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Abstract

Objective: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease

which leads to progressive muscle weakness and eventually death. The increas-

ing availability of large ALS clinical trial datasets have generated much interest

in developing predictive models for disease progression. However, the utility of

predictive modeling on clinical trial analysis has not been thoroughly evaluated.

Methods: We evaluated a predictive modeling approach for ALS disease pro-

gression measured by ALSFRS-R using the PRO-ACT database and validated

our findings in a novel test set from a former clinical trial. We examined clini-

cal trial scenarios where model predictions could improve statistical power for

detecting treatment effects with simulated clinical trials. Results: Models con-

structed with imputed PRO-ACT data have better external validation results

than those fitted with complete observations. When fitted with imputed data,

super learner (R2 = 0.71, MSPE = 19.7) and random forest (R2 = 0.70,

MSPE = 19.6) have similar performance in the external validation and slightly

outperform the linear mixed effects model (R2 = 0.69, MSPE = 20.5). Simula-

tion studies suggest including machine learning predictions as a covariate in the

analysis model of a 12-month clinical study can increase the trial’s effective

sample size by 16% when there is a hypothetical treatment effect of 25% reduc-

tion in ALSFRS-R mean rate of change. Interpretation: Predictive modeling

approaches for ALSFRS-R are able to explain a moderate amount of variability

in longitudinal change, which is improved by robust missing data handling for

baseline characteristics. Including ALSFRS-R post-baseline model prediction

results as a covariate in the model for primary analysis may increase power

under moderate treatment effects.

Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegen-

erative disease characterized by degeneration of motor

neurons which leads to progressive muscle weakness and

paralysis. Disease progression rates vary with death typi-

cally occurring within 3–5 years from symptom onset;

however, patients may live decades with the disease.

Although existing drugs1,2 are approved for ALS treat-

ment, there remains a significant unmet need to meaning-

fully reduce functional decline and prolong survival.

One of the challenges for conducting ALS clinical trials

is the substantial heterogeneity in clinical presentation

and rate of progression.3 One approach to address this

heterogeneity recently employed in a successful clinical

trial of edaravone was to use a highly stringent4 set of

inclusion/exclusion criteria to select a targeted ALS

patient population. Despite this advance, more sophisti-

cated model-based methods may help to even better

inform trial conduct and analysis approaches to increase

efficiency and sensitivity of ALS clinical trials, potentially

in a broader patient population. The availability of large

ALS data sets has created opportunities for the develop-

ment of such predictive models.

Predictive models have been developed to evaluate

Revised Amyotrophic Lateral Sclerosis Functional Rating

Scale (ALSFRS-R)5 scores and overall survival using clini-

cal trial and ALS registry data. Predictive models trained
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from clinical trial data6,7 have been used to inform

patient enrichment, stratify randomization, and perform

covariate adjustment, with the aim of reducing the

required sample size to achieve a desired level of power.

Models fit to ALS registry data8 have also been developed

for managing patient care and predicting long-term sur-

vival outcomes. The level of accuracy and precision of

these methods, along with their clinical utility, requires

careful consideration when determining appropriate use.

It is imperative to ensure that clinical trials are adequately

powered, interpreted correctly and transparently, and that

any predictive model enhances these aims.

The aims of this paper are twofold: (1) to take a critical

look at predictive modeling for ALSFRS-R using models

built on data from the Pooled Resource Open-Access ALS

Clinical Trials (PRO-ACT) database9; and (2) to identify

ALS clinical trial scenarios where predictive modeling

approaches do and do not make a meaningful difference

in the analysis of clinical trials simulated from an inde-

pendent test data set.

Materials and Methods

Training data

The PRO-ACT database, is a comprehensive dataset inte-

grating 23 clinical trials, and has been a valuable resource

for building ALS progression prediction models in previ-

ous studies.6,7,9,10 While the full PRO-ACT database con-

tains over 10,700 patient records, our analysis focuses on

a subset of 3160 patients with an available baseline

ALSFRS-R score and at least one post-baseline ALSFRS-R.

Patients were allowed to have missing values for other

baseline covariates. Separate models were fit to a data set

including only patients with complete baseline records of

possible predictors (Figure 1) without missing values

(n = 552) and a second set of models with an imputed

baseline data set to enable inclusion of all 3160 patients.

Test data

The test data came from the MITOTARGETPhase II/III
double blind, placebo-controlled trial of olesoxime. The

study enrolled 512 patients with El Escorial probable or

definite ALS.11 15 centers across five European countries.

Patients were observed over a 18-month planned treat-

ment duration and all were required to be on a stable

dose of 50 mg riluzole taken twice a day for at least

1 month prior to enrollment. Subjects were required to

have SVC ≥70% at screening with time of symptom onset

between 6 and 36 months. All covariates used for model-

ing in the training data set were available in the test data

set and were considered for model validation. Only three

patients in the olesoxime data had any missing values at

baseline. The final validation set consisted of the 509

patients with complete baseline records.

Missing data handling

Missing data are a critical issue for PRO-ACT data uti-

lization. To enrich the available patient pool for predic-

tive model fitting, we considered imputing baseline

covariates with an iterative nonparametric imputation

method. First, we analyzed the missingness pattern with

visualization plots and used Little’s MCAR test12 to assess

if missing completely at random (MCAR) is a valid miss-

ingness mechanism for PRO-ACT data. Little’s MCAR

test suggested that the missing data are not MCAR

(P < 0.001). We then assumed that the missingness can

be modeled from observed values and follows a MAR pat-

tern. Lastly, we imputed the missing values in each base-

line covariate using missForest,13 an iterative imputation

approach for mixed-type data utilizing the random forest

(RF) algorithm. We utilized missForest as our imputation

method to create a single complete data for constructing

ALSFRS-R prediction models. The method has better per-

formance in imputation accuracy than popular

approaches including multiple imputation.13,14 After han-

dling missing data, a sensitivity analysis was performed to

compare the predictive models constructed by the

imputed and complete case data sets.

Model covariates and outcome

Predictors included in the models were similar to those

used in previous modeling efforts using the PRO-ACT

database.7 We considered 23 variables as the candidate

covariates for predicting ALSFRS-R total score. Number of

days on study was used to characterize time from baseline

ALSFRS-R assessment. Among the remaining variables, 11

of them are patient demographics recorded at baseline. Six

total and sub baseline functional scores are also selected.

Finally, slopes (referred to as pre-slopes) for four of the

baseline functional scores were derived and considered as

candidate predictors. The preslopes for a given functional

score were calculated using the following formula:

Max possible score�Baseline score

Time from symptom onset to baseline
,

and included in our set of potential covariates.

Candidate models

We compared the performance of three models, each

built twice using the imputed and complete case
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PRO-ACT datasets. The three candidate models were

RF,15 super learner (SL),16 and a linear mixed effects

model with random intercepts (LME).17 Both machine

learning models were constructed using days from the

baseline and cross-sectional baseline covariates as predic-

tors.

Tuning was considered for both machine learning

models to control for overfitting. For RF, we fixed the

number of trees to be 500 and performed stepwise tuning

for the number of variables per node with respect to out-

of-bag error. Based on results of 10-fold cross validation,

the RF model was optimized by randomly sampling eight

candidate variables per split. Weights of the base learners

in SL were also tuned with 10-fold cross-validation using

Out-of-Bag error. We considered Xgboost, linear regres-

sion, RF, and generalized LME model with ENet regular-

ization as the four candidate learners for the SL model.

The cross-validation results on imputed PRO-ACT sug-

gested that RF and xgboost should be considered as base

learners, where RF has a dominating weight of 0.98.

The predictors with highest variable importance in RF

were included in the LME to avoid multicollinearity. The

LME uses linear predictors without interactions and a

random intercept as a simple, parsimonious model. Based

on the importance ranking from the RF model, days on

study, baseline FRS, FRS preslope, and baseline body sub-

scores were the most salient predictors in decreasing the

node impurity (Gini Index). Since baseline FRS and body

subscore are highly correlated, the resulting parsimonious

LME model contained days on study, baseline FRS, FRS

preslope, Age, and time from onset to baseline:

ALSFRS�Ri,j ¼ β0þβ1ALSFRSi,0þβ2Preslopei
þβ3Days on studyi,jþβ4Agei
þβ5Onset Deltaþbiþ ɛi,j,

where ALSFRSi,0 is the baseline FRS score, bi ∼N 0,σ2b
� �

is

the random intercept for patient i, and ɛi,j is the random

error.

Model validation and comparison

The predictive power of the three candidate models was

compared in both the PRO-ACT and olesoxime data.

First, cross-validation in the PRO-ACT data was con-

ducted using a randomly selected 25% subset as a test set

43.66

43.34

31.21

27.67

25.91

25.91

24.48

23.3

19.12

19.12

19.12

18.72

10.65

9.44

8.9

8.9

8.85

8.85

8.85

4.08

4.08

0

Baseline ALSFRS-R
Subject ID

ALSFRS-R preslope
Onset delta

Baseline bulbar subscore
Baseline gross motor subscore
Baseline respiratory subscore

Baseline body ssubscore
Baseline fine motor subscore

Diagnostics delta
Weight (kg)
On reluzole

Bulbar subscore preslope
Gross motor subscore preslope

Vital capacity preslope
Age

Diagnostics delay
Baseline diastolic BP
Baseline systolic BP

Vital capacity (% of normal)
Vital capacity (liter)

Height (m)
BMI

0 10 20 30 40 50
Percent missing

Va
ria

bl
es

0

Figure 1. Missing pattern for demographic predictor variables in PRO-ACT.
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and the remaining 75% as training data. Final models

were trained using all available PRO-ACT data. To assess

model generalizability, we calculated the prediction accu-

racy of each model in the olesoxime data.

To compare model fits, we considered recording mean

squared prediction error (MSPE) and using simple linear

regression to regress the observed ALSFRS-R on the pre-

dicted ALSFRS-R. R2 of the regression model was used to

measure the variation of the observed explained by the

predicted and the intercept was used to measure bias. A

similar approach was used to predict change from base-

line, rather than ALSFRS-R total score, as this is generally

of more interest in clinical trial design.

Simulation study design

Accurate ALSFRS-R predictions can serve as a dimension

reduction technique to control for high-dimensional

patient characteristics and synthetic controls before ran-

domization. We conducted simulation designs focusing

on examining the increase in statistical power when

including model predictions as a covariate in the treat-

ment model for the primary analysis.

The simulated patient records were generated by ran-

domly sampling the olesoxime data without replacement.

For the treatment arm, we introduced a constant treat-

ment effect to the original sampled record by reducing

their ALSFRS-R change from baseline by a certain per-

centage. Therefore, the ALSFRS-R score at all post-base-

line times j for patient i in the treatment arm will be

updated into:

Y trt
i,j ¼ Yij�Yi0

� ��EþYi0,

where Yi,j and Yi0 are the observed ALSFRS-R for patient

i at baseline and time j, respectively, and E is the

introduced shrinkage percentage. Study settings with dif-

ferent sample sizes, study durations and treatment effects

were considered, each had 10,000 replicates randomly

assigning patients to active or placebo in 1:1 ratio. We

considered 6-, 12-, and 18-month study durations with

sample sizes of n = 120, 160, 200, . . ., 360. Type one

error was examined for the scenario with no treatment

effect (E = 0%). A smaller effect of E = 25% and larger

effect of E = 40% were also considered. No treatment

effect was introduced on patient survival.

Treatment effects were estimated with seven different

LME models (Table 1). All models included baseline

ALSFRS-R, categorical visit terms and treatment visit

interactions as covariates. RF, LME, and SL also con-

trolled for predictions as time-varying covariates. The sin-

gle best predictor model included ALSFRS-R preslope as

an additional baseline covariate.7 The standard baseline

covariates model controlled for standard stratification fac-

tors in ALS clinical trials: riluzole use and site of onset.

The No extra covariates model had no extra demographic

variables. The full model including RF predictions, pres-

lope, and standard baseline incorporated all covariates in

RF, single best predictor, and standard baseline covariates.

To examine the sensitivity of treatment effect detection

for each model, we plotted power curves (with type I

error controlled at α = 0.05 level) and win rate curves

with different scenarios and sample sizes. The win rate

for a model is defined as the chance of having the small-

est P-value amongst all models.

Data sharing

Qualified researchers may request access to individual

patient level data through the Vivli Center for Global

Clinical Research Data (https://vivli.org/) clinical study

data request platform (www.clinicalstudydatarequest.c

Table 1. Candidate linear mixed effect models in the simulation studies to measure treatment effects.

Models

Intercept and baseline

FRS Extra baseline variables Time & time treatment interactions

Random forest predictions Yij �Yi0 ¼ β0þβ1Yi0þ β2RFpredij þΣJ
t¼1αt I t¼ jð ÞþΣJ

t¼1γt I t¼ jð Þ� I Trtð Þþ ɛij
Linear mixed effects model

predictions

β2LMMpredij

Super learner predictions β2SLpredij
Single best predictor β2preslopei
Standard baseline covariates β2SiteOnseti þβ3El

No extra covariates –
Full model including random

forest predictions, preslope,

and standard baseline

β2RFpredij þβ2preslopei þβ4SiteOnseti þβ5El

For 6-month studies, we consider follow-up time to be baseline, Month 1, Month 2, Month 3, and Month 6. For 12-month studies, we consider

follow-up time to be baseline, Month 1, Month 6, and Month 12. For 18-month studies, we consider follow-up time to be baseline, Month 1,

Month 6, Month 12, and Month 18. The following models are estimated with unstructured correlation structure.
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om). Further details on Roche’s criteria for eligible studies

are available here (https://clinicalstudydatarequest.com/

Study-Sponsors/Study-Sponsors-Roche.aspx). For further

details on Roche’s Global Policy on the Sharing of Clini-

cal Information and how to request access to related clin-

ical study documents, see here (https://www.roche.com/

research_and_development/who_we_are_how_we_work/c

linical_trials/our_commitment_to_data_sharing.htm).

Results

Comparison of demographic characteristics

The baseline clinical and demographic characteristics of

the complete and imputed PRO-ACT and olesoxime data

are described in Figure S1. The patients in the three data

sets are highly comparable since most of the variables had

similar distributions. The majority of the ALS patients are

in their 50 and 60 sec, with average baseline ALSFRS-R

ranging from 37.77 to 38.63. Patients in the imputed

PRO-ACT (547 days) and olesoxime (522 days) data

share similar time difference from symptom onset to

baseline, while patients in the complete data (684 days)

had larger time differences. Moreover, the imputed PRO-

ACT data includes a broader population with a wider

range of vital capacity.

Among the patients with observed ALSFRS-R, only 552

had complete data of the 23 demographic variables listed.

The missingness patterns for candidate predictors are

illustrated in Figure 1. BMI and height were the variables

with the highest missing proportion (over 40%). Most

remaining variables were missing less than 25% of obser-

vations.

Model prediction results

The three models performed similarly on the cross-vali-

dated PRO-ACT data (Table 2), with SL having the small-

est cross-validated MSPE 26.66 followed by RF (26.68)

and LME model (27.34). The R2 values for all models

were around 0.66. None of the models have a significant

bias in prediction for the imputed data set. Sensitivity

analysis suggests that missing data imputation improved

model generalizability. Models fitted on complete data

have slightly better performance in internal cross-valida-

tion but worse performance in external validation.

Results of the prediction models in the external valida-

tion dataset are visualized in Figure 2 by plotting the

observed data against model predictions. R2 was approxi-

mately 0.7 for all three models (ranging from 0.677 to

0.705). RF and SL both marginally outperformed the

LME with a marginal advantage in MSPE (0.9 points)

and R2 (1%) with RF having the smallest bias in both

cross-validation and external validation.

When looking at model performance as a function of

time on study, Figure 3 shows that in terms of R2 and

MSPE, predictive performance for all models becomes

poorer farther from baseline. In terms of bias, RF and SL

had the least amount of bias, which was consistent among

different timepoints.

Simulation studies

Figure 4A shows the power curves for the seven models

under different simulation settings. Columns represent

treatment effects from no (E = 0%) to substantial

(E = 40%) treatment effect and the rows represent differ-

ent study lengths. The 3 figures in the first column sug-

gest that type one error was controlled at around 0.05

under different model specifications and study lengths.

The right-most column indicates that when the treatment

effect is large, the power of the study is well above 0.8

under any of the considered sample sizes. The medium

column shows that a 6-month study is not able to achieve

0.8 power under the small treatment effect. All models

have similar performance in detecting the treatment effect

in an 18-month study.

As illustrated in Figure 4B, for simulated 12-month

studies with small effect size, RF, SL, and full model

including RF predictions, preslope, and standard baseline

models have higher power compared to LME, single best

predictor, standard baseline covariates, and no extra

covariates. When considering an ALS study of 212

patients, the models including RF or SL predictions can

increase the effective sample size by approximately 34

Table 2. Cross-validation results for imputation after separating the PRO-ACT database into training (75% data) and testing (25% data) sets.

Model

Complete Imputed

R2 Intercept (P-value) MSPE R2 Intercept (P-value) MSPE

Random forest 0.674 −2.182 (0.022) 18.046 0.668 0.038 (0.887) 26.685

Super learner 0.677 −2.264 (0.017) 17.900 0.668 −0.081 (0.761) 26.668

Linear mixed effects model with random intercepts 0.675 −0.655 (0.474) 17.760 0.660 0.301 (0.265) 27.348

MSPE, mean squared prediction error.
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patients or 17 patients per each arm, which is 16% of the

original sample size. However, in most settings, a mean-

ingful difference among the models was not observed.

To assess relative model performance independent of a

nominal significance level (e.g. α = 0.05), we ranked the

7 models by their P-values for each simulation iteration.

The win percentage plot was included in Figure 5. SL had

the smallest P-values for 30–60% of the times and RF had

the smallest P-values for 20–30% of the times across all

scenarios in our simulation.

Discussion

Effectively aggregating data across clinical trials can be

challenging for constructing predictive models for

ALSFRS-R, because of differing degrees of missing data

between trials. In this paper, we characterized the

missingness pattern in the PRO-ACT database, used an

established imputation approach to address the missing

data issue, dramatically increased the available sample

size, and showed that our treatment of missing data

improved model fit and reduced prediction bias in the

validation data. For aggregated clinical trials data like

PRO-ACT, where missingness patterns of baseline demo-

graphic variables are typically not informative, imputation

methods can effectively handle variables with moderate

missingness and are a practical solution for making the

most of available data.

There is a difference between missForest and multiple

imputation (MI) methods in terms of the number of

imputed data sets generated. missForest’s intended use is

for generating a single dataset optimized for imputation

accuracy whereas MI’s intended use is for leveraging mul-

tiple imputed datasets to characterize uncertainty of
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Figure 2. Model prediction results on olesoxime data at all time points. The scatterplots are constructed with linear models regressing observed

ALSFRS-R on model predictions. Mean squared prediction error (MSPE) and R2 are reported. Intercepts and slopes of the linear models indicate

the prediction bias of the corresponding models.
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imputed values when conducting statistical inference. In

our use case of building a predictive model, missForest is

the preferable method because it simplifies predictive

model building by using a single imputed data set with

the expectation of better performance relative to MI.14

missForest is not designed to generate multiple imputed

data sets to characterize uncertainty of imputed values

when conducting statistical inference, like MI.

Our results suggest that RF was the best prediction

model among the three tested models in terms of bias,

variance, and generalizability to the external validation

data set. We observed similar, if slightly higher, R2 values

relative to what has been reported previously using RF

models with the PRO-ACT data. Notably, SL, a more

complex ensemble-based method, could not meaningfully

improve upon the performance of RF. The prediction

results on the olesoxime data were indistinguishable

between the two models. Hence, RF is the preferable pre-

diction model due to its computational efficiency and

interpretability.

We also assessed the improvement of statistical power

when including model prediction as a covariate in the

treatment model for the primary analysis. Two predictive

machine learning models (RF and SL) and a simple LME

are considered as candidate prediction models for post-

baseline ALSFRS-R scores. Specifically, we evaluated

goodness-of-fit measures and how much the model pre-

dictions could improve statistical power in detecting a

treatment effect using simulated clinical trials. We were

able to identify the best model and describe the corre-

sponding clinical trial scenarios where it did make a

meaningful difference in statistical power.

Simulation studies suggested that using ALSFRS-R pre-

dictions provided by RF and SL as a time varying covari-

ate can increase the effective sample size under moderate

treatment effect. They also showed that SL was somewhat

more sensitive when a treatment effect exists, as evidenced

by producing smaller P-values on average (win rates),

while still controlling type I error at a similar level.

One drawback of our prediction models is that RF and

SL both do not account for within-patient correlation.

Although the LME is more interpretable and does incor-

porate within-patient correlation over time, it sacrifices a

small amount of predictive accuracy. A possible remedy
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would be to use a semiparametric LME model for the

predictions.18 However, model complexity would increase,

and interpretation could be more difficult.

Our results are similar to what has been published pre-

viously in terms of model goodness-of-fit but serve to

highlight the importance of missing data handling as well
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Figure 4. (A) Power analysis from simulation studies. The columns represent different hypothetical treatment effects 0%, 25%, and 40%. The

rows denote study duration from 6 to 18 months. In each plot, the y-axis characterizes power and x-axis are the sample sizes per treatment arm

from 60 to 180. The seven models considered in the plots are specified in Table 1, where the first 3 models are including to ALSFRS-R predictions

as one of the covariates. (B) Power analysis from a 12-month simulation study with hypothetical treatment effect as 25%. RF, SL and the full

model including random forest predictions, preslope, and standard baseline showed a significant power benefit than the other models. When

performing a clinical trial with a sample size of 106 patients per arm, these models have increased the effective sample size by 17 patients per

each arm comparing to other models.
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as identifying specific scenarios, in terms of trial duration

and underlying treatment effect, where predictive model-

ing does and does not make a meaningful difference

toward the primary analysis. Furthermore, while RF was

able to marginally outperform the LME model, an even

more complex model (SL) was unable to explain addi-

tional variability, indicating a relative lack of significant

complex nonlinear structure in currently available ALS

clinical trials data types.
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