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ABSTRACT

Objective: To correlate the genome-wide methylation signature of microRNA genes with 
dysregulated expression of selected candidate microRNA in tissue and serum samples 
of epithelial ovarian cancer (EOC) and control using quantitative reverse transcription 
polymerase chain reaction (qRT-PCR), and evaluation of EOC predictive value of candidate 
microRNA at an early stage.
Methods: We performed Methylated DNA Immunoprecipitation coupled with NGS (MeDIP-
NGS) sequencing of 6 EOC and 2 normal tissue samples of the ovary. Expression of selected 
microRNA from tissue (EOC=85, normal=30) and serum (EOC=50, normal=15) samples was 
evaluated using qRT-PCR. We conducted bioinformatics analysis to identify the candidate 
miRNA’s potential target and functional role.
Results: MeDIP-NGS sequencing revealed hypermethylation of several microRNAs 
gene promoters. Three candidate microRNAs were selected (microRNA-34a, let-7f, and 
microRNA-31) from MeDIP-NGS data analysis based on log2FC and P-value. The relative 
expression level of microRNA-34a, let-7f, and microRNA-31 was found to be significantly 
reduced in early-stage EOC tissues and serum samples (p<0.0001). The receiver operating 
characteristic analysis of microRNA-34a, let-7f and miR-31 showed improved diagnostic value 
with area under curve(AUC) of 92.0 (p<0.0001), 87.9 (p<0.0001), and 85.6 (p<0.0001) and 
AUC of 82.7 (p<0.0001), 82.0 (p<0.0001), and 81.0 (p<0.0001) in stage III-IV and stage I-II 
EOC serum samples respectively. The integrated diagnostic performance of microRNA panel 
(microRNA-34a+let-7f+microRNA-31) in late-stage and early-stage serum samples was 95.5 
and 96.9 respectively.
Conclusion: Our data correlated hypermethylation-associated downregulation of microRNA 
in EOC. In addition, a combined microRNA panel from serum could predict the risk of EOC 
with greater AUC, sensitivity, and specificity.
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INTRODUCTION

According to the recent report of the International Agency for Research on Cancer (IARC-
2020), around 3,13,959 new ovarian cancer (OC) cases were recorded globally, with an 
incident rate of 6.6 and a mortality rate of 4.4 [1]. Due to the asymptomatic nature of the 
disease, around 70% of women are presented at a late stage, causing higher morbidity. About 
90% of ovarian cancer cases are of epithelial subtype. Currently, the higher level of cancer 
antigen 125 (CA-125) is a hallmark for OC prediction. However, the higher level of CA-125 
is often associated with the advanced stage of the disease, and only 10% of early-stage OC 
patients are correlated with higher expression of CA-125 [2]. Moreover, the routinely used 
physical screening method has lower sensitivity and specificity towards detecting ovarian 
cancer at an early stage [3]. Therefore, a minimally invasive, cost-effective diagnostic assay 
with advanced diagnostic significance needs to be developed to assess ovarian cancer risk at 
the early stage of disease progression.

The microRNA, a class of small single-stranded, non-coding RNA molecules of 18-22 
nucleotide in size, plays a vital role in cell physiology and disease progression by regulating 
~60% of human genes. Dysregulated miRNAs expression is frequently correlated 
with aberrant microRNAs gene hypomethylation or hypermethylation and has been 
experimentally discovered to portray a crucial function in human cancer progression [4-6]. 
Therefore, assessment of microRNA expression could aid in early diagnosis and better 
disease management.

In this study, we investigated the genome-wide methylation signature of microRNA genes 
using MeDIP-NGS sequencing and correlated microRNA gene methylation pattern with 
dysregulated expression of selected microRNA in tissue and serum samples of EOC and 
control using quantitative reverse transcription polymerase chain reaction (qRT-PCR). 
Moreover, we discovered the EOC predictive value of candidate microRNA at an early stage 
and correlated microRNA expression with clinical features.

MATERIALS AND METHODS

1. Study layout, and clinicopathological Samples
Informed consent was obtained from OC patients at the Department of Surgical Oncology, 
King’s George Medical University, Lucknow. The study was approved by the Institute Ethical 
Committee (Ref. No: IEC/2019-20/01). Total 115 fresh frozen tissues (85 histologically 
verified EOC and 30 normal) were collected in RNAlater® solution (Sigma-Aldrich, Cat 
no: R0901). Total sixty-five matched preoperative serum (50 EOC and 15 normal) samples 
were also taken in BD Vacutainer® tubes, processed straightway for serum separation, and 
stored at -80 ºC. Clinicopathological characteristics of patients were evaluated to establish 
tumor stage, presence or absence of metastases, cancer type, and subtype at the source 
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Synopsis
miR-34a, let-7f, and miR-31 promoters were significantly methylated in EOC samples. 
Significant reduced level of miR-34a, miR-31 and let-7f was observed in EOC samples. 
Individual and combined miRNA panel have higher diagnostic value for EOC prediction. 
miR-34a, let-7f and miR-31 can discriminate metastatic over non-metastatic samples.
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hospital. microRNA expression was evaluated in tissue and serum cohorts. The tissue 
cohort (discovery phase) was separated into cohort-I {advanced-stage EOC (stage III-IV) 
(n=44) and control samples (n=30) and cohort-II (early-stage EOC [stage I-II] [n=41])} and 
control (n=30). Similarly, in the validation phase (serum cohort), was separated into cohort-I 
{advanced-stage EOC (stage III-IV) (n=30), and control (n=15) and cohort-II (early-stage EOC 
[n=20], and control [n=15])} (Fig. 1).

2. MeDIP-NGS sequencing and microRNA-Target enrichment analysis
MeDIP-NGS sequencing and bioinformatics analysis of isolated gDNA from six EOC and 
two control samples were performed. To avoid any sample biasness during MeDIP-NGS, we 
included two early-stage (stage I-II) and four advanced stage samples (stage III-IV). Moreover, 
sample included in this study was of Indian origin and they were histologically confirmed 
serous subtypes of EOC. In addition, microRNA-target enrichment analysis, GO and KEGG 
analysis were performed. The detailed methodology is given in Data S1.

3. microRNA isolation from tissue and serum samples
All tissue and serum samples were processed for miRNA extraction using miRNeasy Mini 
Kit, Cat No: 217004, Qiagen and miRNeasy Serum/Plasma Kit, Cat. No: 217184; Qiagen, 
respectively, following the manufacturer’s instruction. For PCR efficiency analysis and 
normalization of serum microRNA, 3.5 µL of miRNeasy Serum/Plasma spike-In Control 
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Fig. 1. Represents layout of study design. 
EOC, epithelial ovarian cancer; MeDIP, methylated DNA immunoprecipitation; OC, ovarian cancer; ROC, receiver 
operating characteristics curve.
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(Qiagen, Hilden, Germany) (1.6×108 working solution) was added and eluted in 20 µL of pre-
heated (at 95°C) DEPC treated Milli-Q water. Tissue and serum microRNAs concentration 
and purity were determined through a micro-spectrophotometer (DeNovix, Wilmington, DE, 
USA). The total microRNA yield of individual samples ranged between 0.3 µg to 2.5 µg for 
tissue and 0.2 µg to 1 µg for serum samples.

4. Quantification of microRNA and normalization
Quantitative expression analysis of selected microRNA in tissue and serum samples was 
performed on StepOneTM Plus RT-PCR (Applied Biosystems). Total one microgram of tissue 
microRNA and total serum microRNA samples were converted into cDNA using miScript® II 
RT Kit, Cat No.: 218160, Qiagen, India, following the manufacturer’s instruction and diluted in 
RNase free water to make up the final concentration of 8 ng/µL and stored in −80 ºC. Further, 
the expression level of candidate microRNA was assessed using miScript SYBR® Green PCR 
Kit (Qiagen) and amplified by microRNA specific forward primer (miScript Primer Assay, 
Cat No: 218300, Qiagen). Tissue samples derived microRNA expression was normalized 
using microRNA-191 as an endogenous control while the combined value of cel-miR-39 and 
miR-191 was used to normalize serum microRNA (CtmicroRNA-0.5*(Ctcel-microRNA-39 
+CtmicroRNA-191). The qRT-PCR reaction of each sample was executed in triplicates, and the 
relative expression of selected microRNAs was evaluated using the 2-ΔΔCT method.

5. Statistical analysis
The statistical analysis was accomplished in SPSS® (V26, IBM Corp., Armonk, NY,USA), and 
graphs were drawn in GraphPad Prism (V9.0). The data were presented as mean±SD, and 
categorical variables were presented as percentages or counts. The microRNAs expression 
data were evaluated using Mann-Whitney U tests, ANOVA test, and Spearman's rank-order 
correlations test. The binary logistic regression analysis (univariate and multivariate) was 
performed to estimate the predictive probability of individual and combined-microRNA 
panel; probability value was further used to assess individual and combined microRNA 
panel’s diagnostic potential by Receiver Operating Characteristics curve analysis. All tests 
were two-tailed, and p<0.05 was termed as statistically significant.

6. Ethics statement
The study was conducted according to the guidelines of the Declaration of Helsinki, and 
approved by the Institutional Review Board of Motilal Nehru National Institute of Technology 
Allahabad (Ref. No: IEC/2019-20/01). An informed consent was obtained from all patients 
involved in the study.

RESULTS

1. Patient’s clinicopathological data
A total of 115 tissue samples (EOC=85 and control=30) and 65 serum samples (EOC=50, and 
controls=15) were enrolled in this study. Based on pathological analysis reports, samples were 
divided into histological subtype (includes: serous [n=50; 58.82%], mucinous [n=14; 16.5%], 
clear cell [n=10; 11.5%], and endometrioid [n=11; 12.9%]), FIGO stages (includes: stage-I 
[n=25; 29.47%], stage-II [n=16; 18.83%], and stage III-IV [n=44; 51.78%]), Metastases (includes: 
45 metastatic [52.90%] and 40 non-metastatic [47.0%]), and Menopausal status (includes: 52 
present [61.11%] and 33 not present [38.8%]) (Table 1: A=tissue cohort; B=serum cohort).
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2. MeDIP-sequencing data analysis
The MeDIP-Seq was performed for all eight samples on Illumina NextSeq 500 platform. The 
mean size of library fragment generated during MeDIP-Seq was ranging between 290–300 
bp, and after quality assessment, around 9.8 GB of the mean bases were sequenced per 
sample. Next, raw sequence data were analyzed, and around 60.1–80.1 million clean reads per 
sample were obtained. Further, clean reads were mapped against the latest build reference 
genome (GRCh37), revealing an 80.0%–92.7% mapping percentage for each sample (Fig. 2A). 
Detailed sequencing data analysis statistics are given in supplementary materials (Table S1). 
Furthermore, diffRep software was employed to identify potential differentially methylated 
regions (DMRs) in cancerous and control samples. Total 2,25,868 DMRs (p<0.05; FC≥2) 
were found in all EOC samples, which includes 1,01,246 (44.82%) hypomethylated and 
1,24,622 (55.17%) hypermethylated DMRs (Fig. 2C). Moreover, the distribution of DMRs 
on the chromosome was assessed, which revealed the highest amount of DMRs present in 
chromosome one (Fig. 2B). Further, genome-wide dispersal of DMRs was assessed, and most 
of the hypomethylated and hypermethylated DMRs were located in gene-body and other-
intergenic regions on the genome (Figs. 2D and E). Further, the region-analysis (v1.0) tool 
was used to annotate hypermethylated genomic intervals. The ensemble database was used to 
retrieve the gene information while performing annotation. All raw data and processed data 
generated from MeDIP-Sequencing were uploaded on the public repository database Gene 
Expression Omnibus (GEO) with GEO accession number GSE180292.

3. Identification of candidate hypermethylated microRNA
The putative promoter location of microRNA was identified by online tools (microTSS, 
miRstart, and TransmiR-v2.0). Only overlapping putative promoter regions predicted in all 
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Table 1. Represents clinical characteristics of the patients recruited in this study
Variables (A) Tissue cohort (n=115) (B) Serum cohort (n=65)

Case  
(n=85)

Control 
(n=30)

Relative 
expression of 

miR-34a (2-ΔΔCT)

Relative 
expression of 
let-7f (2-ΔΔCT)

Relative 
expression of 

miR-31 (2-ΔΔCT)

Case  
(n=50)

Relative 
expression of 

miR-34a (2-ΔΔCT)

Relative 
expression of 
let-7f (2-ΔΔCT)

Relative 
expression of 

miR-31 (2-ΔΔCT)
Age, No. (%)

<45 26 (37.1) 16 (53.3) −6.39±3.66 −5.29±3.60 −5.87±2.54 14 (28.0) −5.63±2.57 −3.01±2.92 −2.76±2.08
≥45 44 (62.8) 14 (46.6) −6.30±3.91 −5.40±4.85 −6.65±3.63 36 (72.0) −5.88±2.80 −6.94±4.15 −4.97±3.62
p-value ns ns ns ns <0.001 ns

Histological type, No. (%)
Mucinous 14 (16.5) - −6.15±3.12 −3.71±3.31 −7.03±3.40 8 (22.8) −4.88±1.28 −7.05±4.77 −3.71±3.25
Serous 50 (58.8) - −6.52±4.34 −6.30±4.93 −6.36±3.04 15 (42.8) −6.74±2.80 −6.35±4.65 −4.28±3.64
Clear cell 10 (11.5) - −5.58±3.38 −4.10±3.12 −8.34±4.57 6 (17.1) −5.32±2.82 −5.71±3.88 −7.38±1.86
Endometrioid 11 (12.9) - −6.36±2.42 −5.03±4.34 −4.28±2.18 6 (17.1) −3.84±2.99 −3.63±1.81 −2.82±2.13
Other - - - - - - - - -
p-value ns <0.05 <0.05 <0.05 <0.05 <0.05

Distant metastasis, No. (%)
Absent 40 (47.0) - −5.19±3.36 −3.56±2.66 −5.35±2.35 14 (40.0) −4.42±1.66 −5.55±3.88 −3.00±3.08
Present 45 (52.9) - −7.22±3.89 −7.11±5.14 −7.40±3.76 21 (60.0) −6.74±2.86 −6.46±4.68 −5.25±3.34
p-value <0.005 <0.005 <0.005 <0.005 ns <0.05

FIGO stage, No. (%)
Stage I-II 41 (48.2) - −5.19±3.36 −3.56±2.66 −5.35±2.35 20 (57.1) −4.24±1.72 −8.37±4.92 −6.43±4.14
Stage III-IV 44 (51.7) - −7.22±3.89 −7.11±5.14 −7.40±3.76 15 (42.8) −6.85±2.78 −4.15±2.60 −2.96±1.80
p-value <0.005 <0.005 <0.005 <0.005 <0.005 0.0071

Menopause status, No. (%)
Yes 52 (61.1) - −7.25±4.17 −5.89±5.07 −7.22±3.64 22 (62.8) −6.26±3.02 −6.83±4.19 −4.82±3.36
No 33 (38.8) - −4.87±2.63 −4.52±3.30 −5.11±2.26 13 (37.1) −5.07±1.99 −4.35±3.90 −3.58±3.40
p-value <0.005 ns <0.05 ns <0.05 ns

Serum CA125 (U/mL) 184±329.1 33.8±61.4 172±352.4
ns, not significant.
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three online tools were used for further analysis. Further, predicted promoters regions were 
manually investigated in DMRs (obtained from MeDIP-seq) for their epigenetic signature 
(hypomethylated or hypermethylated). The top 16 hypermethylated microRNA-DMRs were 
further separated (based on log2FC and p-value), and out of 16, the best three microRNA 
(based on log2FC and p-value) were selected for further study (Table S2).

4. Correlation of microRNA expression and hypermethylation of microRNA 
gene

To understand the association between hypermethylation of microRNA genes and its 
downstream dysregulated expression, we assessed the relative expression of selected 
microRNA in eight samples (EOC=6 and normal=2) used for MeDIP-sequencing. The relative 
expression level of microRNA-34a, let-7f, and microRNA-31 was significantly downregulated 
in six cancerous samples compared to normal with the drop-in expression level of 4.28 
(p<0.05), 6.26 (p<0.05), and 4.07 (p<0.05), respectively (Fig. S1). Further, to validate this, we 
executed quantitative expression analysis of these microRNA in leftover samples (n=107).

5. Quantitative expression analysis of selected microRNA in tissue cohorts
The differential expression level of candidate microRNAs (microRNA-34a, microRNA-31, and 
let-7f ) was assessed in tissue cohorts using qRT-PCR. In tissue cohort-I (n=74), significantly 
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downregulated expression of miR-34a, let-7f and miR-31 was observed in EOC patients in 
contrast to controls with the drop-in expression level of 7.22 (p<0.0001), 7.11 (p<0.0001), 
and 7.40 (p<0.0001), respectively (Fig. 3A). Similarly, in cohort-II (n=71), miR-34a, let-7f, and 
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miR-31 were notably under-expressed in EOC patients with a decreased fold change of 5.19 
(p<0.0001), 3.56 (p<0.0001), and 5.35 (p<0.0001), respectively (Fig. 3C).

6. Quantitative expression analysis of selected microRNA in serum cohorts
The constancy of microRNAs downregulation was validated in 50 EOC and 15 normal serum 
samples. In serum cohort-1 (n=45), microRNA-34a, let-7f, and miR-31 exhibited significantly 
reduced expression in EOC with respect to controls with a reduced level of expression of 
6.85 (p<0.0001), 4.15 (p<0.0001), and 2.96 (p<0.0001), respectively (Fig. 3B). Moreover, in 
serum cohort-II, we observed significant downregulation of microRNA-34a, let-7f, and miR-
31 in EOC with a reduced fold change of 4.24 (p<0.0001), 8.37 (p<0.0001), 6.43 (p<0.0001), 
respectively (Fig. 3D).

7. Performance of tissue microRNAs as diagnostic biomarker in EOC
We performed a univariate binary logistic regression analysis of each microRNA in tissue 
cohort-I (n=74) and tissue cohort-II (n=71) to signify the involvement of microRNA with 
disease (OC). The downregulation of microRNA-34a, microRNA-31, and let-7f from both 
tissue cohorts were significantly associated with disease (Table S3 - A).

Further, the diagnostic potential of each microRNA was assessed by performing ROC curve 
analysis in both tissue cohorts. In tissue cohort-I (advanced-stage III-IV), the area under 
curve (AUC) of microRNA-34a, let-7f, and microRNA-31 was 97.0, 92.1, and 92.1, respectively 
(Fig. 4A). Similarly, in tissue cohort-II (early-stage), the AUC of microRNA-34a, let-7f, and 
microRNA-31 was 96.9, 87.1, and 86.6, respectively (Fig. 4C). Besides, a multivariate binary 
logistic regression analysis was conducted for assessment of the diagnostic performance of 
multi-microRNA panel (microRNA-34a, let-7f, and microRNA-31) to envisage the possibility 
of ovarian cancer. The cumulative predicted probability of the multi-microRNA panel was 
obtained from the regression analysis model of cohort-I and cohort-II and was used to 
generate the ROC curve. The diagnostic value of the multi-microRNA panel in tissue cohort-I 
and cohort-II was 98.6 and 98.9, respectively (Fig. 5A and B). The diagnostic potential of 
independent microRNA and multi-microRNA panel in the discovery phase (both tissue 
cohorts) exhibited greater AUC, sensitivity, and specificity for the prediction of EOC. 
Detailed diagnostic performance results such as sensitivity, specificity, cut-off value, and 95% 
confidence interval (CI) values are depicted in Table S4 - A.

8. Performance of serum microRNAs as diagnostic marker in EOC
We evaluated the persistent diagnostic potential of independent microRNAs and multi-
microRNA panels in the validation phase, i.e., serum cohort (50 EOC and 15 normal). The 
univariate and multivariate analysis of individual microRNA and multi-microRNA panels in 
serum cohort-I (n=45) and cohort-II (n=35) revealed a significant association of miR-34a, let-
7f, and miR-31 with disease occurrence (Table S3 - B).

Further diagnostic potential of individual miR-34a, let-7f, and miR-31 was evaluated using ROC 
curve analysis. The AUC of miR-34a, let-7f, and miR-31 in serum cohort-I was 92.0, 87.9, and 
85.6, respectively (Fig. 4B). Similarly, in cohort-II, miR-34a, let-7f, and miR-31 have AUC of 82.7, 
82.0, and 81.0, respectively (Fig. 4D). The combined diagnostic potential of the microRNA 
panel in serum cohort-I and cohort-II was 95.5 and 96.9, respectively (Fig. 5C and D). In both 
serum cohorts, miR-34a, let-7f, and miR-31 turned out to be the strongest predictor of epithelial 
ovarian cancer. Moreover, the diagnostic potential of an independent and multi-microRNA 
panel from serum was consistent with the tissue cohorts. Detailed information of microRNAs 
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diagnostic performance, AUC, sensitivity, specificity, 95% CI, and optimal cut-off values are 
depicted in Table S4 - B.
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9. Correlation between microRNA expression and clinicopathologic factors in 
EOC patients

We evaluated the association between reduced expression of candidate microRNA with 
different clinical parameters in tissue (EOC=85) and serum (EOC=50) samples. We found a 
significantly lower expression of miR-34a (p<0.005), let-7f (p<0.005), and miR-31 (p<0.005) 
in patients (tissue samples) with combined FIGO stage III-IV compared to early-stage 
I-II (Fig. S2A). Similarly, miR-34a was significantly downregulated in stage III-IV in the 
serum cohort (p<0.05). However, significant downregulation of let-7f (p<0.005) and miR-
31 (p<0.05) was observed in stage I-II patients (serum samples) (Fig. S2B). Besides this, 
significantly downregulated expression of let-7f (p<0.05) and miR-31(p<0.05) was observed 
in a serous subtype of EOC when compared to other histotypes in tissue samples, except 
miR-34a (Fig. S3A). Moreover, the most significant downregulation in the level of microRNA-
34a was observed in serous subtypes, while significant downregulation of let-7f (p<0.05) 
was observed in mucinous subtype compared to others in serum samples. Similarly, miR-31 
was significantly downregulated in clear cell and serous subtype of EOC in the serum cohort 
(p<0.05) (Fig. S3B). In addition, downregulation of all three microRNAs was observed in 
patients with distant metastases in both tissue and serum cohorts except let-7f, which did not 
exhibit any significant difference between metastases and non-metastases patients in serum 
samples (Fig. S4A and B).

In addition, we performed the Spearman's rank-order correlations test to establish any 
relatedness between downregulated expression of microRNA in tissue and serum with 
clinical features. In tissue cohort-I and cohort-II, the patient's age and menopausal status 
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didn't establish any correlation with candidate microRNA expression level, except miR-34a, 
which established a negative correlation from tissue cohort-II.

In tissue cohort-I and cohort-II, the mean expression level of microRNA-34a, miR-31, and let-
7f established a negative correlation with CA125 level and distant metastases (Table S5 - A).

Likewise, in serum cohort-I, the expression level of microRNA-34a, let-7f, and microRNA-31 
exhibited a strong negative correlation with CA125, menopausal status, and distance 
metastasis except for age. Similarly, in serum cohort-II, miR-34a, let-7f, and miR-31 have a 
significant negative correlation with CA125 and distance metastasis. The age and menopausal 
status from cohort-II did not significantly correlate with candidate microRNA expression 
level (Table S5 - B).

10. microRNA-target enrichment analysis
We further tried to investigate the functional role of hypermethylated selected microRNAs 
in EOC. We identified putative target genes of selected hypermethylated microRNA and only 
highly enriched overlapping target-genes (~243 genes) were sorted, and microRNA-target 
enrichment analysis (using miRnet-V2.0) was performed to create the microRNA-target 
regulatory network. The filtering capability of tools allowed us only to highlight target genes 
associated with candidate microRNA (miR-34a, let-7f, and miR-31) in OC. In this analysis, 
SMAD4, MYC was highly enriched central molecules, while key genes involved in cancer 
progression (such as TP53, BRCA1, and SOX9) were enriched in the regulatory network 
(Fig. S5B). Further, we also performed microRNA-disease enrichment analysis to observe 
relatedness between microRNA and ovarian cancer. To construct a microRNA-disease network, 
the miRnet-v2.0 tool was used with filter ovarian cancer only. Around 429 microRNAs were 
coupled with EOC with 531 edges, comprising our selected microRNA (Fig. S5A).

11. Functional enrichment of microRNA target genes
Gene ontology and KEGG analysis were executed to assess the potential function of predicted 
target genes of candidate microRNA using the freely available tool DAVID. In GO analysis, the 
enriched biological process was regulation of cell projection organization, cell development, 
regulation of gene silencing by microRNA. Similarly, in molecular function, zinc ion binding 
and microRNA binding terms were highly enriched, while in a cellular component, Synapse, 
cell projection, regulation of cell development were highly enriched terms (Fig. S5C). Further, 
we assessed KEGG pathways enrichment analysis of microRNA-target genes to unveil the 
preparatory course of ovarian cancer progression. KEGG analysis revealed several biologically 
important pathways relating to cancer progression. The Cell cycle, Hippo signaling pathways, 
and Wnt signaling pathways were highly enriched pathway terms in our analysis revealing the 
importance of these microRNA-targets in cancer progression (p<0.05) (Table S6).

DISCUSSION

Ovarian cancer is the fifth cancer morbidity causing gynecological malignancy among 
women and accounts for five percent of overall cancer-associated death in women [7]. 
Recently, microRNA has gained attention due to its association with tumorigenesis, 
cancer progression, and its stable presence in liquid biopsy during adverse cancer 
microenvironments [8]. Cancer disease progression is caused by multistage genome 
alteration. In the last two decades, cancer genome studies have been only focused on 
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protein-coding genes, while only a few studies have been carried out in correlation to 
the altered function of non-coding sequences. microRNA dysregulation follows similar 
epigenetic regulation as of protein-coding genes. It has been well established that microRNA 
downregulation is caused by several factors, including homozygous deletion, heterozygous 
deletion, mutation, polymorphism, and an epigenetic mechanism [9]. A recent study by 
Adams et al. revealed epigenetic modification on CpG island and TATA boxes close to miRNA 
genes promoter are greatly affected and leading to dysregulated expression [10]. Recent 
studies revealed that around 63 miRNA genes were epigenetically deregulated in 21 different 
cancers, including leukemias, gastric cancer, colorectal cancer, bladder cancer, breast 
cancer, ovarian, cervical, prostate, and lung carcinoma. They reported that 6.9% of studied 
microRNAs are dysregulated due to epigenetic mechanism; moreover, methylation frequency 
of microRNA genes in at least two cancer types was 45.5%, while 54.5% of microRNA showed 
cancer specific methylation [11,12]. This study focused on epigenetic modification of genes 
in ovarian cancer and correlated their downstream expression toward developing a miRNA 
expression-based ovarian cancer diagnostic biomarker. Moreover, differential expression 
profiling study conducted on microRNA derived from patients’ body fluid may establish 
microRNA as a promising non-invasive biomarker for predicting early-stage OC for enhanced 
management of the disease.

microRNA-34a from liquid biopsy has been documented as a biomarker in breast, lung, and 
ovarian cancer. Moreover, microRNA-34a involvement in cell proliferation and invasion in 
EOC is markedly reported; restoration of microRNA-34a could inhibit proliferation, motility, 
and invasion of OC cells by targeting MET (a hepatocyte growth factor) [13-15]. In contrast, 
elevated expression of microRNA-31 was found in endometrial cancer. The functional role 
of microRNA-31 is slightly obscured to understand due to its dualistic nature (act as a tumor 
suppressor or oncogenic) depending upon the cellular microenvironment [16-19].

let-7 family plays a critical role in carcinogenesis via acting as a tumor suppressor and frequent 
downregulated in gastric, papillary thyroid, renal, breast and ovarian carcinoma [20-23]. 
Conferring these studies, the downregulation of microRNA-34a, microRNA-31, and microRNA-
let-7f seems to have a potential role in tumor advancement by targeting cancer-associated 
genes, and evaluating their dysregulated expression might be helpful in discriminating 
epithelial ovarian cancer patients from control at the early stage of the disease.

This study recruited three hypermethylated microRNAs (microRNA-34a, microRNA-31, and 
miR-let-7f ) through MeDIP-Sequencing of six EOC and two control. We then investigated the 
differential expression of candidate microRNAs in tissue and serum cohorts of EOC patients 
compared to their normal counterparts. The mean expression of individual microRNA-34a, 
microRNA-31, and miR-let-7f was significantly downregulated in EOC samples with reference 
to normal controls in both tissue and serum cohorts. Consistent downregulated expression 
of candidate microRNAs was observed in early-stage tissue and serum cohort of EOC 
patients. Hypermethylation-induced downregulation of microRNA34a, let-7f, and miR-31 in 
ovarian cancer has been reported previously [13,24-28].

Using a stringent validation process and multivariate binary logistic regression model, 
we evaluated the diagnostic potential of three candidate microRNAs (microRNA-
34a, microRNA-31, and let-7f ) to predict the risk of EOC. Individually microRNA-34a, 
microRNA-31, and let-7f could detect EOC with greater AUC value, sensitivity, and specificity. 
Moreover, integrated panels of microRNA in early-stage tissues and serum samples were 
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shown to have exceptional diagnostic value for early-stage prediction of EOC. Since our 
objective was to develop a minimally-invasive biomarker for EOC detection, we compared 
downregulated fold expression of candidate miRNA of tissue with serum samples. Our 
expression profiling of candidate miRNAs from both early and advanced-stage serum 
cohorts showed less variation in their expression profiles than tissue cohorts. Moreover, 
significant reduced expression of miR-31 and let-7f was observed in the case of early-stage 
serum samples than early-stage tissue samples. However, the combined diagnostic value of 
miRNA from early-stage serum samples almost had similar AUC, sensitivity, and specificity 
compared to early-stage tissue samples, making them the potential candidate biomarkers. 
These outcomes imply that an integrated microRNA panel from serum may be used as a non-
invasive early detection marker for EOC. Similarly, the diagnostic potential of microRNA-34a 
and microRNA-31 is analogous to combined microRNA panels for the early diagnosis of EOC. 
Recent study showed combined diagnostic value of miR-34a and CA-125 could discriminate 
EOC from normal with an AUC of 0.818, while lower expression of let-7f has the diagnostic 
value of AUC 0.78 [24,29-32]. Moreover, the comparative expression analysis of let-7f in 
different cancers (colorectal, lung, prostate, papillary thyroid cancer) showed a higher 
diagnostic value for discriminating respective cancer from the normal [29,31-35]. Very few 
reports are available on exploring the diagnostic value of these selected microRNA in EOC; 
therefore, the discriminative potential of each microRNA and integrated microRNA panel 
from the present study could aid in predicting early-stage ovarian cancer.

Accordingly, we attempted to correlate microRNA expression level with clinicopathological 
features of patients. Our results suggest that downregulated expression of microRNA-34a in 
the advanced stage of tissue and serum samples could be used to staging EOC while miR-31 
and miR-let-7f (in serum) lower in stage I-II in EOC [14,34]. Moreover, metastatic patients are 
observed to have a lower level of miR-34a and miR-31 during carcinogenesis. A strong negative 
correlation between downregulated expression of candidate microRNA with serous ovarian 
cancer subtype, metastatic nature of the disease, menopausal status, and CA125 level was 
observed, suggesting that these microRNA could be valuable as a prognostic biomarker [35].

Moreover, microRNA-target network enrichment revealed significant enrichment of cancer-
associated genes (MYC, SMAD4, TP53, BRCA1, and SOX9), while GO revealed several 
important terms at biological, molecular, and cellular levels involved in carcinoma. In 
addition, Wnt signaling, Hippo signaling, cell cycle pathways in carcinoma were significantly 
enriched terms in KEGG analysis. In this context, Wnt and Hippo signaling pathways were 
reported to play crucial role in cellular events such as cell migration, epithelial-mesenchymal 
transition, cell proliferation, cells polarity, self-renewal, and apoptosis [36-40].

Overall, the present study provides a comprehensive report of microRNAs gene 
hypermethylation associated with downregulated expression of selected microRNA in 
EOC tissue and serum samples. Our results revealed that the downregulation of candidate 
microRNAs could detect EOC at an early stage with a higher diagnostic value. Moreover, this 
is probably the first report implicating the integrated diagnostic power of microRNA-34a, 
microRNA-31, and let-7f in the diagnosis of EOC at early-stage with higher sensitivity and 
specificity. However, this study has certain limitations; the samples size used for MeDIP-
NGS sequencing is a bit low and could have induced sample biases during the screening of 
candidate miRNA. Therefore, screening of miRNA using MeDIP-NGS sequencing should 
be done with a large cohort of EOC samples. Moreover, sample biases can be reduced by 
incorporating samples with different histological subtypes and FIGO stage. In addition, 
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samples included for expression analysis in this study were the only representative of the 
North Indian population, so more demographic samples are needed to be included for 
further experimental validation at a larger cohort size. Nevertheless, a liquid biopsy-based 
microRNA biomarker discover has several hurdles to overcome before accomplishing it as a 
clinical biomarker.
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Table S5
Represents correlation of miRNAs with clinical characteristics in tissue and serum cohort of 
EOC
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Table S6
Represents top 13 KEGG enrichment analysis results of miRNA-target genes
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Fig. S1
Expression analysis of hypermethylated miRNA in samples used for MeDIP NGS analysis (6 
EOC and 2 normal samples). miR-34a, let-7f and miR-31 was significantly downregulated 
in epithelial ovarian cancer compared to normal samples with drop=in fold change of 4.28 
(p<0.05), 6.26 (p<0.05), and 4.07 (p<0.05), respectively.

Click here to view

Fig. S2
Differential expression analysis of miRNA in different FIGO stages. (A) miRNA-34a, let-7f 
and miR-31 showed significant downregulation in FIGO stage-III-IV (p<0.005, p<0.0005, 
p<0.005, respectively) compared to stage I-II in tissue cohort. (B) In serum cohort, miRNA-
34a was significantly reduced in combined stage III-IV (p<0.005) compared to early-stage I-II. 
Similarly, let-7f and miR-31 was significantly reduced in combined early-stage I-II (p<0.005, 
and p≤0.0071) compared to stage III-IV. Statistical significance was determined by the Mann 
Whitney U-tests. Data presented as log10RQ;Data represent mean ± standard deviation.

Click here to view

Fig. S3
Represents differential expression of miRNA in histological subtypes of EOC. (A) Relative 
expression oflet-7f was significantly reduced in serous compared to mucinous and clear cell 
histotype of EOC in tissue samples. Similarly, miR-31 was reduced in clear cell subtype as 
compared to serous and endometrioid histotype of EOC in tissue samples. However, miR-34a 
does not exhibit any significant change in tested groups(B) Relative expression of miR-34a 
and let-7f was significantly reduced in serous subtypes compared to endometrioid subtype 
of EOC in serum samples. Similarly, miR-31 was reduced in clear cell subtype compared to 
other histoypes. Statistical significance was determined by the One-way ANOVA test. Data 
presented as log10RQ; Data represent mean ± standard deviation.

Click here to view

Fig. S4
Represents relative expression of candidate miRNA in tissue and serum samples of metastatic 
and non-metastatic patients. (A) In tissue samples, miRNA-34a, let-7f and miRNA-31 was 
significantly reduced in metastatic patients compared to non-metastatic patients (p<0.005, 
p<0.005, and p<0.005, respectively) (B) Similarly, In serum samples miRNA-34a and miR-
31 showed significant downregulation in metastatic patient compared to non-metastatic 
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patients (p<0.005, and p<0.05); however, let-7f does not exhibit any significant change in 
metastatic and non-metastatic patients. Statistical significance was determined by the Mann 
Whitney U-tests. Data presented as log10RQ; Data represent mean ± standard deviation.

Click here to view

Fig. S5
Represents miRNA-disease enrichment, miRNA-target regulatory network and functional 
analysis of miRNA targets. (A) Represent miRNA-disease enrichment analysis where 
candidate miRNA (highlighted in red circle) were significantly enriched with other miRNA. 
(B) In regulatory network analysis SMAD4 and MYC were central target molecule along with 
SOX9, TP53, SMAD3, BRCA1. (C) represent GO analysis of candidate miRNA-target.
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