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Spinal cord injury (SCI) is a devastating event with a tremendous impact in the life of the
affected individual and family. Traumatic injuries related to motor vehicle accidents, falls,
sports, and violence are the most common causes. The majority of spinal lesions is
incomplete and occurs at cervical levels of the cord, causing a disruption of several
ascending and descending neuronal pathways. Additionally, many patients develop
chronic pain and describe it as burning, stabbing, shooting, or shocking and often
arising with no stimulus. Less frequently, people with SCI also experience pain out
of context with the stimulus (e.g., light touch). While abolishment of the endogenous
descending inhibitory circuits is a recognized cause for chronic pain, an increasing
number of studies suggest that uncontrolled release of pro- and anti-inflammatory
mediators by neurons, glial, and immune cells is also important in the emergence and
maintenance of SCI-induced chronic pain. This constitutes the topic of the present
mini-review, which will focus on the importance of neuro-immune dysregulation for pain
after SCI.
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INTRODUCTION – SPINAL CORD INJURY

Spinal cord injury (SCI) causes major disturbances in sensory, motor, and autonomic function,
leading to permanent loss of function and strongly impacting the physical, psychological, and social
well-being of patients and caregivers (Braaf et al., 2017). It is estimated that 27 million people live
worldwide with life-long consequences of SCI (James et al., 2019). Loss of function reflects the spinal
level of the injury, with a high prevalence of injuries at the cervical and thoracic segments; the type
of injury (compression, laceration, contusion, or ischemic insult); and the extent of the damage
(Silva et al., 2014). Although life expectancy has greatly increased due to improved medical care,
patients’ quality of life is severely compromised by several factors, including chronic pain (Yang
et al., 2014; Kjell and Olson, 2016).

CELLULAR ACTIVATION IN SCI AT THE LESION SITE

Tissue remodeling begins immediately after SCI and continues for extended periods of time. SCI-
induced alterations in the spinal cord occur in four steps (Rust and Kaiser, 2017). The (1) primary
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injury comprises the initial mechanical trauma (Rossignol
et al., 2007). Within the first hours after injury, tissue damage
initiates a series of destructive events that disrupt the spinal
cord vasculature and blood-spinal cord barrier (BSCB). During
secondary injury (2), platelets begin to invade the injury site
and cause vasospasm, resulting in ischemia, glutamate release
and oxidative stress (Park et al., 2004). The lesion extends
and neuronal and glial cells undergo apoptosis and necrosis.
Endogenous molecules, such as interleukin (IL)-1α, IL-33, ATP,
and danger-associated molecular patterns (DAMPs) (Didangelos
et al., 2016; Yang et al., 2017; Tran et al., 2018), are released by
dying neurons and glial cells. This initiates a neuroinflammatory
response, mediated by CNS astrocytes, microglia, and blood-
borne neutrophils (Alizadeh et al., 2019).

Astrocytes are the first responders after a CNS injury (Pineau
et al., 2010). Immediately after SCI, astrocytes become reactive
(Xu et al., 1999; Bradbury and Burnside, 2019). Reactive
astrocytes increase cytokine [e.g., IL-1β, IL-6, IL-12, tumor
necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ)]
and chemokine (e.g., CCL2, CXCL1, and CXCL2) release in
response to injury, which trigger recruitment of neutrophil and
pro-inflammatory macrophages (Pineau et al., 2010; Alizadeh
et al., 2019). Reactive astrocytes also release TGF-β and IL-10
that harness inflammation and avoid spreading of apoptotic and
necrotic cells (Alizadeh et al., 2019) (Table 1).

Neutrophils are the first immune cells to respond to SCI,
peaking at 24 h post-injury (Dusart and Schwab, 1994) but mostly
disappear following the acute inflammatory phase (Neirinckx
et al., 2014). Neutrophils are most likely attracted by CXCL1
and leukotriene-B4 (LTB4) secreted at the injury site. Invading
neutrophils release pro-inflammatory molecules that exacerbate
astrocytes and microglia activation at the lesion (Perkins and
Tracey, 2000; Schomberg and Olson, 2012) (Table 1).

CNS resident microglia polarize within 5–15 min in response
to injury, extending their processes toward the injury site. Once
activated, microglia assume an amoeboid shape, proliferate and
migrate to the lesion site (Popovich and Hickey, 2001; Sroga et al.,
2003). There they play a crucial role in clearing cellular debris
and aiding in wound sealing and glial scar maturation (Vilhardt,
2005; Loane and Byrnes, 2010). Microglia also express receptors
to DAMPs released by injured neurons (Block et al., 2007; Loane
and Byrnes, 2010). They are also responsible for releasing TNF-
α, IL-1β, and C1q, which induce the activation of a subtype
of astrocytes responsible for neuronal and oligodendrocyte cell
death (Liddelow et al., 2017), an event linked to the emergence of
neuropathic pain (Table 1).

While SCI-related microglial activation used to be perceived
as an exclusively harmful event, it is now recognized that
microglia also exert a neuroprotective role. Studies have shown
cavity enlargement after early microglia ablation following
SCI (Hines et al., 2009). More recently, using a Cx3cr1creER

mouse model, researchers demonstrated that eliminating
microglia results in enhanced glial scar formation and neuronal
and oligodendrocyte death, accompanied by poor locomotor
performance (Bellver-Landete et al., 2019).

Twenty-four hours post-injury, circulating monocytes are
recruited to the site of injury, where they differentiate into

macrophages. Macrophages can be broadly divided into pro-
inflammatory M1 or anti-inflammatory M2 macrophages. M1
macrophages are activated via toll-like receptors (TLRs) and IFN-
γ, upregulating the expression of pro-inflammatory cytokines
such as IL-6, IL-1β, IL-12, and TNF-α, and causing axonal
retraction. Conversely, the M2 phenotype is activated by IL-
13 or IL-4 (Gensel and Zhang, 2015). The shift from M1
to M2 macrophages is known to contribute to tissue healing
(Deonarine et al., 2007; Nahrendorf et al., 2007) but does not
occur, or is strongly impaired, in the lesioned spinal tissue
(Kigerl et al., 2009). Kigerl et al. (2009) have demonstrated
that, in a mouse model of midthoracic spinal contusion,
M1 macrophage turnover is exacerbated in response to SCI,
dominating the lesion site and nearby spared tissue, while
M2 macrophages are short-lived, dissipating within 3–7 days
post-SCI (Table 1).

Adaptive immune response also plays an important role
in inflammatory response after SCI. After being activated in
the spleen and bone marrow within 24 h post-SCI, T- and
B-lymphocytes infiltrate the injured spinal cord, their numbers
peaking at 7 days post-injury and remaining elevated in chronic
stages of disease (Sroga et al., 2003; Jones, 2014). Activated T cells
are particularly important on the modulation of inflammation
following SCI as they can affect neuronal and glial survival
via release of pro-inflammatory cytokines and chemokines
(Jones, 2014), thus impairing recovery following SCI. Further
information on the role of lymphocytes following SCI can be
found elsewhere (Jones, 2014; Noble et al., 2018) (Table 1).

The third step comprises (3) formation and maturation of
the glial scar by activated astrocytes. Recent studies revealed
that microglia are also important players in glial scar formation,
by accumulating around the scar and modulating astrocyte
proliferation during scar formation via insulin-like growth factor
1 (IGF-1) (Bellver-Landete et al., 2019). Moreover, Zhou et al.
(2020) have also demonstrated that microglia form a concentric
physical barrier between the center of the lesion and its border,
promoting wound compaction and recovery.

The final step in spinal cord remodeling after SCI consists
of restricted (4) structural tissue regeneration occurring in the
weeks and months after SCI (Shechter and Schwartz, 2013;
Rust and Kaiser, 2017). However, the environment surrounding
the scar is highly inhibitory axonal regrowth and reconnection.
Thus, recovery of function is rarely achieved after a CNS injury,
prompting the emergence of subsequent pathologies, including
chronic neuropathic pain.

PAIN

Pain is defined by the International Association for the Study of
Pain (IASP) as an unpleasant sensory and emotional experience,
associated with actual or potential tissue damage, or described in
terms of such damage (Loeser and Treede, 2008). While acute
pain is usually well managed by patients and clinicians and
resolved within a short period of time, chronic pain loses its
protective role and becomes a disease in itself, even after resolving
the triggering cause.
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TABLE 1 | Innate and adaptive cells involved in the release of immune molecules at the injury site following spinal cord injury.

Type of cell Function at the injury site Pro-inflammatory
molecules released
at the injury site

Anti-inflammatory
molecules released
at the injury site

Innate immune cells Astrocytes – Switch from quiescent to reactive
following SCI

– Recruit neutrophils and
M1-macrophages

– Involved in glial scar formation

IL-1β, IL-6, IL-12,
TNF-α, IFN-γ, TGF-β
CCL2, CXCL1, CXCL2

TGF-β, IL-10

Microglia – Clear cellular debris from neuronal
and glial cell apoptosis

– Aid in wound sealing

IL-1β, IL-2, IL-6, IL-12,
IL-18, TNF-α, IFN-γ,
C1q NO, ROS

TGF-β, IL-10, IGF-1

Neutrophils – Attracted by CXCL1 and LTB4
– Clear debris from the injury site
– Recruit monocytes/macrophages

IL-1β, IL-8, IL-12,
TNF-α, IFN-γ MPO,
MMP-9

Unknown

Monocytes
Macrophages

– Polarization from M1-M2 subtypes IL-1β, IL-6, IL-12, IL-18,
TNF-α, IFN-γ NO, ROS

IL-10, TGF-β

Adaptive immune cells T-lymphocytes – Promote CNS fibrosis and
autoimmunity

IL-1β, IL-12, TNF-α
CCL2, CCL5, CXCL10

IL-2, IL-4, IL-5, IL-6,
TGF-β

B-lymphocytes – Promote autoimmunity and
demyelination

Unknown Unknown

Pain perception is often initiated by the activation of
nociceptors by noxious chemical, mechanical, or thermal
stimuli in the periphery. These sensory neurons fall into
two categories: medium-sized myelinated Aδ fibers and small-
diameter, unmyelinated C-fibers. In the spinal cord, they synapse
with relaying second-order neurons (either specific nociceptive
neurons (NS) or wide-dynamic range neurons (WDR) or with
inhibitory/excitatory spinal interneurons. Axons originated in
these spinal cord neurons transmit ascending input to several
supraspinal areas, namely the brainstem areas and the thalamus,
the latter of which relays nociceptive information to cortical areas
(Fenton et al., 2015; Boadas-Vaello et al., 2016). Nociceptive input
is then processed and perceived, resulting in the activation of
top-down descending modulation. These pathways may recruit
higher brain centers, such as the prefrontal cortex and the
amygdala, linked to cognitive and emotional aspects of pain.
Top-down modulation also involves several supraspinal nuclei,
including a midline relay circuit centered at the periaqueductal
gray and rostral ventromedial medulla (PAG-RVM) (Heinricher
et al., 2009; Boadas-Vaello et al., 2016). This key PAG-RVM
circuit is connected with several brainstem regions, such as
the locus coeruleus, the caudal ventrolateral medulla (VLM),
and the dorsal reticular nucleus (DRt). The VLM and the
DRt are reciprocally linked with the spinal cord, in circuits
that may decrease or increase nociceptive information (Martins
and Tavares, 2017). Descending pathways operate via release

of serotonin, norepinephrine, and dopamine at supraspinal and
spinal levels (Bourne et al., 2014). Considering the complexity
of ascending and descending nociceptive neurotransmission,
described in detail elsewhere (Boadas-Vaello et al., 2016; Martins
and Tavares, 2017), it comes as no surprise that SCI strongly
compromises these circuits and jeopardizes endogenous pain
control circuits.

Pain Following Spinal Cord Injury
Pain arising after SCI has life-long consequences, strongly
impairing patients’ quality of life and often exceeding the
impact of other functional disabilities. Pain manifests itself
in several ways after SCI. While acute pain accompanies the
injury and the recovery period, receding with tissue scarring,
chronic pain emerges due to maladaptive neuroplasticity.
More than 50% of SCI patients report chronic pain within
a year of spinal lesion (Dijkers et al., 2009; Finnerup,
2013; Burke et al., 2017). Gabapentin, opioids and pregabalin
remain gold standard for SCI-associated pain treatment, but
are often ineffective and do not prevent pain worsening
(Widerström-Noga, 2017).

Classically, SCI-related chronic pain can be divided into
three major groups: nociceptive, neuropathic, or other/unknown
pain (Bryce et al., 2012). Nociceptive SCI-derived pain includes
musculoskeletal and visceral pain (Bryce et al., 2012; Shiao
and Lee-Kubli, 2018). Neuropathic pain reflects SCI-induced
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damages in the somatosensory system and is divided into at-
level, below-level, and above-level neuropathic pain. At-level
pain usually emerges at early time points after SCI. It refers
to pain felt in the dermatomes at the level of injury and
includes central and peripheral components. Below-level pain
is typically of central origin, felt diffusely below the level of
injury and appearing when chronicity has set (Siddall et al.,
2003; Finnerup, 2013). Finally, above-level neuropathic pain is
now described as “other neuropathic pain” (Finnerup, 2013),
relating to injury management, such as wheelchair pulling or pain
following surgery.

Neuropathic Pain Emergence Following
Peripheral Nerve Injury
Spatial and temporal activation of glial cells in the spinal cord
in several animal models of peripheral nerve injury has been
vastly studied, but fewer data are available regarding SCI-
induced neuropathic pain. This surely reflects the difficulties
of reporting pain levels in animals with impaired mobility, as
classical tests evaluate evoked responses to peripheral stimuli
(Silva et al., 2014; Kramer et al., 2017). Therefore, much of
our present knowledge on SCI-induced neuropathic pain stems
from studies using models of peripheral nerve injury. Early
studies in peripheral neuropathic pain reported increased GFAP
immunostaining, an established marker for astrocytes, in the
spinal dorsal horn (SDH) that correlated with emergence of
hyperalgesia after sciatic nerve constriction injury (Garrison
et al., 1991). Wagner and Myers demonstrated the role of
TNF-α in hyperalgesia arising after sciatic nerve compression
(Wagner and Myers, 1996), which has been proved to induce
activity in primary nociceptors, hyperalgesia, and inflammation
in rats (Sorkin et al., 1997; Junger and Sorkin, 2000), a process
resulting from glial activation (Colburn et al., 1999; Zhuang
et al., 2005). Macrophages are also involved in the emergence of
neuropathic pain in models of peripheral nerve injury. Blockade
of macrophage-colony stimulating factor signaling in a mouse
model of partial sciatic nerve ligation prevented the development
of injury-associated neuropathic pain (Lee et al., 2018). Further
data on the role of neuroimmune interactions in peripheral
nerve injury models can be found elsewhere (Malcangio, 2019;
Tozaki-Saitoh and Tsuda, 2019).

Neuropathic Pain Emergence Following
Spinal Injury
The Role of Microglia and Astrocytes
Fewer studies have focused on the contribution of immune
and glial cells to the emergence of neuropathic pain after
SCI. Early studies by Peng et al. (2006) have demonstrated
that a T13 unilateral hemisection produces bilateral microglia
activation and TNF-α expression below the lesion level,
correlating with hindpaw mechanical allodynia in SCI rats.
Treating a T13 rat hemisection with etanercept, a TNF-α blocker,
resulted in decreased mechanical allodynia and microglial
activation. Treatment with minocycline, a microglial inhibitor,
also improved pain-associated behaviors, demonstrating that
TNF-α is critical in the establishment of neuropathic pain after

SCI and dependent on microglial activation (Marchand et al.,
2009). Thoracic spinal contusion also causes chronic activation
of microglia as far as the lumbar spinal cord (Hains et al.,
2003; Zai and Wrathall, 2005). When microglia activation is
reversed by intrathecal administration of minocycline, lumbar
SDH neurons hyperexcitability and pain-related behaviors
decrease (Hains and Waxman, 2006; Tan et al., 2009). Early
intrathecal administration of carbenoxolone, a gap junction
decoupler, to T13 hemisected rats prevents astrocyte activation
distant from the injury site and attenuates the development
of thermal hyperalgesia and mechanical allodynia (Roh et al.,
2010). Intrathecal administration of propentofylline (PPF), that
prevents astrocytic and microglial activation and regulates the
release of pro-inflammatory cytokines (Raghavendra et al., 2003;
Arriagada et al., 2007), after a T13 transverse hemisection
attenuates the development of mechanical allodynia and thermal
hyperalgesia in the rat. Additionally, PPF reduces astrocyte and
microglia activation away from the lesion site, thus decreasing
hyperexcitability of lumbar WDR neurons and reducing below-
level neuropathic pain in the rat (Gwak et al., 2008; Gwak and
Hulsebosch, 2009).

At-level central neuropathic pain depends on p38-MAPK
signaling. Following a thoracic contusion injury, p38α-MAPK
is activated in neurons and microglia, but not in astrocytes,
contributing to neuronal hyperexcitability (Crown et al., 2006,
2008; Gwak et al., 2009). Several other studies have identified
microglial and astrocytic activation as key events for the
development of below-level neuropathic pain (Detloff et al., 2008;
Carlton et al., 2009; Gwak et al., 2012).

The Role of Immune Mediators
Following a SCI, interactions between nociceptive neurons,
SDH neurons and glial cells are severely altered. After SCI,
nociceptors become hyperactive and, upon stimulation, secrete
increased amounts of glial modulators such as ATP, colony-
stimulating factor-1 (CSF1), chemokines or caspase-6 (CASP6)
(Ji et al., 2016). These molecules activate spinal microglia in
the SDH, which respond by increasing the expression ATP
and CX3CL1 receptors. Microglial cells increase secretion of
TNF-α and IL-1β, responsible for enhancing excitatory and
suppressing inhibitory synaptic transmissions in spinal cord
lamina II neurons (Kawasaki et al., 2008). In the SDH,
activated astrocytes are also able to potentiate excitatory synaptic
transmission Nerve growth factor (NGF) release, which facilitates
nociceptive neurotransmission, leads to neuropathic pain (Chen
et al., 2014). In addition, NGF, which is also produced by
infiltrating immune cells, may induce spinal expansion of the
central terminals of nociceptors, amplifying synaptic input and
further contributing to central neuropathic pain (Stroman et al.,
2016; Gwak et al., 2017). SCI-induced dysregulation of neuron-
glia crosstalk is not restricted to the spinal cord but has
also been reported within dorsal root ganglia (DRG), affecting
the interaction between Schwann cells within DRG neurons
(Lee-Kubli et al., 2016) (Figure 1).

Chemokines are vital players in neuropathic pain
development and maintenance following peripheral nerve
injury (Zhang et al., 2017). They are likely involved in the
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FIGURE 1 | Key modulators of SCI pain. Neuronal, glial (astrocytes, microglia) and immune (T-lymphocyte) cells that are activated after a spinal cord injury. Key
molecular mediators produced by those cells are also represented.

mechanism of SCI-induced chronic neuropathic pain but the
number of studies using SCI models to detail the contribution of
specific chemokines is lacking.

The Role of Neurons
SCI-induced neuropathic pain also reflects neuronal
hyperexcitability and increased spontaneous activity, observed
both in DRG and spinal neurons, associated with behavioral
responses to mechanical and thermal stimuli. This is concomitant
with persistently activated microglia and astrocytes in SDH
segments distant from the lesion site, the primary target of
pro-inflammatory mediators released by those cells (Bedi et al.,
2010). Therefore, there has been interest in developing strategies
to control and reduce neuronal hyperexcitability, particularly
at the spinal level. In a recent rodent SCI study, mouse cortical
GABAergic interneurons, derived from the embryonic medial
ganglionic eminence (MGE), have been transplanted into the
spinal cord. This has resulted in a reduction in hyperexcitability
associated with neuropathic pain (Braz et al., 2017). Efforts to
translate these preclinical transplantation studies to the clinic
are still ongoing.

CLINICAL TRIALS ON SCI-ASSOCIATED
PAIN

Neuroimmune interactions on pain emergence after SCI
are still rarely addressed on clinical trials. Kwon et al.
(2009) found increased levels of TNF-α receptor 1 in

cerebrospinal fluid (CSF), which correlated with the emergence
of neuropathic pain. A phase II trial on the effects of
minocycline administration after traumatic SCI revealed, at
1-year follow-up, improved motor recovery but effects on pain
improvement were not fully satisfactory (Casha et al., 2012;
Badhiwala et al., 2018b).

DISCUSSION AND CONCLUSION

Alleviation of neuropathic pain arising after SCI is still an
unmet need for most SCI patients. Current pharmacological
pain treatments are unsatisfactory and there is an urgent
need to develop more effective strategies. Therefore,
neuroimmune dysregulation in the context of CNS injuries
has emerged as a putative target for improved treatment
of SCI-induced neuropathic pain. Accumulating evidence
supports a role for neuro-immune dysregulation, often
reflecting altered crosstalk between neurons, activated
glial cells and invading immune cells (macrophages and
T-cells). Dysregulation occurs as a consequence of the
inflammatory response to SCI. This response is necessary
in the early post-SCI stages to close the injury site but the
resulting scar prevents full tissue regeneration and leads to
maladaptive neuroplasticity and chronic pain. The challenge
is, therefore, to control the inflammatory response and
promote tissue repair, both at a structural and functional levels.
Presently, methylprednisolone, a potent anti-inflammatory
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drug, is the only medication in clinical practice used to treat
SCI in early stages. Methylprednisolone has a widespread activity
and is able to reduce cytokine release (Ulndreaj et al., 2016)
but reported side effects, and lack of positive outcomes in pain
control, among other chronic problems, has led investigators to
question its use (Evaniew et al., 2016; Monteiro et al., 2018).
The identification of glial cells as important sources of pro- and
anti-inflammatory neuromodulators allowed the identification of
carbenoxolone, minocycline, and PPF as eventual therapeutic
tools (Shultz and Zhong, 2017; Badhiwala et al., 2018a).
Although these drugs have produced interesting results in
pre-clinical and early clinical trials, dosages and timing for
intervention need to be critically defined in the future for effective
pain management.
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