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Abstract: Corema (C.) album belongs to the family Ericaceae and can be found in the Iberian Peninsula,
especially on the coastal areas facing the Atlantic coast. C. album berries have been used for centuries
in traditional medicine. Recent studies have revealed that not only the berries but also the leaves
have relevant antioxidant, antiproliferative, and anti-inflammatory properties, bringing this plant to
the forefront of discussion. A systematic review of the literature was carried out to summarize the
phenolic compounds and bioactive properties identified in C. album berries and leaves and to search
for research gaps on this topic. The search was conducted in three electronic databases (PubMed,
SCOPUS, and Web of Science) using PRISMA methodology. The inclusion criteria were the chemical
compositions of the berries, leaves, or their extracts and their bioactive properties. The exclusion
criteria were agronomic and archaeological research. The number of studies concerning phenolic
compounds’ composition and the bioactive properties of C. album berries and leaves is still limited
(11 articles). However, the variety of polyphenolic compounds identified make it possible to infer
new insights into their putative mechanism of action towards the suppression of NF-kB transcription
factor activation, the modulation of inflammatory mediators/enzymes, the induction of apoptosis, the
modulation of mitogen activated protein kinase, cell cycle arrest, and the reduction of oxidative stress.
These factors can be of major relevance concerning the future use of C. album as nutraceuticals, food
supplements, or medicines. Nevertheless, more scientific evidence concerning C. album’s bioactivity
is required.

Keywords: plant; natural products; camarinha; antioxidant; polyphenols; anticancer; anti-inflammatory

1. Introduction

Plants as natural medicinal agents have been used since ancient civilizations to treat
diseases such as cancer, inflammation, fever, etc. Their value as sources of molecules with
therapeutic potential has been recognized and, recently, they have gained much attention
in the drug discovery field, since many drugs from natural sources have been emerging,
currently constituting up to 50% of all drugs in the pharmaceutical industry [1].

Corema belongs to the family Ericaceae and includes two species: Corema conradii and
Corema album. The first is native to the Northwest coast of the USA and the latter can be
found in the Iberian Peninsula, especially on the coastal areas facing the Atlantic [2]. In
addition, Corema conradii differs from Corema album mainly by its very small fruit that lacks
fleshiness and is covered with oily appendages [3]. Both species are coastal shrubs with
sexual dimorphism. Concerning Corema album, this plant is a densely branched and long-
living shrub with evergreen leaves [4]. While male flowers are bigger and have reddish
petals and stamens with red-purple anthers, female flowers are smaller with pink-reddish
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petals [5]. Traditionally, the plant itself was also used in the Iberian Peninsula to make
rustic brooms [6].

The berries from Corema album have been consumed for many centuries since the
Islamic period (either fresh or in jams) and are employed in popular medicine [6,7]. In
recent years, several reports have highlighted the health-beneficial properties of Corema
album against several diseases, including cancer and neurodegenerative and cardiovascular
diseases, and have ascribed most of their beneficial effects to their composition of phenolic
compounds. Thus, this review is focused on unravelling the phenolic compounds already
identified in Corema album with an emphasis on describing the biological mechanisms and
signalling pathways related to their health-beneficial properties.

The species Corema album has two subspecies: Corema album azoricum, which is native
to the islands of Azores, and Corema album album (C. album), which is more commonly
found on the mainland [2]. The main difference between these two subspecies resides in its
area of distribution: Corema album azoricum typically grows on volcanic lava or ash fields
whereas C. album is characteristically found in coastal habitats [4].

C. album is an evergreen wild shrub that grows mainly on sandy soil over coastal
dunes and cliffs, reaching a maximum height of 1 m, with numerous branches exhibiting
leaves. Along the coast of Portugal, C. album is predominant on the southwest region from
Sines to Troia and in the central-north region from Nazaré to Ovar [6]. The flowering of
both female and male plants begins in early spring, from February to April [4]. The fruits
are produced by the female plants and ripen in early summer (June and July) in the south
and a little later (August and September) in the north [6]. The fruits are small, round berries
coloured white or pink-white when ripe with an acidic flavour [8].

C. album has been used in traditional medicine and is one of the medicinal plants
included in the herbarium of Francesc Bolòs (1773–1844) [9]. It has been described to
exhibit beneficial properties against fever and intestinal pinworm infection [6,7], which is
in accordance with the reported ability of C. album extracts to prevent oxidative damage [7].
Recently, the composition of each part of C. album has been studied by complementary
Raman and infrared techniques, revealing vibrational signatures for the skin (outer and
inner) and the seeds with distinct chemical compositions, specifically in its respective
content in phenolic derivatives [10,11]. A systematic review of the literature was carried
out to summarize the phenolic compounds and bioactive properties identified in C. album
berries and leaves and to search for research gaps in this topic.

2. Methods
2.1. Search Strategy

PRISMA methodology was applied by performing a search for publications in three
databases, namely, PubMed, SCOPUS, and Web of Science, using the following keywords:
(“Corema album” AND (berries OR leaves)). The collection of papers was performed up to
15 June 2022. A total of 74 publications were identified after compiling all three databases.
Duplicates, reviews, and opinion articles (n = 40) were removed.

2.2. Inclusion and Exclusion Criteria

The two authors of this publication independently screened the titles and abstracts of
the 34 remaining articles. Inclusion criteria were studies focusing on chemical composition
of berries, leaves, or their extracts and their bioactive properties. Exclusion criteria were
agronomic and archaeological studies. Then, the full texts of eligible articles were carefully
studied by all authors and the relevant data concerning phenolic compounds identified,
C. album samples (berries, leaves, and extracts), and the bioactive properties studied were
collected. In all steps, disagreements were resolved by meeting all authors and deciding on
the inclusion or exclusion of the articles together.
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3. Results
3.1. Literature Search Process

From the 74 records identified, only 34 remained for the title and abstract screening.
The remaining reports were duplicated articles, reviews, or opinion articles (Figure 1). Then,
21 articles were excluded based on the title and abstract reviews because these studies
involved agronomic or archaeological studies and did not include the chemical composition
of the berries, leaves, or of the respective extracts. The remaining 13 papers proceeded to
the full text review. From those, only 11 were about phenolic compounds’ identification in
C. album; thus, they were considered eligible for the data extraction [7,10–19].
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3.2. Phenolic Compounds in Berries and Leaves from C. album

Both berries and leaves from C. album revealed a rich content in several phenolic
compounds, which are summarized in Tables 1 and 2, respectively. The phenolic com-
pounds were divided into three main groups, namely, phenolic acids, flavonoids, and
stilbenes, according to their structural similarities. Phenolic acids are commonly divided
into two groups: the benzoic acids (C6-C1) with seven carbon atoms and cinnamic acids
(C6-C3) with nine carbon atoms. Usually, these compounds occur predominantly in their
hydroxylated forms: hydroxybenzoic and cinnamic acids, respectively. Flavonoids present
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a basic structure with 15 carbon atoms distributed by two aromatic rings linked by a three-
carbon chain (C6-C3-C6). Stilbenes are known to display a structure with two aromatic
rings linked by an ethene bridge.

Table 1. Phenolic compounds identified in C. album Berries.

Group Sub-Group Compound General Structure Ref.

PH
EN

O
LI

C
A

C
ID

S

Benzoic acid
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Table 1. Cont.

Group Sub-Group Compound General Structure Ref.
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Kaempherol (R1=R2=R4=OH; R3=R5=R6=H)
and derivatives:

- i.e., Kaempherol 3-O-galactoside (R6=galactose)
- i.e., Kaempherol 3-O-glucoside (R6=glucose)
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Table 2. Phenolic compounds identified in C. album leaves.

Group Sub-Group Compound General Structure Ref.

PH
EN

O
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C
A

C
ID

S

Hydroxycinnamic acids Coumaric acid (R=R1=R2=H) and derivatives:
- i.e., Coumaroyl Glucose (R=Glucose)
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Flavanols

Catechin (R=R1=R2=R3=R4=R5=OH) and
derivatives:

- i.e., Catechin 3-O-glucose (R3=Glucose)
Epicatechin (R=R1=R2=R5=OH; R3=R4=H)
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Moreover, and in accordance with previously described features [20], natural phenolic
acids, free or conjugated, can also appear as amides or esters whereas natural flavonoids,
free or conjugated, are often esterified to one or two sugar molecules (by one or more
hydroxyl groups).

In C. album leaves, another three predominant compounds were identified: 2′,4′-
dihydroxydihydrochalcone, 2′-methoxy-4′-hydroxydihydrochalcone [17], and 2′,4′-
dihydroxychalcone [18] (Figure 2). These compounds are chalcones, which are interme-
diates in the biosynthesis of flavonoids and isoflavonoids [19].
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Both the berries and leaves from C. album revealed interesting bioactive properties,
which are summarized in Figure 3. Scientific information regarding C. album’s bioactive
activities is very scarce and is mostly focused on the beneficial healthy properties of its
berries. C. album berries were described to have antimicrobial [11] and antioxidant activi-
ties [7,11,14,15]. Moreover, this antioxidant activity seems to be increased after simulated
digestion [13] and can protect against oxidative stress (yeast: [13]). C. album berries have
also been described as having cytotoxic effects in Caco-2 cells when the concentration of
the extract exceeds 8% [14]. There is also evidence that these berries are able to inhibit lipid
peroxidation and acetylcholinesterase activation [11].
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Figure 3. Summary of bioactive properties found in the literature for C. album berries, leaves, or
their extracts.

The bioactivity of C. album leaves has been studied regarding its cytotoxicity in
yeast [15,20]; colon carcinoma cells (HT-29 cells: [17]), an effect that seems to be medi-
ated through G2/M cell cycle arrest [18,21]; and apoptosis [18]. The cytotoxicity observed
was reported to be triggered by the pro-oxidant activity of at least two different hydroxydi-
hydrochalcones found in these leaves [17]. In contrast, a study using an enriched fraction
of polyphenols from C. album leaves claimed that this extract has promising cytoprotective
effects, modulating key events in Parkinson’s disease pathogenesis. Some other reports
also describe C. album leaves as having antioxidant effects [15,20].
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4. Discussion

A wide variety of phenolic compounds were identified in the berries and leaves from
C. album, but few studies explore the biological activities and signalling events triggered
by their extracts. Nevertheless, their physical–chemical profile and high phenolic content
supports a potential market expansion [22]. In particular, their enriched composition in
phenolic compounds, both in the berries and leaves, bring valuable insights into their
putative mechanism of action. Currently, it is well accepted that phenolic compounds can
modulate the activity of several enzymes, kinases, and transcriptional factors involved
in the modulation of biological processes such as oxidative stress, inflammation, cell
proliferation, apoptosis, and cell death [21,23]. In accordance, the phenolic compounds
previously identified in C. album berries and leaves are known to present a modulatory
capability in several signalling pathways, signal mediators or enzymes, and/or kinases
(Tables 3 and 4). Thus, these mechanisms can be indirectly associated with C. album.

Table 3. Protective mechanisms ascribed to phenolic compounds identified in C. album berries.

Compound Protective Mechanisms (s) Experimental Model Ref.

p-hydroxybenzoic acid

• Inhibits iNOS/NO and COX-2/PGE2 production.
• Suppresses MAPKs, IKK, IkB, and p65

phosphorylation; and p65 nuclear translocation.
• Inhibits IL-1β, IL-6, and TNF-α production.
• Downregulates iNOS and COX-2 expression.

Mouse macrophages [24]

p-coumaric acid
• Suppresses apoptosis via modulation of MAPK

signalling pathway.
• Suppresses IL-6 and TNF-α levels

- Human epithelial cells
- Animal models: rheumatoid arthritis

rats
[25,26]

Ferulic acid

• Reduces UV-B radiation-induced oxidation.
• Suppresses NF-κB and MAPK pathways.
• Inhibits H2O2-induced MAPK activation via ROS

pathway

- Human lymphocytes
- Bovine endometrial epithelial cells
- Rat vascular smooth muscle cells

[27–29]

Caffeic acid and
derivatives

• Reduces mRNA and protein synthesis of TNF-α,
IL-6, IL-1β cytokines.

• Induces apoptosis.

- Human cancer cells fibrosarcoma
- Animal model: albino mice (BALB/c) [30,31]

Chlorogenic acid

• Downregulates LPS-induced COX-2
up-expression.

• Inhibits PGE2, NF-κB, JNK/AP-1 signalling
pathway activation.

• Inhibits production of TNF-α, IL-6, IL-1β, IFN-γ,
MIP-1α.

- Mouse macrophages [32–36]

Neochlorogenic acid

• Reduces production of TNF-α, IL-1β, IL-6 and
NO.

• Inhibits NF-κB activation and blocks MAPK
signalling pathway phosphorylation.

• Increases HO-1 expression via AMPK/Nrf2
signalling pathway activation.

• Reduces CM-activated IκB/NFκB, STAT3
expression, and Akt/mTOR pathways.

- Human cancer cells: lung
- Mouse cells: macrophages, microglia,

fibroblasts
[37–40]

Kaempherol and
derivatives

• Upregulates caspase-3 activity.
• Induces apoptosis.
• Inhibits cell growth.
• Induces Cell-cycle arrest at G2/M

- Human cancer cells: brain, breast,
stomach, liver, QBC939 (human

cholangiocarcinoma)
- HCCC9810 (mice) and (human)

[41–45]

Quercetin and derivatives
Rutin

• Increases apoptosis.
• Inhibits cell cycle progression.
• Inhibits P-glycoprotein expression.
• Upregulates p53 and BAX expression.
• Downregulates PI3K, PKC, COX-2 and ROS

expression.
• Downregulates hypoxia-induced Nox4.
• Inhibits xanthine oxidase.
• Inhibits lipid peroxidation.
• Induces G2/M cell cycle arrest.
• Increases apoptosis.

- Human cancer cells: breast, liver
- Human cancer cells: neuroblastoma

- Animal models: Calf lung and
muscle cells;

Albino rats of Wistar strain.

[46–50]
[51–54]
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Table 3. Cont.

Compound Protective Mechanisms (s) Experimental Model Ref.

Myricetin and derivatives

• Increases apoptosis through reduction in Bcl-2
and pro-caspase-3 levels and increase in BAX
and cleaved caspase-3 levels.

• Decreases cell proliferation through stimulation
of phosphorylation and degradation of YAP.

• Increases cell cycle arrest.
• Reduces metastasis.

- Human cancer cells: esophagus,
ovary, and liver [55–58]

Cyanidin and derivatives

• Reduces cell proliferation.
• Reduces IL-3 and IL-4 by GATA-3 inhibition.
• Increases apoptosis.
• Decreases mucin 4 expression.
• Increases fatty acid oxidation and AMPK activity.

- Human cancer cells: breast, liver,
colon, prostate and ovarian.

- Animal model:
Murine thymoma

[59–62]

Delphinidin and
derivatives

• Inhibits BAX and caspase 3.
• Increases Bcl-2 protein.
• Inhibits intracellular ROS generation and

Nox1 protein.
• Normalizes the enzyme activity of SOD, CAT,

GSH-PX and MDA levels via increase in nuclear
Nrf2 protein.

• Increases NF-κB and Nrf2 pathways
antioxidant response.

• Inhibits activation of PI3K/Akt/mTOR
components and secretion of proinflammatory
cytokines and chemokines.

- Human cells (normal): eye,
keratinocytes

- Transformed cell line: human
chondrocyte

[63–65]

Abbreviations: AKT—Protein kinase B; AP-1—Activator protein 1; BAX—Bcl-2-like protein 4; Bcl-2—B-cell
lymphoma-2; CAT—Catalase; CM—conditioned medium; COX-2—Cyclooxygease-2; GSH-PX—Glutathione
peroxidase; H2O2—hydrogen peroxide; HO-1—Heme oxygenase 1; IFN-γ—Interferon γ; IL—Interleukin;
iNOS—Inducible nitric oxide synthase; IκB—NF-κB inhibitor; IKK—IκB kinase; JNK—c-Jun N-terminal ki-
nase; lncRNA-MALAT1—Long non-coding RNAs of metastasis associated lung adenocarcinoma transcript
1; LPS—Lipopolysaccharide; MAPK—Mitogen-activated protein kinase; MDA—Malondialdehyde; MIP-1α—
Macrophage inflammatory protein-1; mRNA—messenger RNA (ribonucleic acid); mTOR—mammalian target
of rapamycin; NF-κB—Nuclear factor kappa-light-chain-enhancer of activated B-cell; NO—Nitric oxide; Nox1—
NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 1; Nox4—NADPH (nicotinamide adenine dinu-
cleotide phosphate) oxidase 4; Nrf2—Nuclear factor erythroid factor 2-related factor 2; p53—Tumor protein p53;
p65—Nuclear translocation of p65 subunit of NF-κB and NF-κB DNA binding activity; PGE2—Prostaglandin E2;
PI3K—Phosphatidylinositol-3-kinase; PKC—Protein kinase C; ROS—Reactive oxygen species; SOD—Superoxide
dismutase; STAT3—Signal transducer and activator of transcription 3; TNF-α—Tumor necrosis factor α; UV-B—
Ultraviolet B; YAP—Yes-associated protein.

Note that the phenolic compounds may exert their biological effects through signalling
pathways separately or in a sequential way. Moreover, a putative crosstalk between these
pathways should not be overlooked.

4.1. Suppression of NF-kB Transcription Factor Activation

The nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) is a tran-
scription factor involved in the regulation of the expression of several genes that are
associated with inflammation and carcinogenesis. NF-κB, in the cytosol, is inactive since
it is bound to inhibitor kB (IkB) [83]. When IκB is phosphorylated, NF-κB is free to be
translocated to the nucleus and can activate genes such as p53, Myc, and other cellular
genes [21,83]. Present in C. album berries, neochlorogenic [37,39,40], p-hydroxybenzoic [24],
and ferulic [28,29] acids seem to be able to inhibit NF-κB activation. In addition, several
flavonols such as catechins [66–69], quercetin rhamnosyl hexoside [78–80], myricetin [74,75],
procyanidins [72,73] and kaempherol hexoside [76], identified in C. album leaves have been
shown to suppress NF-κB transcriptional activity and, thus, can prevent inflammation
and carcinogenesis.
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Table 4. Protective mechanisms ascribed to phenolic compounds identified in C. album leaves.

Compound Protective Mechanisms (s) Experimental Model Ref.

Catechin and derivatives
Epicatechin

• Inhibits NF-κB and AP-1.
• Inhibits “pro-oxidant” enzymes and induces

antioxidant enzymes.
• Suppresses inflammatory factors including

NF-κB, cytokines and adhesion molecules.
• Reduces IL-6, IL-12, IL-1α and IL-1β mRNA

expression induced by TNF-α.

- Animal studies: mice and rats.
- Animal model: experimental

autoimmune myocarditis rats, mouse
fibroblasts

[66–69]

Procyanidin and derivatives

• Upregulates expression and activity of
antioxidant enzymes via ERK, JNK and p38
MAPK pathways.

• Upregulates Nfr2 expression and activates Nfr2
antioxidant response element-mediated
transcription via p38 MAPK and PI3K/Akt
pathways.

• Downregulates mRNA expression of
proinflammatory cytokines such as TNF-α, IL-1β
and inflammatory molecules of COX-2.

• Upregulates mRNA expression of IL-10
• Suppresses MAPK, AP-1 and NF-κB pathways.

- Human cancer cells: liver
- Animal models: Rat liver, mouse

macrophages
[70–73]

Myricetin and derivatives

• Inhibits production of pro-inflammatory
mediators (NO, iNOS, PGE2, and COX-2).

• Decreases NO, iNOS, TNF-α, IL-6 and IL-12
production.

• Decreases NF-κB activation (suppresses
degradation of IκBα, nuclear translocation of p65
subunit of NF-κB and NF-κB DNA-binding
activity).

• Attenuates phosphorylation of STAT1 and IFN-β
production.

• Upregulates HO-1 expression through Nrf2
translocation.

- Animal model: mouse macrophage,
diabetic cardiomyopathy mice [74,75]

Kaempherol and derivatives

• Suppresses NF-κB pathway by targeting
protein-docking sites.

• Modulates expression of inflammatory cytokines
(TNF-α, IL-6, IL-1β and PGE2).

• Modulates phosphorylation of IκBα and p65.
• Inhibits phosphorylation of p38, ERK and JNK

- Human cancer cells: leukemia
Animal model: mouse macrophage [76,77]

Quercetin and derivatives

• Downregulates the expressions of iNOS and
IFN-γ

• Attenuates NF-κB-mediated inflammation.
(Scavenges ROS, necessary for NF-κB activation,
or blocks TNF-α-dependent commencement of
nuclear translocation of NF-κB)

• Suppresses MIP-1α-mediated
migration/activation of macrophages through
downregulation of CCR1/CCR5 production and
inhibition of inflammatory signalling activation
in macrophages.

• Inhibits MAPKs (ERK and JNK) and
transcription factors (NF-κB and AP-1).

• Downregulates mRNA and protein levels of
TNF-α, IL-1β, IL-6, iNOS and MIP-1α

• Downregulates microRNA 155 levels, inhibiting
NF-κB activation.

• Reduces IL-1β, TNF-α, IL-17 and intercellular
adhesion molecule 1 production

- Animal model:
HFD-induced inflammatory mice,

mouse macrophages, male C57BL/6
mice, periodontitis mice

[78–82]

Abbreviations: AKT—Protein kinase B; AP-1—Activator protein 1; CCR1—C-C chemokine receptor type 1;
CCR5—C-C chemokine receptor type 5; COX-2—Cyclooxygease-2; ERK—Extracellular signal-regulated kinase;
HO-1—Heme oxygenase 1; IFN-β—Interferon β; IFN-γ—Interferon γ; IL—Interleukin; iNOS—Inducible nitric
oxide synthase; IκBα—NF-κB inhibitor α; IκB—NF-κB inhibitor; JNK—c-Jun N-terminal kinase; MAPK—Mitogen-
activated protein kinase; MIP-1α—Macrophage inflammatory protein-1; mRNA—messenger RNA (ribonucleic
acid); NF-κB—Nuclear factor kappa-light-chain-enhancer of activated B-cell; NO—Nitric oxide; Nrf2—Nuclear
factor erythroid factor 2-related factor 2; p65—Nuclear translocation of p65 subunit of NF-κB and NF-κB DNA
binding activity; PGE2—Prostaglandin E2; PI3K—Phosphatidylinositol-3-kinase; ROS—Reactive oxygen species;
STAT1—Signal transducer and activator of transcription 1; TNF-α—Tumor necrosis factor α.



Pharmaceuticals 2022, 15, 1231 11 of 16

4.2. Modulation of Inflammatory Mediators/Enzymes

All the phenolic acids identified in C. album berries present anti-inflammatory prop-
erties since they inhibit the production of several interleukins (IL-1β and IL-6) and TNF-
α (Table 3). The following activities were reported in the leaves of C. album: some
polyphenols, such as catechins, were shown to inhibit IL-6, IL-12, and IL-1α; IL-1β, TNF-
α production [67,68]; procyanidins, shown to inhibit IL-1β and TNF-α expression [72];
quercetin rhamnosyl hexoside, which decreased the expression of TNF-α, IL-1β, IL-6, and
IL-17 [78,81,82]; kaempherol hexoside, which suppressed TNF-α, IL-1β, and IL-6 genera-
tion [77]; myricetin, which reduced TNF-α, IL-12, and IL-6 expression [74]; and rhamnetin,
which reduced TNF-α, IL-1β, IL-6, and IL-8 generation [84]. In addition, other compounds
were identified in the leaves such as chalcone derivatives that inhibited the production of
cytokines [85]; isoliquiritigenin and butein that inhibited lipopolysaccharide (LPS)-induced
inducible nitric oxide synthase (iNOS); and cyclooxygenase-2 (COX-2) expression [86],
contributing to the modulation of inflammation.

In the inflammatory process, enzymes such as COX-2 and xanthine oxidase (XO)
play a key role, and their levels of expression are modulated during the inflammation’s
progression. The polyphenols identified in the berries of C. album were shown to be capable
of suppressing/reducing the activity of XO and/or COX-2: through phenolic acids such
as chlorogenic [37] or p-hydroxybenzoic [24] acids or by flavonols such as quercetin-3-O-
hexoside [48].

4.3. Induction of Apoptosis

Apoptotic regulation involves numerous proteins such as families of p53, bcl-2-like
protein 4 (BAX), and caspases [23]. Several flavonols identified in C. album berries seem to
be able to induce apoptosis: anthocyanins, such as delphinidin-3-O-hexoside can induce
apoptosis by modifying BAX, caspase 3, and Bcl-2 proteins [64]; quercetin-3-O-hexoside
seems to be able to promote apoptosis, enhancing the expression of p53 and BAX pro-
teins [46]; and kaempherol-3-O-hexoside was associated with the induction of apoptosis
through the upregulation of caspase 3 and the downregulation of Bcl-2 [41,43,44]. Another
flavonoid identified in C. album leaves, pinocembrin, was reported to be able to induce
apoptosis in many different types of cancer cells [87].

4.4. Modulation of Mitogen Activated Protein Kinase

Since mitogen-activated protein kinase (MAPK) pathways are a convergent avenue
involved in numerous biological processes, changes in MAPK activity are of utmost im-
portance. p-coumaric acid has been demonstrated to have both antioxidant and anti-
inflammatory properties since it is capable of preventing oxidative stress-induced apop-
tosis in human epithelial cells through the modulation of the MAPK signalling path-
way [88]. Other phenolic acids identified in C. album berries, such as ferulic acid [28,29],
p-hydroxybenzoic acid [24], and neochlorogenic acid [36,40], can also prevent MAPK acti-
vation. In the leaves, some polyphenols have also been reported to exert modulatory effects
on MAPK pathways, including quercetin rhamnosyl hexoside [79] and procyanidins [73].

4.5. Cell Cycle Arrest

The deregulation of the cell cycle is associated with carcinogenesis and phenolic
compounds are known to be capable of inhibiting, in a variety of cell types, different
cell phases (G1, S, S/G2, and G2) [21,89]. C. album flavonols, identified in the berries,
are capable of changing the cell cycle; kaempherol-O-hexoside causes cell cycle arrest at
G2 [43,45] while rutin (a quercetin derivative) induces G2/M cell cycle arrest [54].

4.6. Zeduction of Oxidative Stress

The antioxidant properties ascribed to C. album seem to be mediated by an upregu-
lation of glutathione and cellularly antioxidant enzymes, as well as by the suppression
of reactive oxygen species (ROS) generation [90,91]. Indeed, berries usually exhibit an
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enriched content of phenolic compounds commonly associated with their high antioxidant
properties [15]. Such properties are also exhibited by C. album berries since they have
an anthocyanin content that can inhibit the intracellular content of ROS [63–65]. In these
berries, gallic acid, chlorogenic acid derivatives, and flavonols have also been identified as
having antioxidant properties [15,24,51,53].

Some compounds identified in the leaves of C. album also have antioxidant properties:
myricetin derivatives [74,75], reported as a modulator of nitric oxide (NO) generation
and of iNOS activity; stilbene derivatives [92]; and prenylated chalcone glycoside, which
showed radical scavenging activity [93].

5. Conclusions and Future Perspectives

Although a wide variety of phenolic compounds have been identified in the berries
and leaves from C. album, at the time of this review (15th Jun 2022), there are scarce scientific
data regarding the potential health benefits exerted by C. album. Only nine studies have
evaluated the biological properties of the berries, leaves, or respective extracts of this plant.
Nevertheless, the discussion section evidences that their rich composition in phenolic
compounds is promising when considering their health benefits and therapeutic potential.
The phenolic compounds identified in C. album leaves and berries can modulate several
pathophysiological processes, namely, inflammation, oxidative stress, carcinogenesis, etc.,
and this plant may also be attractive to the pharmaceutical industry with respect to gener-
ating new drug(s), nutraceuticals, or supplements, but more scientific evidence concerning
C. album’s bioactivity is required.
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