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Abstract

Meta-analysis methods that combine P-values into a single unified P-value are frequently employed to improve confidence
in hypothesis testing. An assumption made by most meta-analysis methods is that the P-values to be combined are
independent, which may not always be true. To investigate the accuracy of the unified P-value from combining correlated
P-values, we have evaluated a family of statistical methods that combine: independent, weighted independent, correlated,
and weighted correlated P-values. Statistical accuracy evaluation by combining simulated correlated P-values showed that
correlation among P-values can have a significant effect on the accuracy of the combined P-value obtained. Among the
statistical methods evaluated those that weight P-values compute more accurate combined P-values than those that do
not. Also, statistical methods that utilize the correlation information have the best performance, producing significantly
more accurate combined P-values. In our study we have demonstrated that statistical methods that combine P-values
based on the assumption of independence can produce inaccurate P-values when combining correlated P-values, even
when the P-values are only weakly correlated. Therefore, to prevent from drawing false conclusions during hypothesis
testing, our study advises caution be used when interpreting the P-value obtained from combining P-values of unknown
correlation. However, when the correlation information is available, the weighting-capable statistical method, first
introduced by Brown and recently modified by Hou, seems to perform the best amongst the methods investigated.
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Introduction

Meta-analysis methods that combine P-values into a single

unified P-value are commonly used to rank or score a list of

hypotheses [1]. For each hypothesis tested, the P-values to be

combined are often acquired from studying different features

associated with the hypothesis or from using different data analysis

methods (DAM) to analyze a chosen feature. Either approaches

conducted to test the same list of hypotheses assign an overall P-

value to each hypothesis tested. These P-values are then usually

sorted, with the most significant result ranking first in the list.

Given that different features may not be completely independent

and that different DAMs may share protocols and use similar

information, it is likely that the P-values obtained for a hypothesis

are correlated.

Most P-value combining methods assume that the P-values to

be combined are independent or weakly correlated [2,3]. When

the unified P-value is computed by combining correlated P-values,

without properly taking into account the correlation, there can be

notable effects in the significance assignment of the hypothesis

tested. As the P-values to be combined are possibly correlated, it is

important to investigate the effect that correlation has on the

unified P-value. The current study is designed to evaluate the

accuracy of the unified P-value computed by combining

(positively) correlated P-values using some commonly applied

statistical methods. By P-value accuracy, we mean how well on

average does reported P-value agree with the one-sided cumula-

tive distribution function of the random variable (associated with

the null hypotheses tested) at the critical region. In other words,

accurate P-value means that when one controls type-I error rate at

a level a, the type-I error rate is really controlled at the level a. To

keep this paper focused, we will not provide a lengthy

introduction. For methods that we will evaluate, more details are

provided in the Methods sections. For others, we will only provide

the readers with appropriate references.

Several studies have been performed to evaluate methods that

combine independent P-values [4–10]. For example, Rosenthal

has evaluated nine methods for combining P-values and has

summarized advantages, limitations and applications for each

method [4]. Loughin [5] has also conducted a systematic

comparison of methods for combining P-values and recom-

mended practitioners to choose a method based on the structure

and expectation for the problem being studied. Recently, Whitlock

[6] has showed that the weighted Z-method has more power and

precision than Fisher’s test. In other studies, Chen [8] as well as

Chen and Nadarajah [9], have shown that either the generalized

Fisher method due to Lancaster or a special case of Lancaster’s test

outperform the weighted Z-method, while Zaykin [10] has shown

that the weighted Z-method has similar power to Lancaster’s

method when the weights are selected to be the square roots of

sample sizes.
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As for combining correlated P-values, only few studies have

been conducted to evaluate the accuracy of the unified P-value

computed by existing statistical methods [11,12]. Evidently, more

comprehensive investigations that incorporate different methods,

encompass a wide range of correlation strength, and have a large

number of simulations can further our understanding on the effect

of correlation has on computing a unified P-value. To advance

towards this direction, we systematically investigate a family of

statistical methods for combining P-values. Because we are

interested in combining P-values obtained from the right-tailed

tests, we have limited our study to methods that combine P-values

based on the normal distribution (e.g. Stouffer’s method) and on

the Chi-square distribution (e.g. Fisher’s method), the general

purpose method and the right-tail method recommended by

Loughin [5]. The two aforementioned methods, aside from being

frequently used to combine P-values, are useful and important to

study for the following reason. Both methods mentioned have

variations that weight P-values while computing the combined P-

value: Lipták, Good and Bhoj methods [13–15], and variations

that take into account the correlation among P-values: Hartung

and Hou methods [16,17]. In addition, all methods mentioned

above either have closed-form formulas, i.e., distribution functions,

or approximation formulas that can provide the unified P-value

with minimum computation cost.

In summary, our study presents an accuracy evaluation of the

unified P-value obtained from statistical methods designed to

combine independent, weighted independent, correlated, and

weighted correlated P-values. We have evaluated the accuracy of

the unified P-value from combining positively correlated P-value

vectors with correlation among P-value vectors in the range ½0,1�.
Our results show that methods designed to combine independent

P-values but with the capability of assigning weights to P-values

perform better than methods that combine independent P-values

without weights. Also methods that take into account the

correlation between P-values perform significantly better than

methods designed to combine independent P-values. Based on this

study, the method first introduced by Brown [18] to combine

correlated P-values and later adapted to include weights by Hou

[17] is the best performing one amongst the methods investigated.

Methods

The main task of combining P-values is described below. Given

a list of hypotheses H~fH1,H2,H3, � � � ,HKg, let each hypothesis

have m P-values associated with it. These m|K P-values can be

organized as m P-value vectors, P1,P2, . . . ,Pm, each having K
components. Each P-value vector may result from analyzing one

out of m different features of every hypothesis or may be from

analyzing a single feature using one of the m different DAMs.

The m P-values associated with hypothesis Hi are

fP1(i),P2(i), . . . ,Pm(i)g. Given those values, one needs to

combine them to form a single unified P-value. This scenario

can occur in many applications. As an example, when different

studies are performed to test a set of genetic loci for allelic

imbalance [19], the number of genetic regions tested will

correspond to the number of hypotheses K and each region will

carry with them m P-values, one from each of the m studies. To

fairly rank these possible K regions, for each region one would

need a unified P-value resulting from combining the m P-values

associated with it. For database search based peptide identification

using mass spectrometry, it is possible to analyze the data using

multiple analysis methods. Here for each experimental spectrum,

the number of hypotheses tested K equals the number of scored

peptides in the database and each peptide receives a P-value from

each of the m analysis methods. To fairly rank the candidate

peptides, it is again natural to combine the m P-values associated

with each scored peptide [3] to reach a unified P-value. In the

sequence homology detection where multiple motifs are used as a

query to a sequence database, it is often needed to combine the P-

values, each from one of the m motifs, to assign the statistical

significance to a sequence in the sequence database [2]. In this

case, K is the number of sequences in the database, while m is the

number of motifs used as the query.

To make the notation uniform, we will use Fs and F{1
s to

represent the cumulative distribution and inverse cumulative

distribution. When the subscript s~n,x,c, Fs represents respec-

tively the cumulative Normal, Chi-squared, and Gamma distri-

butions. All the parameters of these distributions will be shown as

arguments enclosed by a pair of parentheses following the symbol

F .

Combining Independent P-values
We begin this subsection with a brief introduction of Stouffer’s

(Z-transform test) and Fisher’s (Chi-square test) methods. Gener-

alizations of both methods to combine weighted P-values are also

described.

Method 1. The combined Z-transform test was first used by

Stouffer et al. [20] and later generalized to include weights by

Lipták [13]. Under the null hypothesis, the P-values are uniformly

distributed between [0,1]. Given a list of P-values

(p(Hi ,1),p(Hi ,2), � � � ,p(Hi ,m)) associated with a given Hi, one trans-

forms the P-values to a new variable (xHi ,j) by a simple

transformation

xHi ,j
~F{1

n (1{p(Hi ,j)
), 1ƒjƒm ,

where F{1
n stands for the inverse of the cumulative normal

distribution. For the Z-transform test the distribution function used

is the standard Normal (Gaussian) distribution with probability

density function given by

pdfn(x; m,s)~
1ffiffiffiffiffiffi
2p
p

s
e
{(x{m)2

2s2

with parameters m~0 and s~1.

Stouffer’s way to combine the above P-values is by defining a

new variable

t0~

Pm
j~1

x(Hi ,j)ffiffiffiffi
m
p ,

which is also Gaussian distributed with P-value given by the

formula

P(t0§t)~

ð?
t

e
{t2

2
d tffiffiffiffiffiffi
2p
p ð1Þ

A generalization of the above equation that assigns weights (wj )

to the variable xHi ,j is know as the weighted Z-transform test [13]

Accuracy of Combined P-Value
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t0~

Pm
j~1

wjx(Hi ,j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j~1 w2

j

q :

The variable of the weighted Z-transform t0 also follows Normal

distribution, and the formula for the P-value is also given by eq.

(1).

Method 2. Fisher’s method [21] is one of the most used

method to combine independent P-values. The combined Fisher

P-value is obtained through the following variable:

t0~{2
Xm

j~1

ln (p(Hi ,j)
),

which follows a Chi-squared distribution pdfx(t; 2m) with 2m

degrees of freedom. Computing the unified P-value using the Chi-

squared distribution is not the most efficient approach because of

the significant computational cost in calculating the cumulative

distribution Fx. A more efficient way to obtain the unified P-value

has been proposed [2,3], where the unified P-value of ~tt0:e{t0=2

has a closed form given by

P(~tt0ƒ~tt)~~tt
Xm{1

v~0

½{ ln (~tt)�v

v!
, ð2Þ

or in terms of the t0 variable

P(t0§t)~e{t=2
Xm{1

v~0

tv

2v v!
: ð3Þ

Note that as t0 increases ~tt0 decreases and vice versa.

Fisher’s method does not assign weights to the P-values to be

combined. However, when information is available regarding how

P-values were obtained, it might be beneficial to weight P-values.

Lancaster et al. [22] addresses this issue by replacing the random

variable {2 ln (p(Hi ,j)) with F{1
x (1{p(Hi ,j); dj), a variable follow-

ing a Chi-squared distribution with dj degrees of freedom not

necessarily equal to two.

In Lancaster’s procedure, summarized below, one can exploit

the equivalence between the Chi-squared distribution pdfx(x; d)

and the gamma distribution pdfc(x; a~
d

2
,b~

1

2
) to reach a

different weighting generalization. For hypothesis Hi, the variable

t0 can now be written as

t0~
Xm

j~1

F{1
x (1{p(Hi ,j)

; dj)~
Xm

j~1

F{1
c (1{p(Hi ,j)

; dj=2,1=2),

which evidently follows a Chi-squared distribution with
Pm

j dj

degrees of freedom. In the expression above, Fisher’s method is

recovered by setting dj~2 for all j. Another way to incorporate

weights is to keep dj~2 while retaining a general b value.

Specifically, one may choose, with wj being the weight factor, to

use the following new variable

t0~
Xm

j~1

wjF
{1
c (1{p(Hi ,j)

; 1,b)~{
Xm

j~1

wj

b
ln (p(Hi ,j)

):

The P-value for t0 can be easily evaluated using the same

technique as that in [3] and is given below

P(t’§t)~
Xm

j~1

e
{bt=wj wm

j {1

P
m

v~1,v 6¼j (wj{wv)
: ð4Þ

Interestingly, with b~1=2, eq. (4) corresponds to the unified P-

value of multiplying weighted independent P-values obtained

earlier by Good [14]. This can be seen by the following

observation. Good defined his variable

~tt0~P
j~1

m

p
wj
(Hi ,j)

~e{t0=2,

and the corresponding P-value is given by

P(~tt’ƒ~tt)~
Xm

j~1

(~tt)1=wj wm{1
j

P
m

v~1,v6¼j (wj{wv)

2
4

3
5 ð5Þ

When expressed in the variable t:{2 ln ~tt, we easily see that

P(t’§t)~
Pm

j~1

e{t=2wj wm{1
j

P
m

v~1,v 6¼j (wj{wv)

2
4

3
5 ,

in agreement with eq. (4) when b~1=2.

A question that arises naturally when using methods such as the

weighted Z-transform’s test, Good’s test, and Lancaster’s test is

how to obtain the optimal weights (wj )? This difficult question has

been raised and it was suggested that the choice of weights may

vary by cases [23]. Existing methods to assign/estimate the

weights include, but are not limited to: (1) weight in proportion to

the reciprocal of the variance estimated from each study [6], (2)

estimate the weights from one’s prior belief about a method or

feature [24], (3) select weights to stabilize the variance of the

combined test statistics [25], and (4) use weights that improve the

testing power [26]. Because there is no universal procedure to

compute the optimal weights to be used, in this study the weights,

when used, were randomly generated and normalized to sum to

one (see Table 1).

There are also two apparent problems with Lancaster’s eq. (4)

and Good’s eq. (5). The first problem is that the weights used can’t

be identical, otherwise singularities can occur [14,15]. Second, if

the difference between some of the weights are small, numerical

instability can occur [15,17,27]. In order to address the problem of

numerical instability associated with identical and almost

identical weights, Bhoj [15] suggested an approximation using a

linear combination of m gamma density functions (with

t0~{2
Pm

j~1 wj ln (p(Hi ,j)))

Accuracy of Combined P-Value
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P(t0§t)~1{
Xm

j~1

wjc
1

wj
, t

2wj

� �
C 1

wj

� � ~
Xm

j~1

wj 1{Fc(
t

2wj

;
1

wj

)

� �
ð6Þ

where c(a,x)~
Ð x

0
ta{1e{tdt is the incomplete gamma function

and C(a)~c(a,?) is the gamma function. Although the approx-

imation provided by Bhoj does reduce to Fisher’s distribution

when the weights are all equal and does not encounter singularities

when weights are identical or nearly identical, this approximation

does not lead to Good’s distribution when the weights are all

different. A recent publication [27] has provided an analytical

formula that not only is numerically stable when combining P-

values with nearly degenerate or identical weights but also

correctly reproduces Fisher’s and Good’s results as limiting cases.

Combining Dependent P-values
In this subsection we summarize two statistical methods that are

generalizations of Stouffer’s test (Z-transform test) and Fisher’s test

(Chi-square test) that attempt to account for the correlation among

P-values to be combined.

Method 3. Hartung [16] incorporates the correlation among

P-values via introducing in the Z-transform test (eq. (1)) the

correlation-matrix, with elements rjv computed from the variable

pairs (xHi ,j ,xHi ,v), and by defining a new variable

t0~

Pm
j~1 wjxHi ,jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1{E½r�)
Pm

j~1 w2
j zE½r�(

Pm
j~1 wj)

2
q ,

where

E½r�~2

Pm
j~1

Pm
vwj rjv

m(m{1)
, ð7Þ

and

rjv~

PK
i~1 (xHi ,j

{xH.,j)(xHi ,v
{xH.,v)

K sj sv

, ð8Þ

where xH.,j~
PK

i~1 xHi ,j
=K is the average value of xHi ,j

, K is the

total number of hypotheses tested, and s2
j is the variance of xHi ,j

.

The P-value for t0 is then approximated by the standard

Normal distribution

P(t0§t)&
ð?

t

e{t2=2 d tffiffiffiffiffiffi
2p
p , ð9Þ

which nevertheless becomes exact in the two extreme limits of

rjv~1 Vj,v and rjv~0 Vj=v. Although in general the distribution

of t0 is only approximately normal, it is arguable that ignoring

correlation can cause more damage to the combined P-value than

the deviations from normality. Applications and extensions of

Hartung’s idea can also be found in more recent publications

[12,28].

Method 4. Following Satterthwaite’s procedure [29], there

have been some attempts, when combining correlated P-values, to

obtain approximate unified P-value for the Fisher’s variable (no

weight) [18,30] and for the Good’s variable (unequal weights) [17].

The main idea of Satterthwaite’s procedure is to equate the first

two moments of the uncharacterized distribution to that of a Chi-

squared distribution. Brown [18] and Kost et al. [30] tried to

approximate the distribution of the Fisher’s variable

t0~
Xm

j~1

{2 ln (pHi ,j
),

and Hou [17] the distribution of Good’s variable

t0~
Xm

j~1

{2wj ln (pHi ,j
),

to that of a Chi-squared distribution pdfx(t0=c; f ), with c being a

scale factor to be determined.

The expectation value (E½t0�) the variance (V ½t0�) of t0 by formal

operation are given respectively by

E½t0�~E½
Xm

j~1

{2wj ln (pHi ,j
)�~2

Xm

j~1

wj , and ð10Þ

Table 1. Breakdown of Methods Used to Combine P-values Investigated.

Method Name Ref. number Eq. number Acc. weights Nor. weights Account for corr.

Fisher [21] 3 no none no

Stouffer [20] 1 no none no

Bhoj [15] 6 yes
Pm

i~1 wi~1 no

Good [14] 5 yes
Pm

i~1 wi~1 no

Lipták [13] 1 yes
Pm

i~1 w2
i ~1 no

Hartung [16] 9 yes
Pm

i~1 wi~1 yes

Hou [17] 14 yes
Pm

i~1 wi~1 yes

The first column of the table provides the names of the methods used to combine P-values investigated in our study. The second column lists the reference number
cited in this paper for the publication (Ref) corresponding to the method used. The third column provides the equation number for the method distribution function
used to compute the formula P-value. The fourth column indicates if a method equation can accommodate (acc.) weight when combining P-value. The fifth column
gives the normalization (nor.) procedure used to normalize the weights. Finally, the last column conveys the information about a method’s capability to account for
correlation (corr.) between P-values.
doi:10.1371/journal.pone.0091225.t001
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V ½t0�~V ½
Xm

j~1

{2wj ln (pHi ,j
)�

~4
Xm

j~1

w2
j z2

Xm

j~1

Xm

v~1,jvv

wjwv cov({2 ln (pHi ,j
),{2 ln (pHi ,v)):

On the other hand, the expectation value and variance of t0

using pdfx(t0=c; f ) yields

E½t0�~cf , and ð12Þ

V ½t0�~2c2f : ð13Þ

Equating (10) to (12) and (11) to (13) yields

c~

2
Pm

j~1 w2
j z
Pm

j~1

Pm
v~1,jvv wjwv cov({2 ln (pHi ,j

),{2 ln (pHi ,v
))

2
Pm

j~1 wj

,

and

f ~

4(
Pm

j~1 wj)
2

2
Pm

j~1 w2
j z

Pm
j~1

Pm
v~1,jvv wjwv cov({2 ln (pHi ,j

),{2 ln (pHi ,v
))
:

The covariance (cov) term used above was first estimated by

Brown [18] and recently an improved estimation (through

numerically tabulating the covariance as a function of the

correlation and then performing polynomial fits) was provided

by Kost and McDermott [30]

cov({2 ln (pHi ,j
),{2 ln (pHi ,v

))~3:263rjvz0:710r2
jvz0:027r3

jv,

where rjv above is the correlation between ln (pHi ,j
) and ln (pHi ,v

).

The P-value for t0 is then approximated by that of a Chi-squared

distribution

P(t0§t)~1{F{1
x (t=c; f ): ð14Þ

Equation (14) reduces to Fisher’s formula eq. (3) when the P-

values are independent and the weights are all same. However, the

above equation does not reduces to Good’s formula eq. (5) when

the P-values are independent and each carries a different weight.

Generating Correlated P-value Vectors
By definition, the P-values of null hypotheses should be

uniformly distributed between 0 and 1, which is often assumed

by methods of combining P-values. However, the uniformity of P-

values, when assigned by available statistical tools to a group of

null hypotheses, is often lost. This would handicap the efficacy of

methods for combining P-values from the start. To eliminate the

effect of nonuniform null P-values from our evaluation, we enforce

the quasi-uniformity of null P-values by first constructing a starter

P-value vector ~ of size K with the ith element ~(i) = i=K, for

1ƒiƒK. (See next paragraph for more details.) This guarantees

an even sample of the P-values (in the range from 1=K to 1). To

achieve correlations of various strengths, we have used P-value

vectors, each of which is obtained via permuting (pairwise) the

elements of a fixed vector, the starter vector with a small

perturbation, by a randomly chosen number. The basic idea is

that when the number of pairwise permutations is not large, the

resulting P-value vectors will be correlated to the fixed vector and

will be correlated among one another. It is worth pointing out that

this approach does not generate correlations with a prescribed

strength: even with the same number of random pairwise

permutations of the vector elements, the correlation between

any pair of such permuted vectors does not have a fixed strength. We

believe this is closer to the real-world scenario than having a fixed

correlation strength among the P-value vectors. The value of K
should not matter in terms of testing whether a method can

provide accurate combined P-value. If a small K is used, however,

the combined P-value will have a large statistical fluctuation that

may reduce the resolution of the comparison. On the other hand,

making K large causes a long computational time. We find that

using K~10,000 yields enough separations among methods tested

without significantly slowing down the computation.

For each method investigated, we have performed a simulation

of 500,000 realizations, each of which was conducted as follows.

First, pick a random positive integer r with 1ƒrƒK=2. Second,

generate the first P-value vector P1 by adding a small random

perturbation (+d) between 0 and 5|10{5 to each vector element

of ~ : P1(i)/~ (i)+di. Evidently, by increasing the upper bound

for d, one will produce P-values with larger variations from exactly

uniform distribution. In the third step, generate more size-K
vectors P2,P3, � � � ,Pm and initialize them to P1. For each vector

generated, its vector elements are pairwise permuted r (chosen at

the first step) times. After that using { ln Pj(i) in place of xHi ,j the

pairwise correlation rjv was computed using eq. (8) and the

average correlation E½r� among vectors was computed using eq.

(7). This work flow is illustrated in Figure 1 with d(i)?0 for

simplicity. The constructed random P-value vectors P1,P2, � � � ,Pm

were then combined to obtain a unified P-value vector (F) using

the various methods listed in Table 0. Once the unified P-value

vector (F) was calculated, its elements were sorted in increasing

order and it was then compared against the rank (R) vector, whose

element is obtained by dividing the rank of a F element by K, i.e.,

R(i)~i=K for i ranging from 1 to K. We shall call R(i), the ith
element of the rank vector, the normalized rank of rank i.

Statistical Accuracy Evaluation of the Combined P-value
(F)

If a method yields a unified P-value vector F agreeing with R,

the scatter plot of F(i) versus R(i) should produce a straight line

with slope one and intercept zero [31]. It is also important to

mention that the smallest computed P-value is expected to be

inversely proportional to the sample size, which for the current

case is of the order of 10{4. An example of a logarithmic plot of F
versus R generated from a single iteration of our simulation is

shown in Figure 2. Using the textbook definition of P-value, the

linear slope obtained from the logarithmic plot of R versus F
should be approximately one for methods with accurate statistics.

To quantify how well F agrees with R we use four measures: (1)

the average weighted sum of squares error (AWSE), (2) the

distance (D) between F and R, (3) the expected rank E½R(Fc)�, and

(4)the expected error of F (i). Figure 2 also illustrates what is being

computed by the above four measures.

Accuracy of Combined P-Value
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Average Weighted Sum of Squares Error. We define the

average weighted sum of squares error as

AWSE~
1

K
XK
i~1

½ ln (R(i)){ ln (F(i)) �2

R(i)
: ð15Þ

The weight factor (w), 1=R(i), in the above equation was chosen

so that each point in the transformed variable domain carries the

same contribution to the AWSE. By construction, the P-values in

the random vector R are uniformly distributed between ½10{4,1�.
However, once we make the logarithmic transformation,

yi~{ ln (R(i), we find the new variable y to be exponentially

distributed, i.e., pdf(y)~e{y. One may thus introduce w(y), a

weight factor making w(y)pdf(y)~1, to compensate the non-

uniformity in y. This leads to w(yi)~eyi ~1=R(i), the weight

factor used in eq. (15).

Angular Distance Between F and R. To compute the

distance between F and R, we began by first computing the slope

(b) of the logarithmic plot of R versus F using a weighted least-

square regression, which aims to minimize the weighted sum of

squares error (WSE)

WSE~
XK
i~1

½ ln (R(i)){a{b ln (F (i) �2

R(i)
:

Taking the derivative of the above expression with respect to a

and b and setting them equal to zero gives the following equations:

Figure 1. Example workflow of generating correlated P-values and pairwise correlations. In this example figure, K is 10, the number of P-
value vectors is m~3, the number of pairwise permutations r~3, and the perturbations d(i)s are set to zero for clarity and simplicity. The resulting
pairwise correlations by using { ln Pj(i) in place of xHi ,j are displayed in a symmetric matrix form.
doi:10.1371/journal.pone.0091225.g001

Figure 2. Log-log plot of the unified P-value vector F versus the rank vector R. The curves in panels (A) and (B) were obtained from
combining the P-values of four P-value vectors, each of size 10,000, using Stouffer’s method. In panel (A), the red circles show the scatter plot of
normalized rank versus computed P-value from a randomly picked iteration (realization) of very weak average correlation. It is through curves like the
one displayed in panel (A) that enables one to calculate the average sum of squares error using eq. (15) and the distance measure using eq. (16).
Panel (B) shows 1000 curves, each of which is obtained from performing the same task as that leads to the curve in (A) but with different average
correlation strengths. The lines that go significantly above y~x line are from cases with stronger average correlations. They yield unified P-values
that are much exaggerated perhaps due to the fact that the Stouffer’s method does not account for correlations. By averaging the normalized rank R
along the blue line (F~Fc) yields the value E½R(Fc) (see eq. (17)). By shifting the blue line to different Fc values renders the entire E½R(Fc)� versus Fc

curve. The red horizontal line illustrates the case when i~10 (or normalized rank R(10)~10{3). By averaging the { ln F values along this line, the

E½ln (
R(i)

F (i)
)� value is obtained for i~10 by simply adding ln (10{3) to the averaged value (see eq. (18)).

doi:10.1371/journal.pone.0091225.g002
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L(WSE)

La
~
X

i

ln (R(i))

R(i)
{b

X
i

ln (F (i))

R(i)
{a

X
i

1

R(i)
~0

and

L(WSE)

Lb
~
X

i

ln (R(i)) ln (F (i))

R(i)

{b
X

i

ln (F (i)) ln (F (i))

R(i)
{a

X
i

ln (F (i))

R(i)
~0:

Solving the above two equations simultaneously for a and b

gives

a~

X
i

ln (R(i))

R(i)X
i

1

R(i)

{b

X
i

ln (F (i))

R(i)X
i

1

R(i)

~MR{bMF

where MR and MF are the weighted average of ln (R) and ln (F )
respectively and

b~

X
i

1

R(i)
½ln (R(i)){MR�½ln (F (i)){MF �X

i

1

R(i)
½ln (R(i)){MR�2

:

From b and a, a normalized vector VF~(
1ffiffiffiffiffiffiffiffiffiffiffiffi

1zb2
p ,

bffiffiffiffiffiffiffiffiffiffiffiffi
1zb2
p )

was computed using the points (0,a) and (1,bza) along the

regression line. Similarly another normalized vector

VR~(
1ffiffiffi
2
p ,

1ffiffiffi
2
p ) was obtained using the points (0,0) and (1,1)

along the ideal line. Finally, the (angular)distance between the two

unit vectors F and R was computed

D~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1{VF

:VR)
p

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1{

1zbffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2b2
p )

s
: ð16Þ

Methods with accurate statistics are expected to have b~1 and

a~0. Evidently, b~1 leads to D~0 (see eq. (16)). The

independence of the angular distance D on the intercept

parameter a implies that D only measures the relative accuracy

of the P-value, not the absolute accuracy. For example, if

F(i)~gR(i), even when the positive constant g is different from

1, D is still zero.

Expected Rank E[R(Fc)]. For iteration 1ƒaƒ

(N~500,000), we denote by Ra(Fc) the largest normalized rank

whose corresponding reported P-value is less than or equal to a

selected cutoff P-value Fc. The expected rank E[R(Fc)] is

computed by averaging Ra over all realizations and can be

written as

E½R(Fc)�~ 1

N
XN
a~1

Ra(Fc) : ð17Þ

In the ideal case of absolute accuracy, Ra(Fc)~Fc. In reality,

this is hardly the case and that is why we use the expectation value

of Ra(Fc) versus Fc as the measure. For methods with accurate

statistics a plot of E[R(Fc)] versus Fc should trace closely the line

y~x.

Expected Error of F (i). The expected error of F (i) relative

to R(i)~i=K (for 1ƒiƒK) is defined as

E½ ln (
R(i)

F(i)
) �~ 1

N
XN
a~1

ln (
R(i)

Fa(i)
), ð18Þ

and the standard deviation

s½ ln (
R(i)

F (i)
) �~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
XN
a~1

f ln (
R(i)

Fa(i)
){E½ln (

R(i)

Fa(i)
)� g2

vuut : ð19Þ

For methods with accurate statistics, plotting E½ ln ( R(i)
F (i)

) � versus

R should track the line y~0 well and have small standard

deviations for various R(i).

Results and Discussion

The four measures mentioned in the methods section are used

to evaluate the accuracy of the unified P-value computed. In

Figures 3, 4, 5 and 6, we show the results of combining a list of 12
P-values. The layout of each of these figure is identical. For each

method considered, our simulation includes a total ofN~500,000
iterations. At each iteration, we generated K lists, within which the

ith list is obtained by taking the i entry of each of the 12 P-value

vectors, (P1,P2, � � � ,P12). By computing the pairwise correlation

(see eq. (8)) among the P-value vectors, one obtains the average

pairwise correlation E½r� given by eq. (7). Each iteration,

generating a 12-tuples of P-value vectors, thus yields an average

correlation E½r�.
For Figures 3, 4, 5, 6, the data points in panels A and B

respectively display the expected average sums of square errors

(E½ASWE�) and expected distances (E½D�) versus E½r�. More

specifically, every data point plotted with x-axis value

rk~0:025z0:05 � (k{1) represents an average of 25,000

iterations, each of which has its 12-tuple’s average correlation

E½r� fall in the range of rk+0:025. For panels C, D, E and F, each

data point plotted is computed using all the N iterations from our

simulation. The curves in panel C show the expected number of

events with unified P-value computed less than or equal to a cutoff

value Fc. For methods with accurate statistics, by the definition of

P-value, a plot of E½R(Fc)� versus Fc should follow the line y~x.

Panels D and E (and F for Figures 3 and 4) display the expected F
value together with its standard deviation as a function of R.

Similar plots for the combination of 4 and 8 P-value vectors can be

found in File S1.

Figure 3 displays the results for methods that assume the the P-

values to be combined are independent: Fisher’s (eq. 3), Stouffer’s

(eq. 1) and Bhoj’s (eq. 6) methods. These methods are expected to

compute accurate combined P-values for E½r�*0, corresponding

to the first few data points of panels A and B. The data points in
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Figure 3. Methods that combine independent P-values: Fisher, Stouffer and Bhoj. The curves plotted above are the curves for the four
different measures used to evaluate the accuracy of the computed P-value from combining the P-values of 12 P- value vectors.In panel C, note that
the Fisher curve (red) is almost completely covered by the Bhoj curve (green). See text for more details.
doi:10.1371/journal.pone.0091225.g003

Figure 4. Methods that combine weighted independent P-values: Good, Lipták and Bhoj. The curves plotted above are the curves for the
four different measures used to evaluate the accuracy of the computed P-value from combining the P-values of 12 P-value vectors. See text for more
details.
doi:10.1371/journal.pone.0091225.g004

Accuracy of Combined P-Value

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e91225



Figure 5. Methods that combine correlated P-values: Hartung and Hou. The curves plotted above are the curves for the four different
measures used to evaluate the accuracy of the computed P-value from combining the P-values of 12 P-value vectors. See text for more details.
doi:10.1371/journal.pone.0091225.g005

Figure 6. Methods that combine weighted correlated P-values: Hartung and Hou. The curves plotted above are the curves for the four
different measures used to evaluate the accuracy of the computed P-value from combining the P-values of 12 P-value vectors. See text for more
details.
doi:10.1371/journal.pone.0091225.g006
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panels A and B show that as E½r� increases so does the E½ASWE�
and E½D�, indicating the methods’ inadequacy for handling

correlation among P-values. All three curves in panel C lie above

the y~x line, indicating that all three methods exaggerate

significance when combining correlated P-values. The curves in

panels D, E and F show that the average value (red solid curve) of

ln (F=R) can deviate significantly from y~0 axis with wild

fluctuations (error bars shown in blue). Also, a comparison with

the plots obtained from combining 4, 8, and 12 P-value vectors

indicates that the accuracy of the unified P-value decreases as the

number of P-values combined increases from 4 to 12.

Figure 4 shows the results for methods that combine weighted

independent P-values: Good’s (eq. 5), Lipták’s (eq. 1) and Bhoj’s

(eq. 6) methods. These three methods may be viewed as extensions

of the previous three methods with P-value weighting enabled.

Comparison of the panels of Figure 4 with that of Figure 3 shows

noticeable improvement on the accuracy of the combined P-

values. Although the accuracy has improved by weighting the P-

values, the computed P-value still differs significantly from the

expected value. The observed improvement suggests that weight-

ing P-values might weaken the effect of correlation by promoting

one P-value over the rest in the list of P-values to be combined.

Other studies have also recommended [32,33] weighting P-values

to improve statistical power. Even though weighting P-values is

recommended, there exists no consensus on how to determine the

optimal weights [6,24-26]. This is why in our simulation we have

assigned random weights to the P-values to be combined. In

principle, the accuracy of the computed P-value from the three

methods above could be improved by using a different procedure

to compute the weights. Such an investigation, although worth

pursuing in its own right, is beyond the scope of the current study.

Figure 5 shows the results from using methods designed to

combine correlated P-values: Hartung’s (eq. 9) and Hou’s (eq. 14)

methods. The curves in Figure 5 when compared with the curves

of Figure 3 and 4 show a significant improvement in the accuracy

of the combined P-value computed. From the curves of Figure 5

Hou’s method seems to be the better performing one, it has a

smaller expected error and standard deviation when compared

with the curves obtained from Hartung’s method. As shown in

panel C of Fig. 6, Hou’s E½R(Fc)� vs Fc curve also traces

reasonable well the line y~x, deviating from it only by a factor of

about 4.0 for Fƒ0:1.

Finally, in Figure 6 we have the evaluation results of methods

that combine weighted correlated P-values: Hartung’s (eq. 9) and

Hou’s (eq. 14) methods. When the curves of Figure 6 are

compared with that of Figure 5, as before it shows that weighting

P-values tends to improve the accuracy of the the computed P-

value The curves also show that Hou’s method has a larger

improvement in accuracy by using weights in comparison to

Hartung’s method. As articulated earlier and supported by the

observed results, there is a possibility that the accuracy of the

combined P-value could be further improved by having a

statistically and mathematically rigorous procedure that could

render the optimal weights to be used.

In a brief summary, methods designed for combining independent

P-values tend to yield exaggerated P-values when used to

combining correlated P-values. On the other hand, most methods

designed to handle correlated P-values tend to provide conserva-

tive estimates for the unified P-values. The first case can be

understood easily since one is effectively using nearly identical

evidences to corroborate one another. For the latter case, however,

we can not provide an intuitive interpretation except that it might

result from the heuristics those methods employed. Weighting P-

values seems to weaken the effect of correlation. This can be

roughly understood as follows. By weighting each of the m P-

values, only the P-values assigned the highest weights play a role.

This increase the likelihood of having the highest weighted P-

values be nearly independent, thereby reducing the effect of

correlations. Not only does it help the methods designed for

combining independent P-values, it also helps the ones for

combining correlated P-values as most of these methods are

heuristic-based and get more accurate results when the correlation

is weaker. Based on these results, when the lists of the P-value

vectors are complete, it is best to calculate the corresponding

pairwise correlations between any two P-value vectors, introduce

weights, and then assign the final unified statistical significance to

each hypothesis.

In real applications, however, one is often faced with incomplete

lists of P-values. That is, one only has the P-values for the highest

ranking hypotheses, not for all hypotheses tested. This prevents

one from computing the correlations needed for the formalism for

combining correlated P-values. In this case, i.e., when combining

P-values of unknown correlation, one should exercise caution.

Absent the correlation information, a better option might be to use

the smallest of the P-values to be combined and then apply the

Bonferroni correction by multiplying the smallest P-value by m,

the number of P-values to be combined. This will guarantee a

conserved statistics. However, under this approach, one might run

into cases where the smallest P-values considered is larger than

1=m, thereby obtaining a corrected P-value that is larger than 1.

Even if each of the P-value lists is complete, there are still scenarios

not covered in this paper. For example, it is possible that higher

order correlations (such as the three-body or four-body) exist

among the P-value vectors. We did not consider these cases since

we are not aware of any readily available methods designed to deal

with such type of higher order correlations.

In conclusion our study recommends that the unified P-value

obtained from combining P-values of unknown correlation should

be used with caution to prevent from drawing false conclusions.

Results from our study agree with previous investigations [6,8,10],

supporting the hypothesis that weighting P-values has the potential

to improve the accuracy of the combined P-value. However, the

important issues of choosing the weights to optimize a method’s

power and estimating the correlation matrix elements among P-

values from small sample sizes remain challenging [34,35]. Our

results also show that when combining independent or weighted

independent P-values, Bhoj’s method produces more accurate P-

values than other methods tested. In the case when the correlation

information is available, among the methods investigated, Hou’s

method, able to accommodate P-value weighting, seems to be the

best performing method.

Supporting Information

File S1 This pdf file contains eight figures showing P-value

accuracy evaluation of methods considered in this manuscript

when combining 4 and 8 P-value vectors.

(PDF)
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