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Abstract: Advanced glycation end products (AGEs) are the compounds produced by non-enzymatic
glycation of proteins, which are involved in diabetic-related complications. To investigate the
potential anti-glycation activity of Myriocin (Myr), a fungal metabolite of Cordyceps, the effect
of Myr on the formation of AGEs resulted from the glycation of bovine serum albumin (BSA)
and the interaction between Myr and BSA were studied by multiple spectroscopic techniques and
computational simulations. We found that Myr inhibited the formation of AGEs at the end stage of
glycation reaction and exhibited strong anti-fibrillation activity. Spectroscopic analysis revealed that
Myr quenched the fluorescence of BSA in a static process, with the possible formation of a complex
(approximate molar ratio of 1:1). The binding between BSA and Myr mainly depended on van der
Waals interaction, hydrophobic interactions and hydrogen bond. The synchronous fluorescence and
UV-visible (UV-vis) spectra results indicated that the conformation of BSA altered in the presence of
Myr. The fluorescent probe displacement experiments and molecular docking suggested that Myr
primarily bound to binding site 1 (subdomain IIA) of BSA. These findings demonstrate that Myr is a
potential anti-glycation agent and provide a theoretical basis for the further functional research of
Myr in the prevention and treatment of AGEs-related diseases.

Keywords: Myriocin; non-enzymatic glycation; BSA; spectroscopic techniques; computational
simulations

1. Introduction

The non-enzymatic glycation is characterized by a series of reactions that occur be-
tween amino groups of protein, lipid, or nucleic acid and aldehyde groups of reducing
sugars under non-enzymatic conditions. Finally, brown advanced glycation end-products
(AGEs) with high fluorescence, cross-linking and irreversibility are formed [1,2]. The en-
hanced non-enzymatic glycation of many important proteins in high glucose environments
is the main cause of late complications of diabetes, such as diabetic cardiovascular disease
and diabetic nephropathy, etc. [3,4]. In particular, AGEs can elevate blood glucose levels [5],
damage the wall of blood vessels [6,7], and induce obesity-associated insulin resistance [8,9].
Therefore, blocking glycation cascades has been a promising strategy for the prevention or
treatment of diabetes and other pathogenic complications [10].

Serum albumin, the most abundant carrier protein in plasma [11], is responsible for
transporting metabolites and drugs and maintaining osmotic pressure [12]. It is sensitive
to non-enzymatic glycation [13,14]. The interaction between drugs and serum albumin
affects the absorption, metabolism and excretion of drugs. Bovine serum albumin (BSA),
consisting of 581 amino acid residues, is often selected as a model protein for non-enzymatic
glycation reaction due to its wide availability and known structure information [11,15].
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Albumin glycated by glucose changes its conformation and binding properties and triggers
the downstream signaling pathway mediated by the receptor for AGEs (RAGE) [16,17].

Recently, natural compounds inhibiting non-enzymatic glycation reactions have at-
tracted wide attention. For example, coumarin, oleanolic acid, silybin, ferulic acid, resvera-
trol and curcumin have been demonstrated to show effective anti-glycation activity and
were expected to be potential drugs for diabetes and its complications [18–21].

Myriocin (Myr), isolated from fungi traditionally used in Chinese medicine, including
Isaria sinclairi, Myriococcum albomyces and Mycelia sterilia [22], is a potent and highly selective
serine palmitoyltransferase (SPT) competitive inhibitor with a molecular structure similar
to the substrates of SPT [23]. It was reported that Myr has multiple biological activities,
such as anti-tumor [24], ameliorating atherosclerosis [25–29], improving non-alcoholic fatty
liver [30,31], preventing hepatic steatosis [32–34], hypertension [35], and cardiomyopathy,
etc. [36,37]. In addition, research about diabetes mice has revealed that Myr can regulate
insulin sensitivity, glucose tolerance, mitochondrial function and blood glucose level of
obese mice, indicating that Myr can relieve the pathology of diabetes and its complications
by reducing blood glucose level [38]. However, whether Myr inhibits the non-enzymatic
glycation of proteins is still unclear.

In this study, we investigated the inhibitory capability of Myr on the protein glycation
and the related mechanism by using a BSA-glucose model of non-enzymatic glycation.
This study will provide elaborate information about the Myr-BSA binding phenomena and
give insight into the development of Myr as an antiglycation agent.

2. Results and Discussion
2.1. Inhibitory Effect of Myr on Non-Enzymatic BSA Glycation

The non-enzymatic glycation of proteins to form AGEs can be divided into three
stages [39]. At the early stage, the reducing sugar is condensed with the free amino group
of the protein to form a Schiff base, which then produces the Amadori product (Figure 1A).
At the middle stage, the Amadori product further reacts with dicarbonyl compounds such
as 3-deoxyglucosone (3-DG), glyoxal (GO) and methylglyoxal (MGO). At the end stage,
the dicarbonyl compound reacts with the amino group to produce AGEs (Vesperlysine,
Crossline, Argpyrimidine and Pentosidine) with fluorescent properties. The early glycation
product, fructosamine, was analyzed by detecting the chromogenic product at 530 nm.
Aminoguanidine (AG), a chemically synthesized compound that inhibits the formation of
AGEs, was applied as positive control. Myr did not inhibit the formation of fructosamine
(Figure 1B). However, Myr showed a strong inhibitory effect on the end glycation products.
To be specific, 20 µM Myr inhibited 34% of total AGEs (Figure 1C), 32% of Vesperlysine
(Figure 1D), 47% of Crossline (Figure 1E), 30% of Argpyrimidine (Figure 1F) and 20%
of Pentosidine (Figure 1G), while AG only inhibited about 10% of these end glycation
products. These results proved that Myr can delay the glycation reaction, especially at the
end stage.

Myr, like AG, did not reduce the content of fructosamine, but inhibited the formation
of end products, which was consistent with the previous study [40]. We speculate that this
might be because Myr and AG have similar structures in terms of amino group, which has
a low Ka value and is easy to condense with the carbonyl group [41], so that they have
strong competition in protein glycation reaction, thus preventing the generation of end
products.

2.2. Anti-Fibrillation Ability of Myr

Amyloid-like fibrils, formed by proteins crosslinking triggered by AGEs at the end
stage of glycation [42], have been strongly related to some diabetic complications such as
Parkinson’s disease and Alzheimer’s disease [43]. To monitor amyloid-like fibrils, BSA was
stained with the fluorescent dye thioflavin T (ThT). ThT can bind to the β-folded structure
of the protein and has strong fluorescence at 480 nm. The higher ThT fluorescence intensity
of glycated BSA than native BSA indicated that protein amyloid fibrosis aggregation had
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formed (Figure 2A). With the addition of Myr, the fluorescence intensity was decreased,
indicating that Myr could inhibit the amyloid aggregation of glycated protein. Similarly,
the glycated BSA exhibited more fluorescence spots than native BSA (Figure 2B), indicating
that amyloid-like fibrils were formed due to the glycation of BSA, while 20 µM Myr
significantly decreased the number of fluorescence spots and is comparable to AG. These
results indicated that Myr could prevent the crosslinking of BSA and avoid the formation
of amyloid-like fibrils, which was consistent with the fluorescence intensity result.
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Figure 1. Effects of Myr on the glycation products formed in BSA-Glucose model at different stages. 
(A) Diagram of formation process of advanced glycation end products (AGEs). (B) Content of fruc-
tosamine generated at the early stage in BSA-glucose system incubated with Myriocin (Myr) or ami-
noguanidine (AG), measured by UV absorbance at 530 nm. (C) Inhibition rate of total AGEs gener-
ated at the end stage, measured by fluorescence emission at 440 nm with excitation at 350 nm. (D–
G) Inhibition rates of different fluorescent AGEs including vesperlysine, crossline, argpyrimidine 
and pentosidine, measured by fluorescence at λex/λem of 350/405, 380/440, 320/380 and 335/385 nm, 
respectively. Data were expressed as mean ± SD (n = 3). ns > 0.05, * p < 0.05 and ** p < 0.01 compared 
with AG. 
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Figure 1. Effects of Myr on the glycation products formed in BSA-Glucose model at different stages.
(A) Diagram of formation process of advanced glycation end products (AGEs). (B) Content of
fructosamine generated at the early stage in BSA-glucose system incubated with Myriocin (Myr) or
aminoguanidine (AG), measured by UV absorbance at 530 nm. (C) Inhibition rate of total AGEs
generated at the end stage, measured by fluorescence emission at 440 nm with excitation at 350 nm.
(D–G) Inhibition rates of different fluorescent AGEs including vesperlysine, crossline, argpyrimidine
and pentosidine, measured by fluorescence at λex/λem of 350/405, 380/440, 320/380 and 335/385 nm,
respectively. Data were expressed as mean ± SD (n = 3). ns > 0.05, * p < 0.05 and ** p < 0.01 compared
with AG.
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Figure 2. Effects of Myr on glycation-induced protein amyloid aggregation. (A) ThT fluorescence spec-
trometry analysis of amyloid-like fibrils in the presence and absence of Myr or AG (aminoguanidine,
positive control). (B) The fluorescence microscopy analysis of amyloid-like fibrils in the absence and
presence of Myr. *** p < 0.001 compared with native BSA. ### p < 0.001 compared with glycated BSA.

2.3. Inhibitory Effect of Myr on Protein Glycoxidation

Non-enzymatic glycation is commonly accompanied by an oxidation process called
glycoxidation [44]. The tryptophan (Trp) and tyrosine (Tyr) residues of proteins can be
destroyed by glycoxidation, which results in different fluorescent products. Trp residues
are easily modified to Dityrosine and N′-formylkynurenine, while Tyr residues are easily
modified to Kynurenine. Therefore, we monitored the formation of these fluorescent
products during the glycoxidation of BSA by spectrometry. We found that 20 µM Myr
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inhibited 10–15% of Dityrosine, which is similar to the activity of 100 µM AG (Figure 3A).
Moreover, 20 µM Myr resulted in 48% and 24% inhibition of Kynurenine (Figure 3B) and
N′-formylkynurenine (Figure 3C), respectively, and the inhibitory ability of Myr on the
glycoxidation products was stronger than AG. These results revealed that Myr protected
the Trp and Tyr residues of BSA from glycoxidation.
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Figure 3. Effects of Myr on glycoxidation fluorescence products. Inhibition rates of formation of
dityrosine (A), kynurenine (B) and N′-formyl-kynurenine (C), respectively, measured by fluorescence
at 415, 480, and 434 nm with excitation at 330, 365, and 325 nm, respectively. Data were expressed as
mean ± SD (n = 3). ns > 0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001 compared with AG.

2.4. Quenching Effect of Myr on Endogenous Fluorescence of BSA

The phenomenon of decreasing fluorescence intensity after interaction between protein
and small molecules is called fluorescence quenching. Fluorescence quenching of the
protein upon drug binding was used to find the drug–protein interactions and measure the
binding affinity between drug and protein [45]. To understand the interaction mechanism
between Myr and BSA, we carried out the fluorescence quenching experiment. When the
excitation wavelength is 280 nm, the peak of endogenous fluorescence emitted by BSA is
about 340 nm, while Myr itself had almost no fluorescence emission peak at this excitation
wavelength (Figure 4A). The maximum fluorescence (340 nm) of BSA was quenched with
the increasing concentrations of Myr (Figure 4B), but the peak position and waveform did
not change significantly. This indicated that Myr retards the glycation of BSA by glucose
since Myr interacts with BSA.

2.5. Fluorescence Quenching Mechanism for BSA by Myr

The fluorescence quenching mechanism of proteins can be divided into static quench-
ing, dynamic quenching, and static combined dynamic quenching [46]. Static quenching
refers to the combination of a protein and a small molecule ligand to form a ground
state complex, which is accompanied by the quenching of the endogenous fluorescence
of a protein, while dynamic quenching is the result of the collision of a protein and a
small molecule ligand with no change in the fluorescence spectrum. Generally, the types of
quenching mechanisms can be distinguished by their difference in temperature dependence.
The fluorescence quenching mechanism can be determined according to the Stern–Volmer
equation [47]:

F0/F = 1 + Kqτ0[Q] = 1 + Ksv [Q] (1)

where F0 and F are the fluorescence intensity of BSA in the absence and presence of Myr,
respectively. [Q] is the concentration of Myr. Kq and Ksv are the bimolecular quenching
rate constant and Stern–Volmer quenching constant, respectively. τ0 is the mean lifetime of
fluorescent molecules (about 10−8 s) [48].
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Figure 4. Fluorescence emission spectra of Myr-BSA system in 10 mM PBS (pH = 7.4) at 293 K.
(A) Fluorescence emission spectra for BSA (2 µM) with Myr (0, 2, 4, 6, 8, 10 µM). (B) The fluorescence
intensity of BSA at 340 nm in absence and presence of Myr (0–10 µM). (C) The Stern-Volmer plots of
fluorescence quenching constant (Kq) for the Myr-BSA complexes at different temperatures. (D) The
double logarithmic plots at different temperatures.

The Stern–Volmer curve shows a linear relationship (Figure 4C), indicating that the
binding of Myr and BSA involves a single quenching mechanism. In addition, the slope of
the fitting curve decreased with the increase in temperature, which was consistent with the
characteristics of static quenching. As shown in Table 1, with the increase in temperature,
Ksv of the system gradually decreased and was 2–3 orders of magnitude larger than the
maximum dynamic quenching rate constant of 100 mol/L for biological macromolecules.
Consequently, the fluorescence quenching of BSA by Myr was a static quenching pro-
cess. The bimolecular quenching rate constant Kq (1.21 × 1013) was much larger than the
maximum of the dynamic collision quenching constant 2.0 × 1010 Lmol−1 s−1 [49], further
confirming that the fluorescence quenching mode of BSA by Myr was static quenching.

2.6. Binding Constants and Number of Binding Site for the BSA-Myr Complex

Fluorescence intensity in static quenching follows Equation (2) [50,51]:

lg[(F0 − F)/F] = lgKa + nlg[Q] (2)
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where Ka is the binding constant, which is commonly used to represent the binding strength
of protein and small molecule. n is the number of binding sites, indicating the ratio of the
number of binding sites between small molecules and protein.

Table 1. Fluorescence parameters of the BSA-Myr system.

Parameters 298 K 308 K

Ksv (105 mol/L) 1.21 ± 0.01 0.41 ± 0.01
Kq (1013 L/mol/s) 1.21 ± 0.01 0.41 ± 0.01

R2a 0.989 0.996
n 1.50 ± 0.04 1.35 ± 0.12

Ka (104 mol/L) 3.79 ± 0.18 1.93 ± 0.27
R2b 0.999 0.987

∆G (kJ/mol) −26.12 ± 0.01 −24.45 ± 0.01
∆H (kJ/mol) −51.53 ± 0.58 −51.53 ± 0.58

∆S (J/mol/K) −85.25 ± 2.38 −87.91 ± 2.36

lg[(F0 − F)/F] is plotted against lg[Q], and the results are shown in Figure 4D. The
number of binding sites n and the binding constant K of Myr and BSA can be calculated from
the slope and intercept of the line (Table 1). The binding constant Ka was 3.79 × 104 mol/L
at 298 K, which is larger than the binding constant of general ligand–protein interactions,
indicating that Myr had a strong affinity with BSA. When the temperature rose to 308 K, Ka
decreased by nearly 2 times (1.93 × 104 mol/L), validating that the decomposition of the
Myr-BSA complex occurred at higher temperature. The above results ulteriorly confirmed
that the interaction mode of Myr-BSA was static binding. In addition, the number of
binding sites (n) between Myr and BSA at 298 K and 308 K were 1.5 and 1.35, respectively,
which were both close to 1, suggesting that BSA interacts with Myr in a one-to-one ratio.
Thus, we speculated that there may be only one binding site between Myr and BSA.

2.7. Binding Forces between BSA and Myr

In general, the binding force between ligands and proteins mainly involves the follow-
ing four non-covalent interactions: hydrogen bonding, van der Waals forces, electrostatic
interactions and hydrophobic interactions [52]. The thermodynamic parameters such as en-
thalpy change (∆H), drip change (∆S), and Gibbs free energy change (∆G) were calculated
using Equations (3) and (4) [53]:

ln Ka = −∆H/RT + ∆S/R (3)

∆G = ∆H − T∆S (4)

where Ka is the binding constant of small molecules to proteins. T and R represent tempera-
ture and the gas constant, respectively.

∆H is ignored when the temperature varies within a small range. The relationship
between thermodynamic parameters and force type of small molecules-protein interaction
can be determined as follows: ∆H > 0, ∆S > 0 correspond to hydrophobic forces; ∆H < 0,
∆S < 0 correspond to van der Waals interaction, hydrogen bond formation; ∆H < 0, ∆S > 0
correspond to electrostatic interactions force [54]. ∆H and ∆S were both negative values
(Table 1) indicated the force types were van der Waals interaction and hydrogen bond
between Myr and BSA. Additionally, the negative values of ∆G indicated that the interaction
between BSA and Myr is spontaneous [55].

2.8. Influence of Myr on the Structure of BSA as Monitored by Synchronous
Fluorescence Spectroscopy

Synchronous fluorescence spectrum is used to evaluate the changes of the microen-
vironment around Tyr and Trp residues. The overlapping fluorescence peaks in the or-
dinary fluorescence spectrum can be separated by selecting the appropriate wavelength
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difference. When ∆λ = 15 nm, only the fluorescence of Tyr residue was observed, and
when ∆λ = 60 nm, the fluorescence of Trp residue was observed [56]. Since the maximum
emission wavelength of fluorescent amino acid residues is related to the polarity of the
environment [57], changes in protein conformation can be determined by analyzing the
results generated by changing the emission wavelength. We fixed the concentration of BSA,
gradually increased the concentration of Myr, and scanned the synchronous fluorescence
spectra of BSA when ∆λ = 15 nm and ∆λ = 60 nm. With the increase in concentration of
Myr, the fluorescence of both Tyr and Trp residues in BSA were quenched, and the fluores-
cence quenching degree of Trp residues was greater than that of Tyr residues (Figure 5A,B),
clarifying that the binding site between Myr and BSA was closer to the Trp residues. Si-
multaneously, the maximum emission wavelength of Tyr residues and Trp residues in
BSA showed a slight blue shift (Figure 5A) and red shift (Figure 5B), respectively. We
speculate that this might be due to Myr enhancing the polarity near the Trp residues in
BSA, weakening the hydrophobic environment, and increasing the extent of the peptide
chain extension. All of these results suggest that Myr changed the conformation of BSA.
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Figure 5. Effects of Myr on the conformation of BSA. (A,B) represent the synchronous fluorescence
spectra of the interaction between Myr and BSA at ∆λ = 15 nm and ∆λ = 60 nm, respectively.
(C) UV-vis absorption spectra of BSA in absence and presence of Myr (0, 2, 4, 6, 8, 10 µM).

2.9. Effects of Myr on the UV-Vis Absorption of BSA

UV-vis absorption spectrometry is a simple and efficient method to study protein con-
formational changes and complex formation. The intensity of the absorption peak of BSA at
280 nm decreased significantly with the increase in concentration of Myr (Figure 5C). These
results indicate that the interaction between Myr and BSA can lead to the conformation
change of BSA, and also confirmed that Myr binds to BSA to form the ground state complex;
that is, the fluorescence quenching mechanism between them is static quenching.

2.10. Binding Model between BSA and Myr

Studies have shown that small molecules have three binding sites on BSA: site 1
(subdomain IIA) is the warfarin (War) binding site, site 2 (subdomain IIIA) is the ibuprofen
(Ibu) binding site [58], and site 3 is the methyl orange (Met) binding site [59]. Each binding
site contains two subdomains. In order to further determine the specific binding site of Myr
on BSA, Met, War and Ibu were used to carry out locus competitive labeling experiments.
The substitution percentage of site labeled probes can be calculated by the following
equation [60]:

Probedisplacement(%) =
F2

F1
× 100% (5)

where F2 and F1 are the fluorescence intensity of BSA-Myr complex in the presence and
absence of site labeled probe, respectively.
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The relative fluorescence intensity of BSA-Myr system decreased slowly in the presence
of War, but remained decreased in the presence of Met and Ibu (Figure 6A). In other words,
Myr could not reduce the fluorescence intensity of BSA after site 1 was competitively bound
by War. Figure 6B represents the plot of binding constant for the BSA-Myr system in the
presence of War, Met and Ibu. Consistently, as listed in Table 2, the considerable decrease in
binding constant K’a value for the [BSA + War]-Myr system (0.98 × 104 mol/L) compared
to the BSA-Myr system (3.79 × 104 mol/L) signifies a similarity of binding site between
War and Myr to BSA. The basically unaltered K’a value of BSA-Myr system in the presence
of Ibu indicated the low affinity of Myr towards site 2. These findings revealed that the
main binding site between Myr and BSA was site 1 (subdomain IIA).
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Table 2. Related thermodynamic parameters of probe displacement.

System K′a (104 mol/L) K′a/Ka (%) R2

BSA-Myr 3.79 ± 0.18 - 0.999
[BSA + Met]-Myr 1.79 ± 0.22 45.00 ± 4.12 0.994
[BSA + War]-Myr 0.98 ± 0.15 25.76 ± 3.06 0.984
[BSA + Ibu]-Myr 3.38 ± 0.33 89.23 ± 4.81 0.994
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Next, the possible binding mode of Myr on the three-dimensional structure of BSA
was further studied by molecular docking simulation. The best conformation of Myr was
selected with the binding energy of −6.5 kcal/mol. Myr docked into the subdomain IIA
cavity of BSA to form the Myr-BSA complex, which was mainly surrounded by Leu237,
Arg256, Leu259, Ala260, Ile289, Ala290, Glu152, Glu291, His287, Lys187, Tyr156, Thr190,
and Arg198 (Figure 6C). This was consistent with the binding site of most small molecule
drugs being site 1 [61,62]. Furthermore, molecular docking revealed that hydrogen bonding
and hydrophobic interactions existed between Myr and BSA, which was consistent with
the results of thermodynamic parameters mentioned above (Section 2.7). The oxygen atom
from the carboxyl group at C-21 of Myr formed two hydrogen bonds with Arg 256 of BSA
with the distances of 2.76 and 3.00 Å, respectively. Additionally, Lys and Arg were reported
to be the pivotal amino acids responsible for BSA glycation [63–65]. In this study, Myr
could bind to BSA through hydrogen bonding and hydrophobic interaction with several
Lys and Arg residues of BSA, which further proved that Myr could prevent the glycated
reaction of BSA from sugars.

2.11. Molecular Dynamics (MD) Simulation between BSA and Myr

To assess the binding stability of the BSA-Myr system at the atomic level, 30 ns MD
simulations were performed. MD simulation allows the observation of structural informa-
tion of complex systems over time at the atomic level [66,67]. Root mean square deviation
(RMSD) is an essential index for evaluating the structural stability in MD simulation [68,69].
BSA and BSA-Myr systems reached relative equilibrium after 5 ns when running a MD
simulation with an average backbone Cα-RMSD of about 3 Å (Figure 7A). The radius of gy-
ration (Rg) can be used to estimate the density of the target protein. Thereby, the increase in
Rg value reflects the decrease in the density and loose structure of the target protein [67,70].
The Rg value of BSA-Myr system was slightly higher than that of the BSA system in 30 ns
MD simulation (Figure 7B), indicating that Myr bound to BSA, resulting in its density
reduction and loose structure. Root mean square fluctuation (RMSF) is a crucial index for
evaluating the flexibility of amino acid residues in MD simulation [71]. We observed that
the RMSF value of the residues 400–420 of the BSA-Myr system is slightly lower than that of
BSA (Figure 7C), illuminating that these residues are potentially key binding residues. This
result is partially different from molecular docking, which may be the dynamic binding
process during the binding of Myr to BSA. By analyzing the change of hydrogen bond in
complex system, we can not only study the bond stability of complex systems, but also
determine the bond strength of complex systems [72]. The average number of hydrogen
bonds in BSA-Myr systems was five during 30 ns MD simulation (Figure 7D), which means
Myr bound to the key residues in BSA via hydrogen bonding to maintain the stability of
the complex system.

A distinct feature of our study is that Myr exhibited antiglycation and anti-glycoxidation
potential. The reason why Myr could prevent the glycation of BSA from sugars is that
Myr bound to site 1 of BSA through hydrogen bonding and hydrophobic interaction
with several Lys and Arg residues, which are involved in BSA glycation. Although the
antiglycation mechanism of Myr is not completely understood, it is certain that Myr is
hydrophobic and forms complexes with hydrophobic domains of BSA, which could play a
critical role in attenuating the glycation and associated changes in conformation of BSA. As
a result, this work provides novel insights into the mechanism of antiglycation properties
of Myr, which can form the basis of future antiglycation strategies in both diabetic and
non-diabetic individuals. However, the limitations of the present studies include (1) a lack
of determination about inhibition of intermediate glycation products, and that (2) only the
structural information of the microenvironment surrounding the endogenous fluorophores
of BSA was monitored. Circular dichroism spectroscopy needs to be carried out in the
future to verify the secondary structural conformational changes in BSA.
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AGEs accumulation is an important factor in metabolic disorders. It has been demon-
strated that glycated serum albumin [73] and glycated lipoproteins levels [74] are higher in
diabetic patients than healthy subjects. Glycated albumin participates in the pathogenesis
of diabetic nephropathy by increasing the ROS accumulation and activating inflamma-
tion [75,76]. Glycated lipoproteins aggravate the pathological process of atherosclerosis [77].
The inhibition of AGEs formation is one of the targets for the treatment of these metabolic
disorders. In this study, we revealed that Myr can interact with BSA (Figure 6) to inhibit
the formation of AGEs (Figures 1–3), which provides new insight into the mechanism of
Myr against the above metabolic disorders.

3. Materials and Methods
3.1. Regents

Myriocin (APEx, Houston, TX, USA, 98%, #B6064), aminoguanidine (Sigma-Aldrich,
St. Louis, MI, USA, 98%, #396494) and BSA (Sigma-Aldrich, USA, 98%, #A1933) were
prepared as 2 mM, 1 mM and 0.1 mM stock solution in 10 mM PBS, respectively. D-
Glucose was purchased from Chronchem Co., Ltd. (Chengdu, China). Methyl orange (Met),
warfarin (War) and ibuprofen (Ibu) and thioflavin T (ThT) were all purchased from Yuanye
Bio-Technology (Shanghai, China). All reagents used were analytical grade. Ultrapure
water was used throughout the experiments. Stock solutions were prepared weekly and
stored in the dark at 4 ◦C.
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3.2. Non-Enzymatic Glycation of BSA

AGEs were prepared by co-incubation of glucose and BSA, as described previously [78].
Briefly, BSA solution (50 mg/mL in PBS buffer) was incubated with or without D-glucose
(0.5 M) for 90 days at 37 ◦C followed by dialyzing in PBS (pH 7.4, 5 mM) at 4 ◦C overnight.
The incubated solutions were then used for the following assays.

3.3. Fluorescence Spectroscopy

Fluorescence spectra were recorded using a Hitachi F-4500 fluorescence spectropho-
tometer (Hitachi, Kyoto, Japan) equipped with a water bath at 25 ◦C as described before [79].
We measured the fluorescence emission spectra (290–500 nm) of BSA (2 µM) with or with-
out Myr (0–40 µM) with a scan speed of 1000 nm/min at 298 K and 308 K, respectively.
Excitation and emission bandwidths were both 10 nm. PBS was used as a blank.

3.4. Anti-Glycation Activity of Myr

BSA (50 mg/mL in 10 mM PBS, pH 7.4) and different concentrations of sample solution
were pre–mixed at room temperature for 30 min and then were added with glucose (0.5 M).
The mixture was incubated in a water bath at 50 ◦C for 24 h. Ultimately, samples were
removed from the water bath and tested.

3.4.1. Determination of Fructosamine Content

We determined the content of early glycation product—fructosamine through nitroblue
tetrazolium (NBT) method as described previously [80]. Briefly, the glycated protein sample
(80 µL) was mixed with 1.6 mL NBT (0.3 mM, dissolved in 0.1 M sodium carbonate buffer,
pH 10.35) in 320 µL water and incubated in 37 ◦C water bath for 15 min. Then, the
absorbance at 530 nm was measured by the microplate reader. The inhibition rate of
fructosamine was calculated by the following equation [71]:

The inhibition rate (%) = (1 − A0/A) × 100% (6)

where A and A0 are the absorbance of BSA with or without Myr (or AG), respectively.

3.4.2. Determination of Fluorescent AGEs

The fluorescence intensity was measured as described in Section 3.3. Table 3 lists the
excitation and emission wavelength of different AGEs [72]. After detection, the inhibition
rate of fluorescent AGEs was calculated by the following equation [71]:

The inhibition rate (%) = (1 − F/F0) × 100% (7)

where F and F0 are the fluorescence intensity of BSA with or without Myr (or AG), respectively.

Table 3. The excitation and emission wavelength of different fluorescent AGEs.

Different AGEs Excitation Wavelength (nm) Emission Wavelength (nm)

Total AGEs 350 440
Vesperlysine 350 405

Crossline 380 440
Argpyrimidine 320 380

Pentosidine 335 385

3.5. Detection of Amyloid-like Fibrils

The amyloid-like fibrils level was determined via thioflavin T (ThT) assay [81]. Briefly,
native BSA, glycated BSA with or without Myr (or AG) were incubated with thioflavin
T (300 µM) for 30 min at 25 ◦C in the dark, respectively. On the one hand, we measured
the fluorescence intensity under λex/λem of 440/485 nm using the method described in
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Section 3.3. On the other hand, the amyloid cross—β structure was observed using the
fluorescence microscope (Leica DMi 8, Leica Microsystems, Wetzlar, Germany) [71,82].

3.6. Inhibitory Activity of Myr on Glycoxidation Fluorescence Products

Glycoxidation accompanied by glycation produces fluorescent products involving
Dityrosine, kynurenine and N′-formylkynurenine [71]. We measured their fluorescence
intensity under λex/λem of 330/415, 365/480 and 325/434 nm using method described in
Section 3.4, respectively. The inhibition rate of glycoxidation products was calculated by
the same equation in Section 3.4.2.

3.7. UV-Visible Absorption Spectroscopy

UV-vis absorption spectra were recorded using a UV—2550 UV/vis spectrophotome-
ter with 1.0 cm optical path quartz cuvette. Spectral measurements of BSA (2 µM) in
the absence and presence of Myr (0–10 µM) were made in the range of 250–400 nm at
298 K. Corresponding spectra of Myr at different concentrations were recorded at the same
condition and subtracted from the sample solutions.

3.8. Probe Displacement Experiment

To characterize the binding site between Myr and BSA, warfarin (site 1), ibuprofen
(site 2), and methyl orange (site 3) at molar ratios of 1:0 and 1:1 were titrated against the
complexes [59] of BSA (2 µM) and Myr (0–10 µM). The fluorescence intensity under 280 nm
was determined using the method described in Section 3.3.

3.9. Molecular Docking

Molecular docking of Myr to BSA was carried out by AutoDock software (v4.2.6; Ruth
Huey; La Jolla, CA, USA. http://autodock.scripps.edu/faqs-help/tutorial (accessed on
25 May 2020)) [83]. The structure of Myr was obtained from the ZINC database (http:
//zinc.docking.org/ (accessed on 25 May 2020)), followed by energy minimization using
Chimera (v1.16; UCSF Resource for Biocomputing Visualization and Informatics; Topeka,
KS, USA) [84,85]. The crystal structure of BSA (PDB_ID: 4F5S) was downloaded from
the RSCB website (http://www1.rcsb.org/ (accessed on 25 May 2020)). Then, the water
molecules, heteroatoms, ions, co-crystallized ligands and repeated chains were removed
using PyMOL software (v2.0; Schrödinger; Shanghai, China) and the missing residues were
completed using SWISS-MODELING software (Computational Structural Biology Group;
Basel, Swiss. https://swissmodel.expasy.org (accessed on 25 May 2020)) [86]. Then, the
docking was conducted in the grid box of 120 × 120 × 120 points with a grid space of
0.375 Å. Additionally, we calculated the possible binding conformation of Myr–BSA via
the lamarckian genetic algorithm [87] and selected the lowest binding energy and highest
score direction [79].

3.10. Molecular Dynamics (MD) Simulation

MD simulation of BSA and BSA–Myr complex were performed on Gromacs v4.6.5
tools [88]. Based on the docking result, the binding model of the BSA–Myr complex
was selected as the initial conformation for MD simulation. The topology files of BSA
were obtained by using the pdb2gmx. The topology files of Myr were generated by the
antechamber and tleap tools from Ambertools v18 software using the AM1/BCC charge
method [89]. The force field of BSA and Myr were set to Amberff99SB and GAFF (a general
Amber force field), respectively [89]. The BSA and BSA–Myr systems were preprocessed by
the following steps: (1) the TIP3P water molecules were inserted into the systems with the
dodecahedron box; (2) Na+ and Cl− were added to neutralize the systems; (3) the periodic
boundary condition with a minimal distance of 1.2 nm was set between the complex and
the surface of the box [90]. The systems first had their energy minimized using the steepest
descent minimization method to limit the energy to 1000 Kcal/mol/nm [89]. Before the
formal simulation, the complex system was carried out at both 100 ps NVT and NPT

http://autodock.scripps.edu/faqs-help/tutorial
http://zinc.docking.org/
http://zinc.docking.org/
http://www1.rcsb.org/
https://swissmodel.expasy.org
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ensemble with 300 K temperature and 1 atm pressure [91,92]. Finally, 30 ns MD simulations
of the BSA and BSA–Myr systems were run on Gromacs v4.6.5 programs with a time step
of 2 fs. Additionally, the PME (Particle Mesh Ewald), LINCS (Linear Constraint Solver),
and SETTLE algorithms were used to calculate the long-range electrostatic interactions,
constrain hydrogen bonds and restrict water molecules, respectively [88,93]. Pymol 1.3.X
was further used to generate visual conformation.

3.11. Statistical Analysis

All experiments were carried out in triplicate, and the data were presented as
mean ± standard deviations (SD). Statistical analysis was performed using analysis of
variance (ANOVA) and Tukey’s HSD test with GraphPad Prism 9.0 (GraphPad Software,
San Diego, CA, USA). * p < 0.05, ** p < 0.01 and *** p < 0.001 were considered as statistically
significant, highly significant and very highly significant, respectively.

4. Conclusions

In summary, Myr mainly inhibited glycation of BSA at the end stage. Additionally,
Myr suppressed the formation of amyloid-like fibrils and the products of protein glycox-
idation, illustrating its strong anti-glycoxidation ability. Moreover, spectroscopic results
showed that Myr could quench the endogenous fluorescence of BSA through the static
quenching mechanisms. The thermodynamic parameters proved that the binding process
was spontaneous and driven by hydrogen bonding and van der Waals forces for Myr-
BSA. The binding of Myr and BSA led to slight conformational and microenvironmental
changes of BSA as studied by synchronous fluorescence spectroscopy and UV-vis spectra.
Furthermore, molecular docking revealed that Myr interacted with several residues Lys187,
Arg256 and Arg198 of BSA, which prevented the glycation of BSA from sugars and avoided
the misfolding and structural transition of BSA. The displacement experiments indicated
that Myr primarily bound to site 1 (subdomain IIA) of BSA. These findings revealed the
potential antiglycation activity of Myr and the interaction mechanism between Myr and
BSA and might provide a strategy for the management of AGEs related diseases.
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Myr Myriocin
AG Aminoguanidine
BSA Bovine serum albumin
AGEs Advanced glycation end products
SPT Serine palmitoyltransferase
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NBT Nitroblue tetrazolium
ThT Thioflavin T
Trp Tryptophan
Tyr Tyrosine
Phe Phenylalanine
∆G Gibbs free energy change
∆H Enthalpy change
∆S Entropy change
λex Excitation wavelength
λem Emission wavelength
MD Molecular dynamics
RMSD Root mean square deviation
RMSF Root mean square fluctuation
Rg Radius of gyration
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