t

+ ∑
ℎ = 1

H
∑
t = 1

T
−λ ωℎ, t

∗ − ωℎ, t − 1
∗

1 − aσ + 1 log σω, ℎ
2 − bσ

σω, ℎ
2 , (A.2)

where log π βℎ, t = −
βℎ, t

T Σβ
−1βℎ, t
2 − 1

2 log det Σβ  represents the logarithm of the prior 

distribution on the covariate effects. The EM algorithm to derive the MAP estimators for 

model parameters is based on the expression for the above log-posterior.

M-steps for dynamic pairwise correlations

M-step for mixture atoms:

Denote 

γℎ, jl = γℎ, jl, 1, …, γℎ, jl, T , γℎ, jl, t = 1
∑i = 1

N ψℎ, jlt
(i) ∑i = 1

N ψℎ, jlt
(i) γjl, t

(i) , wℎ, jlt =
∑i = 1

N ψℎ, jlt
(i)

2σγ, ℎ
2 , and 

γℎ, jl, t
(w) = wℎ, jltγℎ, jl, t. Further denote |⋅| as the element-wise L1 norm, and 

denote ηℎ, jl = ηℎ, jl, 0, ηℎ, jl, 1, …, ηℎ, jl, T − 1 , ηℎ, jl, 0 = γℎ, jl, 1
∗ , ηℎjl, t − 1 = γℎ, jl, t

∗ − γℎ, jl, t − 1
∗ . 

Then, using the derivations presented in the Supplementary Materials, 

γℎ, jl
∗ = argmin∑t = 1

T wℎ, jltγℎ, jl, t − wℎ, jltγℎ, jl, t
∗ 2 + λ∑t = 1

T − 1 γℎ, jlt
∗ − γℎ, jl, t − 1

∗

= argmin γℎ, jl
(w) − Mℎ, jlηℎ, jl

2
+ λ∑t = 0

T − 1 ηℎ, jl, t

, where the T 

× T matrix Mℎ, jl has the following form

Mℎ, jl =

wℎ, jl, 1 0 0… 0
wℎ, jl, 2 wℎ, jl, 2 0… 0
wℎ, jl, 3 wℎ, jl, 3 0… 0

⋮ ⋮ ⋮ ⋮
wℎ, jl, T wℎ, jl, T ωℎ, jl, T

.
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The solution can be obtained using a Lasso algorithm with the penalty parameter λ being 

chosen using BIC. The solutions for ηℎ, jl can be directly used to recover the estimates for 

γℎ, jl
∗ = γℎ, jl, 1

∗ , …, γℎ, jl, T
∗ , which in turn yields the dynamic connectivity estimates.

M-step for mixture variance:

Use the closed form solution to estimate (h = 1, …, H):

σγ, ℎ
2 = aσ + 0.5∑t = 1

T ∑i = 1
N ψℎ, jlt

(i) − 1
−1

bσ +

0.5∑t = 1
T ∑i = 1

N ψℎ, jlt
(i) γjl, t

(i) − γℎ, jlt
∗ 2

.

M-step for pair-wise correlations:

The update of γjl, t
(i)  is performed via a Newton-Raphson step. Denote the parameter estimate 

at fth iteration of Newton-Raphson as γjl, t
(i)[f], and use the update for the (f + 1) th iteration as 

γjl, t
(i)[f + 1] = γjl, t

(i)[f] −
a1 γjl, t

(i)[f]

a2 γjl, t
(i)[f] , where a1 γjl, t

(i)[f]  and a1 γjl, t
(i)[f]  are expressed as:

a1 γjl, t
(i)[f] = d i(Θ)[f] /d γjl, t

(i)[f] =
exp 2γjl, t

(i)[f] − 1

exp 2γjl, t
(i)[f] + 1

− ∑
ℎ = 1

H ψℎ, jlt
(i) γjl, t

(i)[f] − γℎ, jlt
∗

σγ, ℎ, jlt
2

−
exp 2γjl, t

(i)[f] 2
− 1 yjt2 + ylt

2 − 2yjtylt exp 2γjl, t
(i)[f] 2

+ 1

4σy2exp 2γjl, t
(i)[f] ,

and

a2 γjl, t
(i)[f] = d i(Θ)[f]2 /d γjl, t

(i)[f] 2
=

4exp 2γjl, t
(i)[f]

exp 2γjl, t
(i)[f] + 1

2 − ∑
ℎ = 1

H ψℎ, jlt
(i)

σγ, ℎ, jlt
2

−
exp 2γjl, t

(i)[f] 2
yjt2 + ylt

2 − 2yjtylt + yjt2 + ylt
2 + yjtylt

2σy2exp 2γjl, t
(i)[f]

The above iterative steps are repeated until convergence, i.e. when γjl, t
(i)[f + 1] − γjl, t

(i)[f] < 10−3.

M-step for covariate effects:

The log-posterior log π βℎ, jlt ∣ − ∝

−
βℎ, jlt

T Σβ
−1βℎ, jlt
2 − 1

2log det Σβ
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+ ∑
i = 1

N
Δℎ, jlt

(i) xiTβℎ, jlt − log 1 + ∑
r = 1

H − 1
exp xiTβr, jlt

≈ − 1
2 ∑

i = 1

N
wℎ, jlt zℎ, jlt − xiTβℎ, jlt

2 −
βℎ, jlt

T Σβ
−1βℎ, jlt
2 ,

using the expression in (A.1), and a quadratic approximation as in (Friedman et 

al., 2010) for the last step, in order to facilitate closed form updates. In the 

above expression, zℎ, jlt = xiTβℎ, jlt
∼ +

Δℎ, jlt
(i) − pℎ, jlt xi

pℎ, jlt xi 1 − pℎ, jlt xi
, wℎ, jlt = pℎ, jlt xi 1 − pℎ, jlt xi , 

pℎ, jlt = P Δℎ, jlt
(i) = 1 ∣ xi =

exp xiTβℎ, jlt
1 + ∑ℎ = 1

H − 1exp xiTβℎ, jlt
 represents the approximated probability 

under the quadratic approximation, βℎ, jlt represents the estimate of βℎ, jlt at previous 

step, and Δℎ, jlt
(i)

 represents expected probability for the ith subject as in the E-step. The 

above approximate log-posterior can be optimized to obtain a closed form expression as 

βℎ, jlt = argmaxβlog π βℎ, jlt ∣ − )) = Σβ
−1 + ∑i = 1

N wℎ, jlxixiT
−1 ∑i = 1

N wℎ, jlzℎ, jlxi , where the 

notations in the expression for βℎ, jlt has been defined previously.

M-steps for dynamic precision matrix estimation

M-step for mixture atoms:

Define eℎ, t
∗ = ωℎ, t

∗ − ωℎ, t − 1
∗ ′ = eℎ, 1t

∗ , …, eℎ, V t
∗ , t = 1, …, T − 1, Eℎ

∗ = ωℎ
∗, eℎ, 1

∗ , …, eℎ, T − 1
∗ ′, 

eℎ, v′t
∗  represents the elements in eℎ, t

∗ , W ℎ, v is a T × V − 1 matrix with the ith row as 

∑N
i = 1Δℎ, vt

(i)) ωv, t
(i)

2σω, ℎ
2 , W ℎ, v • , v′  and Eℎ

∗ • , v′  represent the v′th column of W ℎ, v and Eℎ
∗

respectively, and |⋅|1 represents element-wise L1 norm. Similar to the steps for dynamic 

pairwise correlations, the estimate for mixture atom ωℎ, t
∗ , ℎ = 1, …, H, t = 1, …, T , can be 

obtained by minimizing the following objective function:

∑
v = 1

V
‖W ℎ, v − Mℎ, v

∗ Eℎ
∗‖2 + λ ∑

t = 1

T − 1
eℎ, t
∗

1

= ∑
v = 1

V
∑

v′ = 1

V − 1
W ℎ, v • , v′ − Mℎ, v

∗ Eℎ
∗ • , v′ 2 + λ ∑

t = 1

T − 1
eℎ, v′t
∗

1 ,
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where Mℎ, v
∗ =

wℎ, v, 1 0 0… 0
wℎ, v, 2 wℎ, v, 2 0… 0
wℎ, v, 3 wℎ, v, 3 wℎ, v, 3… 0

⋮ ⋮ ⋮ ⋮
wℎ, v, T wℎ, v, T wℎ, v, T… wℎ, v, T

.

The above equation can be solved using a Lasso algorithm with the penalty parameter λ 
being chosen using BIC. The solutions for Eℎ

∗ are then used to recover the estimates for ωℎ, t
∗ .

M-step for mixture variance:

Use σω, ℎ
2 =

bσ + 0.5∑i = 1
N ∑t = 1

T ∑v = 1
V Δℎ, vt

(i) ωv, t
(i) − ωℎ, t

∗ ′ ωv, t
(i) − ωℎ, t

∗

aσ + 1 + 0.5V (V − 1)∑t = 1
T ∑i = 1

N Δℎ, vt
(i) .

M-step for covariate effects:

Using similar arguments as before, one can approximate the posterior as:

log π βℎ, t ∣ − ≈ − 1
2 ∑

i = 1

N
∑

v = 1

V
wℎ, t zℎ, vt − xiTβℎ, t

2 −
βℎ, t

T Σβ
−1βℎ, t
2 ,

where zℎ, vt = xiTβℎ, t +
ψℎ, vt

(i) − pℎ, t xi
pℎ, t xi 1 − pℎ, t xi

, wℎ, t = pℎ, t xi 1 − pℎ, t xi , 

pℎ, t = P Δℎ, t
(i) = 1 ∣ xi =

exp xiTβℎ, t
1 + ∑ℎ = 1

H − 1exp xiTβℎ, t
 represents the approximated probability under 

the quadratic approximation, where βℎ, t denotes the estimate of βℎ, t at previous step, 

and ψℎ, vt
(i)  represents expected probability for subject i as calculated in the E-step. The 

above approximate log-likelihood can be optimized to obtain a closed form expression 

βℎ, t = Σβ
−1 + V ∑i = 1

N wℎ, txixiT
−1 ∑i = 1

N ∑v = 1
V wℎ, tzℎ, vtxi , where the notations in the 

expression for βℎ, vt has been defined previously.
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Fig. 1. 
A schematic diagram illustrating the proposed dynamic pairwise correlation method. A 

mixture prior with H = 3 components is used to model dynamic correlations, where the 

mixture weights are modeled using covariates. The resulting networks at each time scan 

for each sample are allocated to one of the H clusters representing distinct network states 

that are represented by red, orange and blue cubes. Although the proposed method does 

not cluster transient states across time, the simplified representation in the Figure illustrates 

the similarity of brain states contained in identical colored cubes across the experimental 

session. Such temporal smoothness of the network is imposed via hierarchical fused lasso 

priors on the mixture atoms. Once, the dynamic FC is estimated, a post-processing step 

using K-means (Section 2.2) is applied to compute sub-groups of samples that exhibit 

similar dynamic connectivity patterns summarized across all time scans. The subgroups are 

represented by the circle, pyramid, triangle and inverted triangle shapes in the Figure and 

correspond to different modes of dynamic connectivity with different number of brain states 
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represented by different patterns within each shape. The connectivity change points for each 

individual, as well as at a cluster level, are computed via another post-processing step that 

employs a group fused lasso penalty (Section 2.3). The method reports both individual and 

cluster-level network features.
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Fig. 2. 
F1-score over time for one single subject under the case of dynamic partial correlation 

method. The vertical green lines are the true change points. Red line represents the proposed 

method with dynamic partial correlation (idPMAC), the cyan line represents the covariate-

naive version (BPMM-PM), the blue line represents DCR, and the pink line represents 

SINGLE method.
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Fig. 3. 
Performance of dynamic pairwise correlation (columns 1 and 2) and dynamic precision 

matrix (columns 3 and 4) methods under different number of spurious covariates represented 

by the X-axis. Lines with different color represent different network structure: Green (Erdos 

Renyi), Red (Small World), Blue (Scale Free). The top row provides the information of 

clustering performance (Clustering Error and Variation of Information), the middle row 

demonstrates the performance of network level change points estimation (sensitivity and 

number of False Positive estimations), and the performance of edge level change point 

estimation was provided in the bottle row.
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Fig. 4. 
Circle plots for the edges that are significantly different pre- and post-intervention in spin 

group but not in the control group. The top and bottom panel correspond to the results 

under dynamic pairwise correlation and dynamic precision matrix estimation incorporating 

covariates, respectively. Red and blue lines correspond to lower or higher edge strengths in 

the pre-intervention network compared to post-intervention. RC1 and RC2 refer to the two 

brain regions in the right cerebellum; RMTG1-RMTG3 refer to the three brain regions in the 
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right middle temporal gyrus; and LP1-LP2 refer to the two regions in the left precuneus. The 

MNI coordinates for these regions are provided in the Figure legend.
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Table 6

Computation Time (in minutes) for simulation studies involving 300 time scans and 40 samples, under all 

approaches implemented via Matlab version R2017a.

Method v=20 V=40 V=100

BPMM-PC 21 80 321

BPNN-PR 25 92 348

idPAC 27 102 402

idPMAC 31 114 416

SD+GFL 3 9 44

CCPD 70 315 844

DCR 18 90 297
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