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Abstract

Epidemiological synergy between outbreaks of viruses transmitted by Aedes aegypti mos-

quitoes, such as chikungunya, dengue, and Zika viruses, has resulted in coinfection of

humans with multiple viruses. Despite the potential impact on public health, we know only lit-

tle about the occurrence and consequences of such coinfections. Here, we review the

impact of coinfection on clinical disease in humans, discuss the possibility for co-transmis-

sion from mosquito to human, and describe a role for modeling transmission dynamics at

various levels of co-transmission. Solving the mystery of virus coinfections will reveal

whether they should be viewed as a serious concern for public health.

Background

The rapid and continuous emergence of arthropod-borne viruses (arboviruses) presents a seri-

ous challenge to public health. Multiple factors, such as urbanization, increased travel, and cli-

mate change, are fueling local outbreaks and global spread [1,2]. As a result, the annual burden

of dengue virus has soared to an estimated 390 million infections [3], and the recent epidemics

of chikungunya and Zika viruses in the Americas may have infected hundreds of millions of

people [4–6]. The emergence of chikungunya and Zika viruses in dengue-endemic regions cre-

ates intriguing, and potentially alarming, scenarios. In urban settings, all three viruses share

common hosts (humans) and mosquito vectors (primarily A. aegypti) and are thus governed

by similar biological, ecological, and economic factors [7], leading to epidemiological synergy

[8]. So, not only do A. aegypti-borne viruses overlap geographically throughout the tropics

[5,9–11], but they also have similar seasonality and attack rates. In fact, many regions in the

Americas have recently experienced simultaneous outbreaks of chikungunya, dengue, and

Zika virus diseases (Fig 1) [12,13], and concurrent infections with two or more of the viruses

were commonly reported [14–25]. The surprising finding that Zika virus can cause microceph-

aly and other birth defects during pregnancy [26–30], the potential for dengue virus to cause

severe neurological and hemorrhagic disease [13,31], and the long-term effects of
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chikungunya-induced chronic arthritis and cognitive disorders associated with chikungunya

virus infection [5] make the potential outcomes of coinfection alarming.

As arboviruses continue to emerge, we anticipate that the occurrence of coinfection may

increase as well. Despite this trend and the potential public health challenge, we know funda-

mentally little about the process and consequences of coinfections. Do coinfecting arboviruses

alter disease in humans? Are people getting infected by multiple mosquitoes or by the same

mosquito transmitting multiple viruses? Do simultaneous virus outbreaks involving the same

vectors and hosts alter transmission dynamics? In this article, we use chikungunya, dengue,

and Zika viruses transmitted by A. aegypti mosquitoes as a case study to describe the impor-

tance of these questions, review what data are available to help answer them, and highlight

future research opportunities.

Does coinfection alter clinical disease?

Assessing the public health implications of coinfection requires understanding how coinfec-

tions affect clinical disease in humans. Chikungunya, dengue, or Zika virus infections

Fig 1. Overlapping outbreaks of chikungunya, dengue, and Zika viruses. During 2016–2017, 36 countries reported local cases of

chikungunya, dengue, and Zika viruses; more, such as Cuba, Haiti, and Suriname, likely had transmission of all three viruses, but they were

not reported. The inserts are examples of synergistic outbreak dynamics, shown as reported cases per month. All data were obtained from

the Pan-American Health Organization and are available at https://github.com/grubaughlab/paper_2019_co-infection.

https://doi.org/10.1371/journal.pbio.3000130.g001
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generally cause indistinguishable febrile illnesses that may include headaches, nausea, myalgia,

arthralgia, and rash [13]. Some characteristic symptoms such as prolonged joint pain and

swelling (chikungunya), hemorrhagic fever (dengue), and conjunctivitis (Zika) may indicate

which arbovirus is causing disease, but laboratory tests are crucial for an accurate diagnosis

because even these symptoms may overlap [13]. One of the major unsolved mysteries regard-

ing coinfections is whether infection with two or more viruses can enhance disease severity

compared to single infections. While the interactions of multiple infecting viruses are likely

variable and complex, we anticipate four potential outcomes of coinfection: 1) enhancement of

both viruses, 2) inhibition of both viruses, 3) competition between the viruses, and 4) no effect

on either virus (Fig 2).

Enhancement of disease severity may occur if multiple arboviruses synergize and augment

each other’s replication in vivo. Chikungunya, dengue, and Zika viruses infect some of the

Fig 2. Mosquito and human coinfections occur as a result of simultaneous or sequential infection. Coinfection may either be the result of simultaneous transmission

of multiple viruses between mosquitoes and humans (central panel) or sequential transmission during multiple mosquito bites. Four scenarios may explain the

consequences of virus coinfection inside mosquito vectors and human hosts: enhancement, inhibition, competition, or neutral.

https://doi.org/10.1371/journal.pbio.3000130.g002
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same cells, cause similar disease symptoms, and interfere with immune responses via similar

mechanisms [32–34]. For instance, signal transducer and activator of transcription 1 (STAT1)

and STAT2 are two transcription factors involved in interferon signaling, an important antivi-

ral response. Thus, if chikungunya virus interferes with STAT1 nuclear transport and dengue

virus blocks STAT2 phosphorylation [34], inhibiting both STAT1 and STAT2 during chikun-

gunya/dengue coinfection may enhance replication of both viruses. As other examples, virus

inhibition of 50-30 exoribonuclease 1 (XRN1), a cellular exonuclease that degrades viral RNA,

may promote replication of a flavivirus (e.g., dengue and Zika virus) coinfecting the same cell

[35], and increased endothelial permeability during dengue virus infection may alter tissue tro-

pism of coinfecting viruses [36]. Even if coinfecting viruses do not enhance each other’s repli-

cation, coinfection may still result in increased disease severity due to exacerbated immune

responses. There are some reports of severe disease after coinfection, but these are currently

based only on individual case reports [37–39] or small-scale cohort studies [20,40–42]—there

are no controlled animal experiments or larger cohort studies providing evidence for

enhanced disease severity. Acevedo and colleagues [20], for instance, reported three patients

with Guillain-Barre syndrome who were all coinfected with multiple arboviruses, including

Zika virus. While these findings are concerning, none of the studies are powered to detect

even fairly substantial changes in clinical presentation.

Another potential outcome is that infection with multiple arboviruses triggers a robust non-

pathogenic antiviral state that reduces overall viremia and disease severity. However, identify-

ing clinical cases providing evidence for this innocuous scenario may not be possible because

of its very nature—if disease severity is significantly reduced, patients are unlikely to seek med-

ical treatment and diagnosis for a mild fever or asymptomatic infection.

The third outcome we anticipate is competition between multiple infecting arboviruses,

resulting in identical clinical presentation and transmission potential compared to single infec-

tion with the “winning” virus. Arboviruses often replicate in the same cell types (e.g., mono-

cytes [43–45]). It is thus plausible that if one virus replicates faster upon initial infection, it can

infect cells first and use up cellular resources for its own replication. Sardi and colleagues

showed that the clinical symptoms mimicked infection with the virus that had a higher serum

titer [17]. In addition, Zaidi and colleagues identified two cases of infants who were PCR posi-

tive for chikungunya and dengue virus at initial presentation but only seroconverted to chi-

kungunya virus [46]. This could suggest that chikungunya virus outcompeted dengue virus

early on during infection, although this effect may be confounded by the age of the patients.

All previous scenarios imply that there is a consequential interaction between multiple

arboviruses infecting the same person. It is possible, however, that coinfecting viruses can rep-

licate within the host as if no other virus was present and that there is no significant impact on

virus replication or clinical presentation—i.e., the “neutral” hypothesis. We compiled data

from reports of human coinfections over the last 50 years and the clinical presentation associ-

ated with them (S1 Table) [14–25,32,37–42,46–72]. While severe disease manifestations

occurred rarely, the majority of cases were comparable to single infections with a febrile illness,

arthralgia, myalgia, and rash, most of which cleared within a week or two. Some of the more

severe disease manifestations also occur in patients with single infections, such as hemorrhagic

fever, encephalitis, or persistent joint pain. To directly compare single and coinfections, we

compiled data from those publications that provided sufficient clinical information for both

(Fig 3A). While these data include only a relatively small number of coinfections, disease

severity was comparable between single and coinfections, with the majority of cases presenting

with a dengue-like febrile illness. This could imply that coinfections either 1) have no virologi-

cal or clinical impact or 2) that one virus outcompeted the other, resulting in symptoms con-

sistent with single infection.
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Fig 3. Effects of coinfection on clinical disease in humans and virus transmission by mosquitoes. (A) Clinical outcomes were obtained from studies providing

sufficient information for both single infected and coinfected patients [22,25,32,46,47,50,52,56,58,61,63,65,67–69]. “Dengue-like illness” summarizes all cases of febrile

illness with a range of additional symptoms including arthralgia, myalgia, rash, headache, gastrointestinal symptoms, thrombocytopenia, and conjunctivitis.

Hemorrhagic fever includes all patients with clear signs of hemorrhage ranging from mild to severe, and dengue shock syndrome includes patients with hypotension,

ascites, and pleural effusion. (B) Data on mosquito transmission were compiled from studies that made a direct comparison between mosquitoes exposed to a single or

multiple viruses [82–84,87]. Transmission of coexposed mosquitoes was calculated relative to single exposed mosquitoes, with relative transmission being defined as

transmission rate of virus X in mosquitoes coexposed to virus X and Y divided by transmission rate of virus X in single exposed mosquitoes. Transmission is expressed

as the percentage of mosquitoes with virus in their saliva out of the total number of exposed mosquitoes. Relative transmission of 1 indicates that no difference was

observed between transmission rates of single exposed or coexposed mosquitoes. Vertical black bars indicate the median. Data used to calculate relative co-transmission

are available at https://github.com/grubaughlab/paper_2019_co-infection. CHIKV, chikungunya virus; DENV, dengue virus; ZIKV, Zika virus.

https://doi.org/10.1371/journal.pbio.3000130.g003
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Despite numerous reports of arbovirus coinfections over the last few years, we are still far

from knowing exactly how arbovirus coinfection impacts clinical disease—it most likely

depends on the exact virus combinations, whether patients were infected simultaneously by

the same mosquito or sequentially by multiple mosquitoes, and whether pre-existing antibod-

ies or comorbidities are involved. There is some evidence that immune responses may be

altered during coinfection [32,73], yet we do not know the impact this may have on disease

progression. Additionally, the role of cross-reactive antibodies from previous flavivirus infec-

tion remains somewhat of a mystery both for single and coinfection [74–76]. Overall, current

evidence suggests that while severe disease manifestations may occur during coinfection, these

are probably not more common than severe clinical cases of single infected patients. The num-

ber of reported clinical coinfection cases remains rather low, however, and we may be missing

an overall trend in altered disease progression. It is also important to note that the four scenar-

ios we presented are not mutually exclusive, and outcomes may vary on a case-by-case basis.

Can mosquitoes transmit multiple viruses at the same time?

Given the possible outcomes of coinfections on clinical disease, we also need to understand how

humans become coinfected with multiple arboviruses. There are two possible mechanisms: 1) from

simultaneous transmission of multiple viruses during a single mosquito bite or 2) from multiple

sequential mosquito bites (Fig 2). Part of this answer lies within another intriguing question: Can

mosquitoes become infected by and simultaneously transmit multiple pathogenic arboviruses?

Upon ingestion, arboviruses face multiple anatomical barriers inside the mosquito (i.e., the

midgut and salivary glands) that need to be overcome before being transmitted to a new host

via excretion of virus-containing saliva [77,78]. In addition to these challenges, an arbovirus

must also navigate the rich microbial communities and host responses induced by these

microbes inside the mosquito, which can alter transmission potential (reviewed by [79,80]).

What is not entirely clear, however, are the interactions between multiple human-pathogenic

arboviruses within the same mosquito vector (Fig 2).

By using artificial membrane feeding systems, researchers have been able to expose mosqui-

toes to blood meals containing one or multiple arboviruses. After keeping engorged female

mosquitoes for usually 1–2 weeks at a specific temperature, saliva is collected and tested for

presence of arboviruses. Detection of virus in the saliva provides a proxy for potential trans-

mission to a new host. Such laboratory studies confirmed that mosquitoes can become simul-

taneously or sequentially infected with multiple arboviruses and that all combinations of

chikungunya, dengue, and Zika viruses can indeed be detected in the saliva of up to 11.5% of

coexposed A. aegypti mosquitoes [81–87]. Additionally, A. albopictus mosquitoes are able to

co-transmit chikungunya and dengue viruses after simultaneous or sequential infection

[81,82]. Thus, A. aegypti and A. albopictus mosquitoes are indeed capable of transmitting mul-

tiple arboviruses during one bite.

The four potential outcomes of coinfection that we identified for humans may also apply to

mosquitoes (Fig 2). By comparing transmission rates of mosquitoes exposed to single or multi-

ple arboviruses, we can identify the impact of coinfection on virus transmission. From litera-

ture, we calculated relative transmission for A. aegypti mosquitoes that were simultaneously

exposed to multiple viruses, compared to single exposure [82–84,87]. Overall, relative trans-

mission was variable, but differences between transmission rates of single infected and coin-

fected mosquitoes were generally small (Fig 3). Thus, simultaneous coinfection of viruses in A.

aegypti mosquitoes occurs without strong interference or enhancement between viruses.

Importantly, these laboratory studies were performed by simultaneously coinfecting mos-

quitoes, whereas in the field, mosquitoes may also become coinfected via sequential bites on
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different hosts. Thus far, few studies have investigated the impact of sequential coinfection on

virus transmission potential [81,82,86,88]. The only enhancement that has been observed was

when prior chikungunya virus infection enhanced subsequent Zika virus transmission poten-

tial in A. aegypti [88]. Additionally, only one study made a direct comparison between single

infected and both simultaneously or sequentially coinfected mosquitoes with chikungunya

and dengue viruses [82]. Interestingly, transmission rates of single infected and sequentially

coinfected mosquitoes were comparable, whereas no evidence was found for co-transmission

by mosquitoes that were simultaneously infected with chikungunya and dengue viruses. One

other study also could not find evidence for coinfection after simultaneous exposure to chi-

kungunya and dengue virus [89]. The variability in outcomes of studies may point to more

complex interactions among multiple viruses, their mosquito vectors, and the environment

(i.e., Genotype × Genotype × Environment interactions), which determine their transmission

potential. In addition, laboratory studies may not fully reflect complexity of natural transmis-

sion dynamics, such as the secretion of nonstructural protein 1 (NS1) protein during in vivo

flavivirus infection that can increase infection in mosquitoes [90].

Taken together, based on evidence from laboratory studies, we can conclude that A. aegypti
and A. albopictus mosquitoes may become simultaneously or sequentially coinfected in the

field and that they are able to transmit multiple viruses during one bite. Currently available

data on A. aegypti suggest that simultaneous coinfection does not seem to have profound

effects on transmission of individual viruses and, thus, there does not seem to be strong inter-

ference between viruses inside the mosquito or enhancement of one virus by another. How-

ever, sequential coinfection and additional mosquito–virus systems require further

investigation.

What are the epidemiological impacts of co-transmission?

The possibility for simultaneous co-transmission of multiple arboviruses between A. aegypti
mosquitoes and human hosts presents another unsolved question: Can coinfections resulting

from single transmission events contribute to a significantly higher burden of coinfection? The

exact role that co-transmission plays in the epidemiology of coinfection will depend on arbovi-

rus transmission dynamics between A. aegypti mosquitoes and humans, whether cross-protec-

tive immunity between viruses reduces the probability of sequential transmission, and the

extent to which epidemics of different pathogens coincide in space and time.

Previous results suggest that greater than 25% of transmission events from a coinfected host

or vector could result in co-transmission [84]. What implication this, or any other finding

from a laboratory experiment, has for the epidemiology of arbovirus coinfections may often

not be intuitively clear. To begin to assess these implications, we developed a mathematical

model with basic features for relating individual-level findings about co-transmission to popu-

lation-level patterns about coinfection (Box 1, S1 File). For instance, at 25% co-transmission

as mentioned above, our model indicates that a majority of coinfections would result from

sequential infection rather than co-transmission. If the proportion of co-transmission was

higher than 42%, however, our model suggests that a majority of coinfections could be due to

co-transmission, and the prevalence of coinfection would be more than double what would be

expected in the absence of co-transmission (Box 1).

While there is a dearth of epidemiological data on coinfections because estimating the role

of co-transmission epidemiologically is difficult, some studies have attempted to estimate the

proportion of cases with coinfection of those with at least one infection [9,25,46,66]. These

studies vary in their design—from outbreak reports to prospective studies—and on their defi-

nition of the denominator (e.g., some use the number with dengue-like illness and others use
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the number with a positive test for either virus). Coinfection with chikungunya and dengue

virus has been the most frequently studied. For this combination, the proportion with both

viruses has been reported to be as high as 38% [46], and is often 5%–10% [9]. These high prev-

alences suggest that co-transmission may contribute to the observed prevalence of coinfection.

Because laboratory studies have shown that mosquitoes can be simultaneously coinfected and

can co-transmit, the rate of coinfections in humans raises the possibility of chains of co-trans-

mission. Conversely, just one coinfected mosquito has ever been found in the wild, in this case

coinfected with chikungunya and dengue virus [48]. While this could reflect a lack of coinfec-

tions in mosquitoes, it could also be due to infrequent mosquito surveys during simultaneous

outbreaks, the fact that mosquitoes are often tested in pools rather than individually, and the

low detection of mosquito infections in the field (sometimes only approximately 1:1,000 tested

mosquitoes [91,92]).

Box 1

We used a deterministic SIR-SI model (see S1 File for model details) to explore possible

impacts that co-transmission from mosquitoes to humans may have on the overall

dynamics of simultaneous arbovirus outbreaks. This model incorporates two viruses

that have identical transmission parameters and recovery rates (for humans). The proba-

bility that transmission occurs from a coinfected human or vector is the same as if they

had a single infection (i.e., coinfecting arboviruses do not affect transmission potential)

[83,84]. We further assume that 60% of mosquitoes infected following a blood meal on a

coinfected human become coinfected, 20% become single infected with virus X, and

20% become single infected with virus Y. In all simulations, the second virus invades

one month after the first into a population of 1 million with no prior immunity. We

explore three scenarios: intermediate co-transmission (50% of infectious bites from a

coinfected mosquito lead to coinfection and 50% lead to single infection), no co-trans-

mission (0% of infectious bites from a coinfected mosquito lead to coinfection and 100%

lead to single infection), and all co-transmission (100% of infectious bites from a coin-

fected mosquito lead to coinfection and none lead to single infection).

In the intermediate scenario, co-transmission has a small impact on the overall dynamics

of a staggered arbovirus invasion compared to the no co-transmission scenario, with a

slight increase (0.76%) in the total prevalence at the peak of the epidemic (Fig 4). How-

ever, there is a large increase in the burden of human coinfection, with the peak preva-

lence of coinfection increasing from 0.062% (1.8% of those with at least one infection) to

0.13% (3.8% of those with at least one infection), a 110% increase. Overall, the total num-

ber of human coinfections increases from 12,000 to 25,000. In the all co-transmission

scenario, an unrealistic but illustrative case, we would expect an even greater increase in

the burden of coinfection (Fig 4). In the intermediate case, 55% of all coinfections arise

because of co-transmission and 45% arise because of sequential infections. In the all co-

transmission scenario, 78% of coinfections arise because of co-transmission and 22%

arise because of sequential infections (S1 File). When the probability of co-transmission,

given an infectious bite by a coinfected mosquito, is 42%, we would expect half of all

coinfections to be caused by co-transmission and half to be caused by sequential infec-

tions (S1 File). The code for this model is available at https://github.com/grubaughlab/

paper_2019_co-infection.
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A number of studies have suggested that related arboviruses display a level of cross-protec-

tion, whereby prior exposure to one virus generates an acquired response upon exposure to

the second virus, which may thereby decrease the probability of sequential infections [93,94].

In the case of co-transmission to a naive host, the host will not have pre-existing immune

response for either arbovirus, and cross-reactivity may play a reduced role, implying co-trans-

mission would play a greater role in the dynamics of coinfection. This effect would likely

increase the role of co-transmission in generating coinfections and may also increase the total

number of coinfections (Box 1).

A related issue is whether coinfecting viruses influence the transmission fitness of the other

(Fig 2). Here, there is again conflicting evidence. Zaidi and colleagues saw a significant re-

duction in dengue virus production and a significant increase in chikungunya production

in coinfected cells, whereas Silva and colleagues saw the opposite: a significant reduction in

chikungunya production but a moderate increase in dengue virus production [46,73].

Fig 4. Model-predicted prevalence over time of two sequentially invading arboviruses. The transmission parameters of the viruses are identical, and virus Y invades

one month after virus X in a population of 1,000,000. The top row shows the overall prevalence of both viruses and coinfection, and the bottom row shows coinfections

only, delineated by the cause of the coinfection. The columns represent different scenarios of transmission from coinfected mosquitoes: no co-transmission on the left,

50% co-transmission in the middle, and 100% co-transmission on the right.

https://doi.org/10.1371/journal.pbio.3000130.g004
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Waggoner and colleagues found that during coinfections, Zika virus typically has lower vire-

mia than either of the other two, and coinfection typically has lower viremia of either virus

than single infection [25]. If one virus has higher transmission fitness than the other, this

would lead to more single infections and fewer coinfections because coinfected mosquitoes/

humans disproportionately transmit the more fit virus. If the transmission fitness of both

viruses remains the same or is mutually enhanced, then we might expect a greater proportion

of co-transmissions.

Our model simulations raise the possibility that co-transmission from A. aegypti mosqui-

toes to humans may make an important contribution to the burden of coinfection (e.g., a

majority of the cases in the 50% co-transmission scenario) during overlapping outbreaks. The

size of this contribution will be determined in part by the effect that coinfection has on the

transmission potential of each virus and on the probability of co-transmission. At this point,

this effect is still unclear. The number of unknowns surrounding the clinical consequences of

coinfection, and whether we are accurately diagnosing coinfections (e.g., [95]), would urge us

to study the potential epidemiological impacts of co-transmission carefully.

How do we solve the mysteries of coinfection and co-

transmission?

Several important questions remain to be answered. It remains unclear whether the presence

of multiple infecting arboviruses within a patient impacts short- and/or long-term clinical out-

comes, including for developing fetuses and in the context of highly prevalent comorbidities.

Cohort studies adequately powered to detect rare events such as coinfection, including rare

outcomes of these rare events, are needed in order to fully evaluate the clinical implications of

coinfection and to understand the possible impact on congenital disease. Importantly, several

studies have recently been initiated in endemic areas. In addition, as mouse models of arbovi-

rus diseases improve (e.g., [96]), so may their ability to uncover the mechanisms through

which these agents synergize or interfere with one another. In the coming years, the combina-

tion of large epidemiological studies and laboratory work on vertebrate immunity may shed

light on what is in store as conditions worsen in the tropics and elsewhere.

Similarly, how coinfection impacts arbovirus transmission by mosquitoes is not well char-

acterized but may have significant impacts on arbovirus transmission dynamics. It has become

fairly clear that A. aegypti mosquitoes have the ability to acquire and transmit multiple arbovi-

ruses simultaneously [81–87] and that when acquired during a single feeding episode, neither

viral synergism nor competition seems apparent. However, in nature, many mosquitoes may

be exposed during sequential blood meals. Whether and how viruses interact in the context of

sequential infection requires further study. The possibility for vertical transmission of multiple

viruses also needs to be addressed, although the low rates of vertical transmission for single

viruses suggest that this may contribute little in the field [97,98]. Additionally, while we focus

mainly on A. aegypti and chikungunya, dengue, and Zika viruses, coinfections in other systems

may also be important and require further investigation. Careful and comprehensive studies of

coinfection in mosquitoes are required to fully understand how the altered pathogen landscape

in the tropics may contribute to current and future virus emergence.

Finally, because of extreme environmental changes that are occurring in the tropics, the

selective environment faced by A. aegypti-borne viruses appears to be fundamentally different

from what existed previously. It may be that these changes, including the rise of a much more

complex set of viruses that can coinfect both mosquitoes and people, will alter the rates of

arbovirus evolution, as well as the evolution of virulence [99]. Experimental investigations of

within-host competition and selection during virus coinfection are needed to uncover the
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extent to which these rare but potentially abrupt events may shape arbovirus evolutionary

dynamics (i.e., the theory of punctuated equilibria).

The rise of massive urban centers in the tropics inhabited by vulnerable populations; the

increased frequency and speed of intra- and intercontinental movements of humans, animals,

and other materials; and the spread of human-associated mosquitoes that are resistant to

many insecticides has created an unprecedented set of environments that facilitate the intense

transmission of mosquito-borne infections. A detailed understanding of how coinfection

impacts the biology and epidemiology of arboviruses is critical to our response to these now

global pathogens because more are surely on the way.
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