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Atherosclerosis remains a major cause of death worldwide, with most myocardial

infarctions being due to rupture or erosion of coronary plaques. Although several imaging

modalities can identify features that confer risk, major adverse cardiovascular event

(MACE) rates attributable to each plaque are low, such that additional biomarkers are

required to improve risk stratification at plaque and patient level. Coronary arteries

are exposed to continual mechanical forces, and plaque rupture occurs when plaque

structural stress (PSS) exceeds its mechanical strength. Prospective studies have shown

that peak PSS is correlated with acute coronary syndrome (ACS) presentation, plaque

rupture, and MACE, and provides additional prognostic information to imaging. In

addition, PSS incorporates multiple variables, including plaque architecture, plaque

material properties, and haemodynamic data into a defined solution, providing a more

detailed overview of higher-risk lesions. We review the methods for calculation and

determinants of PSS, imaging modalities used for modeling PSS, and idealized models

that explore structural and geometric components that affect PSS. We also discuss

current experimental and clinical data linking PSS to the natural history of coronary artery

disease, and explore potential for refining treatment options and predicting future events.

Keywords: plaque structural stress, atherosclerosis, plaque rupture, computational modeling, intravascular

imaging

INTRODUCTION

Plaque destabilization results from the complex interplay between structural plaque features, local
haemodynamic forces, and biological processes acting within and on the plaque surface. Plaque
rupture accounts for ∼2/3 of myocardial infarctions (MIs) and sudden cardiac deaths, and results
from transmural fissuring of the fibrous cap; in contrast, plaque erosion accounts for approximately
30% of sudden cardiac deaths, and is characterized by an intact and thick fibrous cap, but local
endothelial cells are missing (1). While the local haemodynamic environment promotes both
plaque rupture and erosion (2), rupture appears particularly associated with mechanical strain (3)
and specific plaque types. For example, rupture occurs most frequently in thin-cap fibroatheromas
(TCFAs), and fibrous cap thickness (FCT) is an important predictor of rupture. Fibrous cap
thinning involves the gradual loss of smooth muscle cells, thereby reducing collagen production
(4), and accumulating macrophages secrete metalloproteinases that can degrade the extracellular
matrix (5). The cap margin or shoulder region are often the weakest areas in eccentric plaques,
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although rupture also occurs within the central cap. Cap rupture
can present with acute coronary syndromes (ACS), but high-
grade stenosis is often associated with clinically silent ruptures
(6). However, plaque rupture and progression are not solely
determined by plaque strength, but also by mechanical factors
that impose stress on lesions.

Coronary arteries are under constant mechanical loading,
with blood pressure and flow being the predominant externally-
applied loads. Coronary arteries also experience internal stresses
that depend on both externally-applied loads and residual stress
of arterial wall constituents. Plaque structural stress (PSS) and
wall shear stress (WSS) are two important forces involved in
plaque development and rupture. PSS refers to stress within the
plaque as it deforms under physiological arterial pressure, with
three principal stresses acting in longitudinal, circumferential
and radial directions at every point. Maximum (or peak)
principal stress is the highest of these stresses, is usually directed
circumferentially, and is ∼100–300 kPa. In contrast, WSS refers
to tangential stress resulting from friction of blood flowing on
the endothelial surface, and is typically ∼1Pa (10 dynes/cm2)
(7). The effect of haemodynamic forces on plaque formation and
destabilization was first proposed in 1969 (8), and now a large
body of evidence demonstrates that mechanical forces result in
biological effects on the vessel wall.

DEFINITION OF PLAQUE STRUCTURAL
STRESS

PSS is the mechanical stress located within an atherosclerotic
plaque or the arterial wall, and varies with vessel expansion and
stretch induced by arterial pressure and heart motion. PSS is
determined by multiple factors, including plaque composition,
geometry and blood pressure (7). As hydrostatic and dynamic
blood pressure cause arterial expansion, the walls attempt to
resist this deformation, resulting in changes in PSS in systole
and diastole. For computational modeling, the coronary vessels
are considered as thin-walled cylinders with pressures applied
to the vessel wall from within. Radial stress is often neglected
in thin-walled vessels being small compared to circumferential
stress, such that PSS is synonymous to circumferential wall
stress (or wall tension, T). Circumferential forces act upon every
particle in a cylinder wall, and stress is loaded across the vessel
wall tangentially, similar to increasing circumferential wall stress
as a balloon expands when inflated. Thus, PSS increases with
luminal area/radius, and decreases with luminal stenosis and
increasing vessel/plaque thickness, as governed by Laplace’s law
(Figure 1A):

Wall tension (T) =
Pressure (P) × Radius (r)

Wall thickness (h)

MODELING PLAQUE STRUCTURAL
STRESS

Computational modeling of tissue stresses and strains induced
by solid and fluid mechanics uses partial differential equations

governed by physical principles. In particular, PSS calculation
requires knowledge of mechanical properties of plaque
components, magnitude of externally applied loads, and extent
of resultant plaque deformation. Material properties govern
how a tissue behaves under varying loading conditions and are
typically described by the stress-strain relationships. For linear
elastic materials that act uniformly in all orientations (isotropic),
material behavior is described by Young’s modulus (E):

E =
Stress

Strain

and Poisson’s ratio, the negative ratio of transverse to axial
strain. Material properties for different plaque components are
estimated by uni-extension tests, which can be problematic
as atherosclerotic tissue is small, fragile and rarely comprises
a single component. Biological tissues also behave differently
depending on direction of applied force (“anisotropy”), being
stiffer in axial and circumferential directions than radial.
Nevertheless, these approximations can be used for PSS
calculation where vascular wall and plaque components are
considered as hyperelastic, and their stress-strain relationship
expressed as a strain energy density function (SEDF), most
commonly the Mooney-Rivlin and Neo-Hookean constitutive
equations (7).

COMPUTATIONAL MODELING BY FINITE
ELEMENT ANALYSIS (FEA)

The complexity of atheromatous plaques requires reconstruction
of either 2D or 3D arterial solid models from medical imaging,
with plaque segmentation into smaller domains comprising
individual elements (Figures 1B–D). Computational techniques
such as FEA allow stress calculations from a number of variables,
including plaque geometry and composition, tissue material
properties (from ex-vivo tensile testing, Figure 1E) (9, 10) and
haemodynamic forces. FEA incorporates all this information into
a solution for each element and ultimately the entire area of
interest, resulting in PSS estimates and its variation during one
cardiac cycle (Figure 1F).

Thus, a standard approach for modeling plaque solid and/or
fluid mechanics is:

1. Dynamic loading conditions estimated using invasive (e.g.,
coronary pressure at invasive coronary angiography) or non-
invasive (e.g., blood pressure) methods.

2. Image reconstruction into 2D or 3D vessel and plaque
geometry, with suitable computational meshing.

3. Model assumption of flow conditions, boundary conditions,
and material properties.

4. Suitable computational methods (e.g., FEA) to solve for
plaque stress, using plaque geometry, tissue material
properties, and haemodynamic forces.

5. Computation performed on chosen discretised model of
SEDF (e.g., Mooney-Rivlin or Neo-Hookean) to describe
material properties of each plaque component, and their
motion by kinetic equations.
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FIGURE 1 | Modeling of plaque structural stress. (A) The law of Laplace describes the relationship between transmural pressure (P) and wall tension (T). In a

(cylindrical) blood vessel, there is a simple relationship between pressure and circumferential wall tension/stress. The law gives the average tension over the wall, but

holds only for simple geometries. h = wall thickness; r = radius. Example of steps involved in computational modeling to calculate plaque structural stress (PSS): (B)

Suitable images (e.g., virtual histology intravascular ultrasound, VH-IVUS) showing plaque structure and components generated from in vivo or ex vivo studies; (C,D)

Images undergo segmentation and meshing process; (E) Plaque material properties are obtained from ex vivo tensile testing of plaque components; (F) Finite element

analysis (FEA) utilizes plaque geometry, structure, components, material properties, and haemodynamic conditions to generate a numerical solution of PSS. Adapted

from Brown et al. (16).

6. Illustration of calculated stresses.

Similar to FEA, computational fluid dynamics (CFD) is based
on solving Navier-Stokes equations governing fluid mass and
flow to describe fluid motion. Combining CFD and FEA allows
simultaneous analysis of solid and fluid domains, termed fluid-
structure interaction (FSI).

INTRAVASCULAR IMAGING MODALITIES
FOR BIOMECHANICAL MODELING

Intravascular ultrasound (IVUS) is a widely-used, invasive,
catheter-based tool to assess atherosclerotic burden. Greyscale
IVUS (GS-IVUS) provides real-time, 2D cross-sectional,
monochrome images of coronary plaques, but cannot define
plaque composition or components accurately. In contrast,
spectral analysis of radiofrequency ultrasound backscatter

data [radiofrequency- or virtual histology-IVUS (IVUS-RF or
VH-IVUS)] can provide automatic assessment of four main
plaque components, including dense calcium, fibrofatty tissue,
fibrous tissue, and necrotic core (11). Although the resolution of
VH-IVUS is insufficient to identify thin fibrous caps, the ability
to provide both anatomical and compositional information
means that IVUS-RF/VH-IVUS is a good imaging modality for
PSS calculation by FEA, and suitable for stable, vulnerable or
ruptured plaques. For example, while prospective studies found
that VH-IVUS can identify plaque features associated with
MACE, including plaque burden >70%, minimal lumen area <4
mm2, and VH-defined TCFA (12–14), PSS estimations provided
incremental prognostic information to these studies (15–17).

Optical coherence tomography (OCT) uses near infrared
light to generate ultra-high-resolution images. OCT’s spatial
resolution of 4–20µm (18) allows measurement of FCT, and
FCT<60 µm, presence of macrophages, and neovessels have
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been identified as higher-risk features in prospective studies
(19–21). OCT can also identify plaque components including
fibrous tissue, lipid and calcium (22), potentially useful to
estimate PSS. However, poor penetration of near infrared light
(<2mm, depending on tissue type), light signal attenuation,
and absorption issues limit visualization to the plaque surface,
restricting its ability to define plaque burden. In addition, OCT
signals are highly attenuated by large lipid pools, preventing
border identification. While new automatic methods are being
developed to characterize plaque composition from OCT (23,
24), their accuracy to define deep plaque structures and borders
is unclear. OCT also performs poorly in larger lumen arteries,
tissues behind the guidewire shadow cannot be visualized, and
inability to progress the guidewire can restrict imaging with large
plaques or stenosis. As whole plaque structure is required for
solid mechanics modeling, PSS calculation using FEA on OCT
images is challenging, although (as yet unproven)may be possible
in central (carotid) or peripheral (femoral) arteries.

In contrast, hybrid IVUS-OCT imaging combines advantages
associated with each technology, including superior resolution
of OCT to measure FCT and better penetrance of IVUS to
visualize deeper plaque structures and assess arterial remodeling
(25). Combined hybrid imaging improves plaque classification in
ex vivo human coronary and post-mortem studies (26, 27), and
integrated IVUS and OCT single catheters have been developed
(28). Importantly, combined IVUS-OCT catheters utilize a single
pullback and avoid time-consuming and error-prone image co-
registration, providing a promising imaging system for solid
mechanics plaque stress modeling.

Other intravascular imaging tools such as near-infrared
spectroscopy (NIRS) in their current form have limited utility for
computational modeling. For example, while NIRS can identify
and quantify lipid cores (29) and lipid core burden index (LCBI)
or the 4mm segment with maximum LCBI can identify higher
risk plaques (30, 31), NIRS cannot evaluate depth and volume
of lipid cores or identify other plaque components accurately.
Similarly, the limited resolution of non-invasive imaging [0.5mm
for computed tomography, 1–1.5mm for magnetic resonance
angiography (32)] makes it challenging to identify coronary
plaque structure accurately, although reasonable vessel structure
for solid biomechanical modeling can be obtained in larger
arteries (33–35).

PSS IN EX-VIVO AND IDEALIZED STUDIES
OF ATHEROSCLEROTIC PLAQUES

Both ex vivo and in vivo studies implicate high PSS in plaque
rupture. For example, FEA of ex vivo histology sections of human
arteries demonstrates that ruptured plaques are associated with
increased PSS. In addition, reduced FCT, increased necrotic
core, and microcalcification are all associated with higher-risk
plaques, and decreasing FCT, increasing necrotic core area
and microcalcification significantly elevate PSS in idealized 2D
FEA models (36–38). Increased necrotic core thickness also
results in higher circumferential stress in experimental models,
whereas increased FCT has the opposite effect. In contrast,

increased vessel stenosis (decreased lumen diameter) reduces
circumferential stress (in accordance to Laplace’s law), so it
cannot be assumed that PSS increases as lesions progress.

Idealized 3D models confirm these observations,
demonstrating that smaller lipid pools reduce maximum
stress, while PSS increases by 30% when FCT is halved (39), and
can exceed 300 kPa when FCT is <60µm (a marker of higher-
risk plaques), irrespective of plaque geometry (40). Luminal
curvature also significantly affects location of peak PSS (41), with
peak values typically occurring at plaque shoulders, although can
also occur in the fibrous cap center. Another key determinant of
PSS is the size, orientation, shape, and connectivity of individual
calcium deposits, with high stress areas located at interfaces
between calcified and non-calcified tissue (7). For example,
deep calcification within the plaque has little overall effect on
surface PSS, while superficial calcification adjacent to lipid core
can attenuate PSS (42). In addition, FEA models predict that
larger plates of calcification (generally >1mm in size) reduce
PSS, whereas small foci of calcium, termed microcalcification,
significantly increase PSS (38). Interestingly, maximal PSS values
within plaques are often not located on the calcium itself, but
instead just upstream of the deposit (43). Microscopic, cellular-
level microcalcifications (∼10µm diameter) accumulate within
either apoptotic smooth muscle cells or macrophages located
in the fibrous cap (44), both features of higher risk plaques,
confirming a link between biological processes leading to plaque
rupture and PSS.

While these studies demonstrate that high PSS is associated
with multiple features of higher-risk plaques, high PSS is also
associated with morphological evidence of rupture. For example,
post-mortem studies demonstrate that high PSS regions correlate
with intimal tears, and site of tearing is influenced by variations
in the mechanical strength of cap tissue (45), suggesting that
the combination of high PSS and focal weak points lead to
plaque rupture.

CLINICAL STUDIES ASSESSING PSS AND
PLAQUE RUPTURE

High PSS is also associated with features of higher risk plaques
in in vivo clinical imaging studies, which also demonstrate that
PSS provides incremental prognostic information to imaging.
For example, in vivo IVUS-based assessment in a 3D model
demonstrated that coronary PSS increases with increasing lipid
core, but reduces with decreasing luminal area and increasing
calcification (42). Furthermore, FEA applied to several VH-
IVUS clinical studies (Table 1) showed that patients with ACS
presentations had higher PSS in high-risk plaque regions such
as PB>70%, MLA ≤ 4 mm2, and in VH-TCFA than stable
angina patients, and inclusion of PSS significantly improved
ability of these high-risk features to predict ACS (15). Similarly,
PSS increased with increasing lumen area, lumen eccentricity
and necrotic core in fibroatheromas, and PSS was higher in
OCT-defined ruptured plaques compared with stable lesions (46).

The ability of PSS to predict future MACE in higher-
risk non-culprit lesions has been examined by 2 VH-IVUS
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TABLE 1 | Recent clinical studies assessing the effect of PSS in coronary atherosclerosis.

Reference Sample

size (n)

Imaging used for

computational

simulation

Outcome description

Teng et al. (15) 53 VH-IVUS • ↑PSS in non-calcified VH-TCFA vs. VH-ThCFA

• ↑PSS in patients with ACS, where mean luminal area≤4mm2, and PB≥70%

• PSS increased the positive predictive value for VH-IVUS to identify

clinical presentation

Brown et al. (16) 170 VH-IVUS • ↑PSS in MACE lesions at higher-risk regions, including PB≥70% and TCFA

• PSS improved the ability of VH-IVUS to predict MACE in plaques with PB≥70% and

MLA≤4mm2

• Plaques responsible for MACE had larger superficial calcium inclusions that acted to

increase PSS

Costopoulos et al. (46) 64 VH-IVUS • Ruptured FAs had ↑PSS and ↑variation in PSS than non-ruptured FAs

• ↑PSS in proximal segments to the rupture sites compared to distal

Costopoulos et al. (47) 40 Angiography for CFD,

and VH-IVUS for FEA

• In plaque progression: ↑PSS was associated with larger ↑NC and small ↑FT

• In plaque regression: ↑PSS was associated with ↑NC and ↓FT

• ↓WSS was associated with ↑PB

• PSS and WSS were independent of each other

Costopoulos et al. (17) 101 VH-IVUS • ↑PSS in the MLA regions of non-culprit MACE lesions

• ↑PSS heterogeneity index (HI) in non-culprit MACE than in no-MACE VH-TCFAs

• Inclusion of PSS improved the identification of non-culprit MACE lesions

• Incorporation of HI further improved the ability of PSS to identify MACE

non-culprit lesions

Gu et al. (48) 60 Serial VH-IVUS • The relationship between 1PSS and PB differed between high-intensity statin (HIS)

and control groups

• ↑PSS in control lesions with PB>60% but not with HIS treatment

• 1PSS correlated with changes in lumen curvature, irregularity and roughness, all of

which were ↓ in HIS

Doradla et al. (50) 30 IVUS and OCT • A multifactorial stress equation (MSE) is derived to calculate the peak stress matric,

which showed excellent correlation with FEA-derived peak stress

• In coronary segments with plaque ruptures, the MSE located the rupture site

Huang et al. (24) 37 OCT • Maximal 1PSS gradient was observed at the proximal shoulder, and intermediate at

minimal lumen area

• Larger relative lumen deformation and 1PSS were observed in diseased segments

compared with normal segments

• 1PSS was positively correlated with plaque burden and negatively correlated with

fibrous cap thickness

ACS, acute coronary syndrome; CFD, computational fluid dynamics; FA, fibroatheroma; FEA, finite element analysis; FT, fibrous tissue; IVUS, intravascular ultrasound; MACE, major

adverse cardiovascular events; MLA, minimum lumen area; NC, necrotic core; OCT, optical coherence tomography; PB, plaque burden; PSS, plaque structural stress; TCFA, thin-cap

fibroatheroma; ThCFA, thick-cap fibroatheroma; VH, virtual histology; WSS, wall shear stress.

studies. Baseline PSS was increased in 22 plaques leading to
MACE vs. 22 propensity-matched control lesions in patients
from the 170-patient VH-IVUS in vulnerable atherosclerosis
(VIVA) study, and improved the ability of imaging to predict
events (16). Similarly PSS was increased in 35 non-culprit
MACE plaques vs. 66 propensity-matched lesions in patients
from the Providing Regional Observations to Study Predictors
of Events in the Coronary Tree (PROSPECT) study, and
high PSS and longitudinal heterogeneity of PSS were both
associated with future MACE (17). High PSS has also been
associated with site of rupture in vivo, and the association
between high PSS and plaque rupture is also not confined
to coronary arteries. For example, ruptured coronary plaques
on IVUS show higher PSS than matched unruptured plaques
(46), and carotid plaques with prior ruptures have higher PSS
compared with non-ruptured plaques on magnetic resonance
imaging (34), while high PSS on pre-rupture computed

tomography is seen in carotid plaques that subsequently
ruptured (35).

These studies show how PSS is affected by plaque composition
and increased in higher-risk lesions. However, PSS can also
be combined with other biomechanical analyses to examine
the relationship between different plaque stresses on plaque
progression and rupture. For example, combining ESS and PSS
showed that baseline ESS and PSS were largely independent
of each other irrespective of PB (47). Lower baseline ESS was
associated with increased plaque burden over time, while higher
baseline PSS was associated with a greater increase in necrotic
core, coinciding with higher ESS. The largest increase in fibrous
tissue occurred with low ESS and high PSS, and vice-versa,
demonstrating that low ESS mostly affects plaque progression,
while high PSSmostly affects development of a higher-risk plaque
phenotype (47). PSS is also affected by drug treatment over time.
For example, serial VH-IVUS imaging showed that changes in
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PSS over time are dependent on baseline disease severity and
medical treatment, mediated in part through remodeling artery
geometry and plaque microstructure (48).

IMPACT OF IDENTIFYING PLAQUE
STABILITY AND PSS CALCULATIONS ON
CLINICAL PRACTICE

Plaque imaging aims to identify plaques at higher risk
of MACE, so that drug or interventional therapy can be
adjusted. Incremental prognostic information gained from PSS
calculations could therefore be used to refine risk-prediction,
and thus improve targeting of treatment to low- and high-
risk patients. However, the value of either preventive stenting
or aggressive lipid lowering based on finding higher-risk non-
culprit lesions is currently unproven, although the subject
of a number of research studies. For example, stenting
of non-flow-limiting vulnerable plaques based on OCT and
NIRS appearances was associated with favorable outcome
of treated vessels in the PROSPECT-ABSORB trial. While
promising, this trial did not demonstrate that MACE were
reduced in the stented patients, and this requires proof from
other trials.

LIMITATIONS OF PSS MODELING

While biomechanical simulation of PSS shows promise for
both understanding relationships between plaque geometry,
architecture and composition with risk of rupture and events,
the current techniques have limitations. First, materials are
assumed to be isotropic and incompressible, but atherosclerotic
plaques are not isotropic, and differences in radial and
circumferential moduli are not included in current methods.
Second, homogeneous material properties are assumed,
and spatial and inter-patient variations within a particular
component are not considered. Third, maximum plaque
stresses do not necessarily correspond to regions of actual
rupture, which may occur at the second or third highest
stress region, possibly because in vivo materials have more
complex characteristics including weaker fibrous caps at these
regions. Fourth, intravascular imaging modalities used to
provide patient-specific plaque geometry for biomechanical
modeling have varying degrees of accuracy, such as the
inability of VH-IVUS to measure FCT and OCT penetration
to detect depth. Furthermore, the inflammatory state of the
atherosclerotic plaque, reflected by features such as macrophage
infiltration or pro-inflammatory cytokine expression, may
be important in determining plaque material properties,
and no reliable methods currently exist to incorporate
inflammation into finite element models. In addition, while
biomechanical modeling can be applied to both stable and
unstable plaques, careful reconstruction of pre-ruptured plaque
structures is required since vessel structure is altered after
rupture. Finally, computational modeling requires trained

experts to process medical images and run simulations
that require high computational time and power, and
thus its use in clinical settings to provide real-time analysis
is underdeveloped.

FUTURE PERSPECTIVES

Future clinical utility of in vivo PSS calculation from real-
time imaging relies on continuing advances in medical
imaging and computational methods. Hybrid dual-probe IVUS-
OCT catheters have been developed to overcome limitations
of current intravascular imaging techniques, allowing high-
resolution plaque surface imaging with large penetration
depth (25). Artificial intelligence has been used to automate
plaque characterization (23, 49) to bring real-time computer
simulation one step closer to reality. New methods to
model biomechanical profiles of human coronary plaques
using either combined IVUS and OCT or OCT alone for
plaque stress simulation have also been described (24, 50).
These methods show potential but are based on small
studies (summarized in Table 1), and further studies are
required to assess their usefulness in prognostic evaluation of
atherosclerotic plaques.

CONCLUSION

Identification of vulnerable or higher-risk plaques has rested
predominantly on pathological studies, more recently
supplemented by in vivo coronary imaging to detect
analogous features. In contrast, biomechanical determinants
of propensity to rupture are less studied, in part because
of the imaging modalities required and complexity and
assumptions made for biomechanical modeling. However,
computer simulations have allowed significant advances in
biomechanical analysis of atherosclerosis, and modeling arteries
as simple cylinders provides at least a conceptual insight,
if not a precise quantification. Despite these limitations,
advances in imaging and computational methods improve
our understanding of these biomechanical processes,
and could achieve better cardiovascular risk stratification
and management.
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