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Liver fibrosis is the pathological consequence of chronic liver diseases, where an excessive deposition of
extracellular matrix (ECM) proteins occurs, concomitantly with the processes of repair and regeneration.
It is characterized by increased production of matrix proteins, in particular collagens, and decreased
matrix remodelling. The principal source of ECM accumulation is myofibroblasts (MFB). Most fibrogenic
MFB are endogenous to the liver, coming from hepatic stellate cells (HSC) and portal fibroblasts. Dys-
regulated inflammatory responses have been associated with most (if not all) hepatotoxic insults and
chronic oxidative stress play a role during the initial liver inflammatory phase and its progression to
fibrosis. Redox-regulated processes are responsible for activation of HSC to MFB, as well as maintenance
of the MFB function. Increased oxidative stress also induces hepatocyte apoptosis, which contributes to
increase the liver injury and to transdifferentiate HSC to MFB, favouring the fibrogenic process. Mi-
tochondria and other redox-active enzymes can generate superoxide and hydrogen peroxide as a by-
product in liver cells. Moreover, accumulating evidence indicates that NADPH oxidases (NOXs), which
play a critical role in the inflammatory response, may contribute to reactive oxygen species (ROS) pro-
duction during liver fibrosis, being important players in HSC activation and hepatocyte apoptosis. Based
on the knowledge of the pathogenic role of ROS, different strategies to prevent or reverse the oxidative
damage have been developed to be used as therapeutic tools in liver fibrosis. This review will update all
these concepts, highlighting the relevance of redox biology in chronic fibrogenic liver pathologies.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Different causes of chronic liver injury concur with inflammatory processes
and oxidative stress.
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1. Introduction

In all organ systems, the normal mammalian response to injury
occurs in three overlapping but distinct stages: inflammation, new
tissue formation, and tissue remodelling. A critical step is when
repair and regeneration take place, because excessive deposition of
extracellular matrix (ECM) proteins leads to hypertrophic scars,
which provoke tissue dysfunction [1]. Liver fibrosis is the patho-
logical consequence of chronic liver diseases, resulting from the
progressive accumulation of ECM, which is mainly enriched in
types I and III fibrillar collagens. Scar deposition is a consequence
of an altered wound healing response to prolonged parenchymal
cell injury and/or inflammation. It is characterized by increased
production of matrix proteins and decreased matrix remodelling.
In advanced stages, fibrosis leads to cirrhosis, a condition defined
by an abnormal liver architecture, failure in liver function, portal
hypertension and high susceptibility to infection and to develop
HCC [2,3].

The principal source of ECM accumulation and prominent
mediators of fibrogenesis are “activated fibroblasts” or myofibro-
blasts (MFB). Different origins for activated fibroblasts have been
proposed: resident fibroblasts, bone marrow-derived fibrocytes,
epithelial cells that undergo epithelial-to-mesenchymal transition
(EMT), vascular smooth muscle cells and pericytes. However, re-
cent knowledge indicates that most fibrogenic MFB are en-
dogenous to the liver, coming from hepatic stellate cells (HSC) and
portal fibroblasts. HSC are considered to be the major source of
fibrogenic cells in response to chronic liver injury, while portal
fibroblasts play an important role during cholestatic liver diseases
[4]. A complex network of autocrine/paracrine fibrogenic signals
promotes the activation, usually called transdifferentiation, of
quiescent HSC to a myofibroblastic phenotype. This fibrogenic in-
puts include cytokines, chemokines, growth factors, lipid media-
tors and reactive oxygen species (ROS) that are produced by epi-
thelial cells (hepatocytes and cholangiocytes), endothelial cells
and cells of the immune system (macrophages, dendritic cells, and
B and T lymphocytes). Apoptotic bodies derived from damaged
hepatocytes can also transdifferentiate HSC to MFB favouring the
fibrogenic process [2,5]. A number of growth factors are pro-fi-
brotic in the liver, including Platelet-Derived Growth Factor
(PDGF), angiotensin II, Connective Tissue Growth Factor (CTGF),
and Transforming Growth Factor-beta (TGF-β) [6]. TGF-β has a
pivotal role in fibrogenesis, and some of the other growth factors
involved exert their effects by directly stimulating TGF-β produc-
tion [7].
2. Inflammation, oxidative stress and liver fibrosis

Inflammation plays an essential role in the development of li-
ver fibrosis. When a chronic injury takes place, a large infiltration
of mononuclear cells, which include macrophages, lymphocytes
and eosinophils, occur. Mobilization of lymphocytes produces
lymphokines that activate macrophages, which, in turn, stimulate
lymphocytes, fibroblasts, and other inflammatory cells, thus set-
ting the stage for persistence of an inflammatory response. Dys-
regulated inflammatory responses have been associated with most
(if not all) hepatotoxic insults, including ischaemia/reperfusion
(IR) injuries; alcohol overconsumption; intoxications by xenobio-
tics or heavy metals; bacterial, viral and parasitic infections; as
well as systemic metabolic conditions, such as non-alcoholic fatty
liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), obe-
sity, diabetes, and the metabolic syndrome [8] (Fig. 1). Macro-
phages produce pro-fibrotic mediators, including TGF-β and PDGF,
and control ECM turnover by regulating the balance of various
matrix metalloproteases (MMP) and tissue inhibitors of
metalloproteases (TIMP). Examples of knock-out mice that are
resistant to fibrosis because they have less inflammation include
those with gene deletions of Tumour Necrosis Factor-alpha (TNF-
α) or Toll-like receptor 4 (TLR4), among others [9,10].

ROS are short-lived, highly electrophilic molecules, generated
by the partial reduction of oxygen; reactive nitrogen species (RNS)
such as nitric oxide (NO) are sometimes included [11]. Different
types of ROS have different intrinsic chemical properties, which
dictate their reactivity, subcellular localization and preferred bio-
logical targets. ROS are critical intermediates in both the normal
physiology and pathological conditions of liver cells. Over-
produced ROS may directly deplete antioxidant molecules, such as
glutathione (GSH) and inhibit the activities of antioxidant en-
zymes, such as superoxide dismutase (SOD), but they may also
induce the expression of antioxidant genes to counteract oxidative
stress effects [12]. When the balance between ROS generation and
the antioxidant defence of cells is disrupted, it results in oxidative
stress. Importantly, it has been recently reported that activated
HSC have increased ROS-detoxifying capacity compared to quies-
cent HSC that protects them from ROS-induced apoptosis and
necrosis [13].

High concentrations of ROS induce HSC death, however, non-
toxic levels of ROS stimulate the activation, proliferation, and
collagen production of HSC [14]. Furthermore, intracellular gen-
eration of ROS, through activation of specific signalling pathways,
is a critical event for directional migration of HSC/MFB, as well as
mesenchymal stem cells (MSCs) [15]. Indeed, in the liver, HSC
transdifferentiation was shown to be inhibited by antioxidants
[16,17]. Oxidative stress markers have been detected in the serum
and in biopsy samples from liver cirrhosis patients, as well as in
experimental liver fibrosis/cirrhosis animals [18,19]. In liver biop-
sies, areas of fibrosis were localized to areas with increased
4-hydroxi-2′-nonenal (4-HNE), a marker of lipid peroxidation
[20,21]. ROS production associated to steatosis affects nuclear re-
dox state and induces modifications of nuclear proteins [22].
Furthermore, recent results indicate that hepatic stromal cells
promote leucocyte migration through catalytic generation of ROS,
which indicates that a clear cross-talk exists among liver in-
flammation, oxidative stress and fibrogenesis [23]. Indeed, chronic
oxidative stress plays a role during both the initial inflammatory
phase and its progression to fibrosis.

There are numerous potential sources of ROS within the cell.
ROS can be produced as by-products of enzymatic processes, like
in the case of mitochondrial ROS. Mitochondria generate ATP in an
oxygen-dependent manner during which the flow of electrons
down the respiratory chain eventually culminates at complex IV
with the reduction of molecular oxygen to water. Throughout this
process, superoxide is generated, predominantly at complex I and
complex III of the cytochrome chain, when electrons initially
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Fig. 2. Role of NOXs on HSC activation and regulation of hepatocyte apoptosis. Role of TGF-β, growth and inflammatory factors in this process. [See text for further details.]
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derived from NADH or FADH2 react with oxygen. Normal mi-
tochondria provide a low basal level of ROS in most of cells, but
this level may increase during aging or mitochondrial damage.
Mitochondrial oxidants have been historically viewed as purely
toxic, however, recent evidence suggests that they can be also
regulators of intracellular signalling pathways [11]. In addition to
mitochondria, other redox-active enzymes can generate super-
oxide and hydrogen peroxide as a by-product. These include
xanthine oxidase, cytochrome p450, cyclooxygenase, lipox-
ygenase, and nitric oxide synthase (NOS) [11,24]. Moreover, ac-
cumulating evidence indicates that NADPH oxidases (NOXs),
which play a critical role in the inflammatory response, may
contribute to reactive oxygen species (ROS) production during li-
ver fibrosis, being important players in HSC activation and hepa-
tocyte apoptosis [14]. Recent findings also implicate the tumour
suppressor p53 as a critical co-factor for several key fibrotic and
cell cycle effectors. Increased oxidative stress associated with the
fibrotic process is both a likely initiator and an upstream mediator
of p53 signalling in the injured tissue [25].
3. NOXs and liver fibrosis

NOXs are a family of enzymes that generate ROS (either su-
peroxide or hydrogen peroxide) as the primary species during the
catalytic metabolism of oxygen for a range of host defence and
signalling functions. Seven isoforms of NOX are expressed in
mammalian cells (NOX1-5, DUOX1 and DUOX2). All NOX isoforms
are membrane bound enzymes that rely on NADPH for their ac-
tivity and the major source of ROS is generated when the flavin-
and haem-containing protein complex transfer electrons from
cytosolic NADPH to molecular oxygen to produce O2

� � or H2O2

[11,26]. Both parenchymal and non-parenchymal hepatic cells
express different members of the NOX family. Hepatocytes and
HSC express NOX1, NOX2, NOX4, DUOX1 and DUOX2; endothelial
cells express mainly NOX1, NOX2 and NOX4; and Kupffer cells,
which are hepatic-resident macrophages, express the phagocyte
NOX2 [14,27].

NOX-derived ROS have been previously related to fibrosis in
several organs such as lung [28], pancreas [29], kidney [30,31] and
heart [32]. Recent evidence also suggests a key role for NOX pro-
teins in the progression of hepatic fibrosis [33–35]. NOX mediates
liver fibrogenic responses induced by different agonists [14], as
well as phagocytosis of apoptotic bodies [36]. But, of relevance,
NOX mediates TGF-β-induced MFB activation in different organs
[28,31,32,37–39]. HSC responds to TGF-β inducing NOX4-derived
ROS [40], which play a key role in hepatic MFB activation both
in vivo and in vitro [41, 42]. Indeed, TGF-β-induced HSC activation
is attenuated either by NOX4 down regulation or in a Nox4� /�

genetic background, and, interestingly, the MFB activated state
could also be reversed by NOX4 down regulation [42]. Levels of
NOX4 are elevated in patients with hepatitis C virus (HCV)-derived
liver fibrosis, increasing along the fibrosis degree, as well as in
patients with NASH [43]. Hepatocyte specific deletion of NOX4
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reduced oxidative stress, lipid peroxidation and liver fibrosis in
mice with diet-induced steatohepatitis [43]. All these data strongly
suggest the essential role played by NOX4 in the development of
liver fibrosis. However, studies performed in Nox1� /� , Nox2� /� ,
p47phox� /� have demonstrated also the importance of other NOX
proteins, concretely NOX1 and NOX2 in fibrogenesis [35,44,45].
NOX1 seems to mediate the pro-fibrogenic effects in endogenous
liver cells, through PTEN inactivation and positive regulation of the
AKT/FOXO4/p27 signalling pathway [34] and it may further con-
tribute to the inflammatory process, promoting cyclooxygenase
(COX)-2 expression and prostaglandin synthesis in hepatocytes
[46]. NOX2 could be implicated in both endogenous liver cells and
bone marrow-derived cells [35], possibly acting in the process of
phagocytosis of dead hepatocytes [47] (Fig. 2).

Hepatocyte apoptosis is another crucial event during fi-
brogenesis since it triggers Kupffer cells and HSC activation by
secreting cytokines, chemokines and microparticles. TGF-β in-
duces hepatocyte apoptosis through ROS that are derived from
both mitochondria and NOX activity [48]. In addition, NOX4 also
mediates apoptosis induced by other stimuli since NOX4� /� he-
patocytes are resistant to apoptosis induced by CD95L and TNF-α/
actinomycin D [41]. Hepatocyte apoptosis during fibrosis might be
relevant to blunt regeneration and create a pro-fibrogenic micro-
environment. In agreement with these results, it has been pro-
posed a role for NOX4 in epithelial cell death during development
of bleomycin-induced lung fibrosis. Using a model of NOX4 defi-
cient mice, authors demonstrated that these animals were re-
sistant to fibrosis due to the abrogation of TGF-β-induced apop-
tosis in epithelial cells [49]. Of note, hepatocytes express not only
NOX4 but also other NOX proteins, and they play opposite roles in
the control of hepatocyte survival and death. Indeed, whereas
NOX4 is necessary to mediate apoptosis induced by TGF-β [50,51],
this pro-apoptotic effect of the cytokine can be attenuated after
NOX1 activation by EGF or other growth factors [52,53]. Phago-
cytosis of hepatocyte apoptotic bodies by HSC induces their acti-
vation to MFB, a process that involves NOX2 activation, thereby
contributing to exacerbate the fibrotic response [36,47] (Fig. 2).
Fig. 3. Targeting liver fibrosis by hampering ROS/NOX and/or intracellular signals.
[See text for further details.]
4. Targeting liver fibrosis by hampering ROS/NOX and/or
modulating redox-related intracellular signals

Regression of fibrosis can be achieved by the successful control
of chronic liver injury, with the consequent termination of the fi-
brogenic reaction followed by the clearance of hepatic MFB and
restoration of full liver function. However, this regression is only
possible at early stages, since when advanced fibrosis or cirrhosis
is established, all therapeutic approaches seem non-efficient. MFB
can be eliminated by apoptosis, senescence or reversion to a
quiescent (HSC) phenotype. Indeed, the first line treatment is,
when possible, to counteract the underlying liver disease to stop
fibrosis progression. For instance, patients with viral hepatitis
should be treated with anti-viral therapies while corticosteroids
are useful for autoimmune hepatitis. However, inactivated HSC
remain primed for re-transdifferentiation, and may be even more
responsive to recurrent fibrogenic stimuli than its original quies-
cent state. In advanced stages of fibrosis and cirrhosis the potential
for reversibility declines [2,5]. MFB and their products are primary
targets for antifibrotic therapies, which in principle would address
all types of fibrosis, including advanced fibrosis. Nevertheless,
additional cellular elements that are either upstream of MFB or
tightly linked to fibrogenic activation may provide a basis for
complementary and more disease-specific antifibrotic approaches.
A combined therapy may be a more effective approach, given the
crosstalk between different cell types that generally underlies the
fibrogenic activation [2,3,5,54].
At present, there is no FDA approved drug for liver fibrosis
treatment. Based on the knowledge of the pathogenic role of ROS,
different strategies to prevent or reverse the oxidative damage are
being developed in pre-clinical experiments to be used as ther-
apeutic tools in liver fibrosis. Indeed, natural antioxidants, such as
pyrroquinoline–quinone has been demonstrated to suppress oxi-
dative stress and liver fibrogenesis in mice [55]. In the same line of
evidence, natural compounds with antioxidant and anti-in-
flammatory properties have proved to be hepatoprotective in liver
of rat with secondary biliary cirrhosis [56]. Mice lacking Methio-
nine Adenosyltransferase 1A (MAT1A), which catalyses the pro-
duction of S-Adenosylmethionine (AdoMet), a precursor of the
glutathione (GSH) synthesis, spontaneously develop oxidative
stress and non-alcoholic steatohepatitis [57], emphasizing the re-
levant role that maintaining GSH levels has in counteracting oxi-
dative stress. In this same line of evidence, recent findings un-
derscore a critical role for mitochondrial reduced glutathione
(mGSH) in the therapeutic potential of superoxide scavengers and
suggest that the combined approach of these agents with mGSH
replenishment may be important in steatohepatitis and liver fi-
brosis [58]. A recent study has emphasized the role of chloride
channels in the activation of HSC, allowing the entry of superoxide
anion radicals [59]. Indeed, chloride channels may constitute a
potential target for new anti-fibrotic drugs (Fig. 3).

The experimental use of agents that prevent oxidative stress is
contributing to a better understanding about the intracellular
pathways that play essential roles in mediating or protecting
against the consequences of an intracellular ROS increase in liver
cells. Indeed, the use of ROS inhibitors allowed proving that HIV
and HCV cooperatively promote hepatic fibrogenesis via induction
of ROS and Nuclear Factor kappa-B (NFκB) [60]. Ursodeoxycholic
acid (UDCA) plays a cytoprotective effect in primary biliary cir-
rhosis through activating Nuclear factor Erythroid-2-related tran-
scription factor 2 (Nrf2), which plays a critical role in protecting
against oxidative stress [61]. Indeed, UDCA improves circulating
redox changes in primary biliary cirrhotic patients [62]. Ursolic
acid, via LKB1-AMP-activated protein kinase signalling offers also
protective effects on bile duct ligation-induced liver injury in mice,
which is related to inhibition of oxidative stress [63]. Blockage of
the IREα pathway, the branch of the unfolding protein response
(UPR) mainly affected during liver fibrosis, in stellate cells sig-
nificantly decreased both their activation and autophagic activity
in a p38 MAPK-dependent manner, leading to a reduced fibrogenic
response [64] (Fig. 3).

Considered the more precise role of NOX-derived ROS in he-
patic fibrogenesis, the development of novel pharmacological NOX
inhibitors is being assessed as the most promising potential anti-
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fibrotic therapeutics (Fig. 3). Historical NOX inhibitors (such as
apocinin or dipheniliodinium-DPI) are unspecific and not isoform
selective. Novel NOX inhibitors stemming from rational drug dis-
covery approaches show improved specificity for NOX and even
moderate isoform selectivity [65]. Interestingly, evidences for the
role of dual NOX4/NOX1 pharmacological inhibitor GKT137831 in
decreasing both the apparition of fibrogenic markers and hepa-
tocyte apoptosis in vivo, upon bile duct ligation and CCl4 treat-
ment, are reported [41,66]; therefore, it is a promising therapeutic
agent for future translational studies (Fig. 3). However, it is im-
portant to mention that NOX4 mediates suppressor effects of TGF-
β in hepatocytes [50,67] and recent results indicate that NOX4
would inhibit hepatocyte growth and liver tumorigenesis [68].
Indeed, stable knockdown of NOX4 expression in human liver
tumour cells increased their in vitro cell proliferation and con-
ferred them higher in vivo tumorigenic capacity in xenograft ex-
periments in nude mice, resulting in earlier onset of tumour for-
mation and increase in tumour size [68]. In vivo analysis in mice
revealed that NOX4 expression was downregulated under phy-
siological proliferative situations of the liver, such as regeneration
after partial hepatectomy, as well as during pathological pro-
liferative conditions, such as diethylnitrosamine-induced hepato-
carcinogenesis [68]. Considering that liver fibrosis and cirrhosis
predispose to the development of HCC, the collateral effects of
inhibition of some physiological functions of NOX must be con-
sidered in future studies about the clinical safety of these
compounds.
5. Conclusions

Current knowledge about the molecular mechanisms of liver
fibrosis places inflammation and oxidative stress as one of the
main causes for the initiation and progression of this disease.
Different agents that cause chronic liver injuries provoke the
production of ROS by different mechanisms, among them, NOXs
may play an essential role. Different NOXs have been involved in
fibrogenic responses, such as HSC activation to MFB or regulation
of hepatocyte cell death. The experimental use, both in vitro and
in vivo, of agents that prevent oxidative stress is contributing to a
better understanding about the intracellular pathways that play
essential roles in mediating or protecting against the con-
sequences of an intracellular ROS increase in liver cells. Future
expectations are focused on the use of specific NOX inhibitors that
prevent HSC activation and protect hepatocyte injury, although
further work is necessary to fully confirm the clinical safety of
these compounds. However, it cannot be forgotten that liver fi-
brosis has multiple etiologies and, consequently, multiple me-
chanisms. Indeed, much further experimental work is necessary
for a better understanding of the efficacy of ROS-chelating agents
as therapeutic tools in this complex disease.
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