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Abstract: Foreign object debris (FOD) on airport runways can cause serious accidents and huge
economic losses. FOD detection systems based on millimeter-wave (MMW) radar sensors have the
advantages of higher range resolution and lower power consumption. However, it is difficult for
traditional FOD detection methods to detect and distinguish weak signals of targets from strong
ground clutter. To solve this problem, this paper proposes a new FOD detection approach based
on optimized variational mode decomposition (VMD) and support vector data description (SVDD).
This approach utilizes SVDD as a classifier to distinguish FOD signals from clutter signals. More
importantly, the VMD optimized by whale optimization algorithm (WOA) is used to improve the
accuracy and stability of the classifier. The results from both the simulation and field case show the
excellent FOD detection performance of the proposed VMD-SVDD method.

Keywords: FOD detection; MMW radar sensor system; SVDD classifier; the optimal VMD

1. Introduction

The foreign object debris (FOD) [1] on airport runways, such as screws, animals,
stones, plastics and so on, can lead to tragedies of aircraft damage and human mortality.
FODs cause severe direct damage and enormous maintenance cost to airport authorities
every year around the world. In order to ameliorate this problem, it is urgent to develop a
reliable, high-efficiency and automatic FOD monitoring system. At present, the UK Tarsier
system [2], the Israeli FODetect system [3], the US FODFinder system [4], and the FOD
detection system of Beijing Daxing International Airport in China are in service, which
are composed of optical equipment and millimeter-wave (MMW) radar sensor systems.
According to the evaluation of the Federal Aviation Administration, the performance of
optical instruments is greatly influenced by light, and the detecting probability is very poor
in bad weather [5]. On the contrary, millimeter-wave (MMW) radar system is less effected
by illumination and climate condition [6], and MMV radar has higher resolution and lower
power consumption [7–9].

However, the major challenge for radar systems is how to detect weak target signals
from the strong ground clutter of airport runway background [10]. The constant false
alarm rate (CFAR) methods including cell-average CFAR (CA-CFAR) [11] and clutter-
map CFAR (CM-CFAR) [12] are widely utilized in radar automatic target recognition
systems. CFAR can automatically adjust the threshold to detect targets when the intensity of
external interference changes. But CFAR methods are restricted by the complex background
scattering characteristics in airport runway [13] and therefore generate many false alarms.

To solve this problem, some researchers have studied various FOD detection methods.
Reference [14] proposed a hierarchical FOD detection scheme based on CM-CFAR and
pattern classification. This method adopts hierarchical signal processing mechanism. Firstly,
CM-CFAR algorithm is used to process radar echo signals, which reduces the intensity
of ground clutter. Then classification method is used to distinguish targets from false
alarms, which reduces the false alarm probability and improves the detection probability.
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Nevertheless, the detection result still depends on the detection effect of CFAR and is
influenced by clutter. Reference [15] established a particle swarm optimization-support
vector data description (PSO-SVDD) classifier to detect target signals form ground clutter
signals that the classifier parameters were optimized by particle swarm optimization (PSO).
For PSO-SVDD classifier, a large number of ground clutter signals are used to train the
classifier in the training stage. Compared with the traditional CA-CFAR and CM-CFAR
method, this method has a better detection performance. However, the classification
boundary is easily overfitted due to lack of target sampling data to train the PSO-SVDD
classifier. This paper proposes an improved FOD detection approach based on optimal
Variational mode decomposition (VMD) and support vector data description (SVDD). The
aims of this method are to suppress ground clutter and improve target detection probability.

VMD [16,17], a sparse signal processing method, can decompose a complex signal into
an ensemble of band-limited intrinsic mode functions (BLIMFs). The key issue is how to set
two crucial parameters of VMD algorithm: the penalty factor α and the decomposition layer
number K. In [18,19], the VMD parameters are searched by particle swarm optimization
(PSO) algorithm and artificial fish swarm algorithm (AFSA), respectively. From their results,
it is feasible to apply artificial intelligence (AI) algorithms for VMD parameter optimization.
Whale optimization algorithm (WOA) [20] is an efficient search and optimization method
in AI algorithms that has many superiorities, such as fewer input parameters, faster
convergence speed, and stronger global search ability. SVDD [21] is one of the most
prominent methods for one-class classification that is to find a set containing the most typic
instances and rejecting abnormal instances. In this paper, the parameters of VMD are first
optimized by WOA. Then radar echo signals are decomposed into FOD intrinsic mode
functions (IMFs) and clutter IMFs with the optimal VMD. Finally, clutter IMFs are utilized
to train the SVDD classifier, and then targets in FOD IMFs are detected by the trained
classifier. Here, the optimal VMD algorithm can not only improve the classification effect
of the SVDD classifier but also ensure the stable working performance of the classifier.
Experiments are conducted to validate that the proposed VMD-SVDD method can yield
preferable detection results in simulation and practical measure.

The rest of this paper is organized as follows. In Section 2, the distance measuring prin-
ciple of linear frequency modulated continuous wave (LFMCW) radar is introduced. The
proposed method is described in detail in Section 3. The Section 4 gives the experimental
processes and results. The conclusions are drawn in Section 5.

2. Distance Measuring Principle of LFMCW Radar

Linear frequency modulated continuous wave (LFMCW) [22] radar is frequently used
in radar sensors on airport runways. It is beneficial to detect weak targets under strong
ground clutter with LFMCW radar due to the advantages of high range resolution and low
transmitting power.

Figure 1 is the time-frequency diagram of LFMCW radar. The factors B, T, fT, fR, and
f 0 represent the band-width, modulation cycle, sending frequency, receive frequency and
center frequency. fb+ and fb− are positive beat frequency and negative beat frequency. τ is
time delay. The ranging principle of LFMCW radar is as follows.

The frequency of the sending signal is:

fT = f0 +
Bt
T

(1)

Suppose the target distance is R. The frequency of the received signal is:

fR = f0 +
B
T
(t− 2R

c
) (2)
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The light speed is c. The signal delay is τ = 2R/c. The beat frequency is:

fb = fR − fT =
2RB
cT

(3)

fb can be calculated by spectrum analysis, and then the target distance R can be obtained.
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Figure 1. Time-frequency diagram of LFMCW radar.

In radar sensors, radar echo signals are mixed with clutter and noise. The noise is
mainly the thermal noise in radar receivers, which is much weaker than ground clutter, so
it is ignored in this paper. The final received signal can be formulated as:

sR(t) = s f od(t) + sclutter(t) (4)

where, s f od(t) is the target signal, and sclutter(t) is the clutter signal. Supposing the sending
signal is sT(t), the signal through the mixer receiver can be expressed as

s(t) = sR(t)× sT(t) (5)

Based on fast Fourier transform (FFT), it is easy to get the target distance in frequency
domain.

3. Proposed Method and Explanation

The flowchart of the proposed VMD-SVDD method is shown in Figure 2. It is de-
scribed subsequently in detail.
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3.1. VMD Parameter Optimization

Variational mode decomposition (VMD) is one of the sparse signal processing methods,
which was proposed in 2014. The VMD can automatically and effectively decompose
a complex signal into an ensemble of band-limited intrinsic mode functions (BLIMFs).
VMD can be used for filtering and denoising. Compared with other signal decompose
methods such as empirical modal decomposition (EMD) [23] and ensemble empirical mode
decomposition (EEMD) [24], VMD overcomes problems of modal aliasing, end-point effect,
and false component.

The VMD is used to decompose the mixing signal s(t) into a finite number of BLIMFs.
The BLIMF has a central frequency and a limited bandwidth. The constrained variational
model is constructed as follows:

min{hk},{wk}

{
∑K ‖∂t

[(
δ(t) + j 1

πt

)
∗ hk(t)

]
e−jwkt‖

2

2

}
s.t.

K
∑

k=1
hk = s(t)

(6)

where {hk} = {h1, h2, h3, . . . , hK} is intrinsic mode function, ωk = {ω1, ω2, ω3, . . . , ωK} is
the center frequency of hk, δ(t) is the unit impulse function, and ∂t is the gradient with
respect to the time series.
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To solve the constrained variation problem, quadratic penalty parameter α and
Lagrange operator λ [25] are introduced. The extended Lagrange expression is given
as follows:

L({hk}, {wk}, λ) = α ∗∑
K
‖∂t

[(
δ(t) +

j
πt

)
∗ hk(t)

]
e−jwkt‖

2

2
+ ‖s(t)−∑

K
hk(t)‖

2

2

+ 〈λ(t), s(t)−∑
K

hk(t)〉 (7)

By using the alternating direction multiplicative operator method (ADMM) [26], hn+1
k ,

wn+1
k , and λn+1 are updated until the stop condition is satisfied. Among:

hn+1
k (t) = argmin

hk∈s
{α ∗ ‖∂t

[(
δ(t) +

j
πt

)
∗ hk(t)

]
e−jwkt‖

2

2
+ ‖s(t)−∑

K
hk(t) +

λ(t)
2
‖

2

2

} (8)

In the VMD processing, penalty factor α and decomposition layer number K need to
be known in advance. The integrity of the decomposed component is determined by α. An
improper K may lead to many problems, such as mode aliasing and false components. The
whale optimization algorithm (WOA) is selected to search suitable α and K for the VMD in
this paper.

Whale optimization algorithm (WOA) is a new heuristic optimization algorithm of
artificial intelligence algorithms, which has advantages of fewer input parameters, faster
convergence speed, and stronger global search ability. The WOA algorithm simulates hunt-
ing behaviors of humpback whales. The mathematical model of WOA can be expressed as:

In a given space, whales will constantly update their positions to get close to the prey

position. That is to say: Give a range of α ∈ [α1, αn] and K ∈ [K1, Km].
→
Y i and

→
Y
∗

are the

whale positions and the prey position respectively.
→
Y i = (α f , Kg), 1 ≤ f ≤ n, 1 ≤ g ≤ m,

1 ≤ i ≤ nm,
→
Y
∗

is first given at random.
→
Y i will keep updating to get closer to

→
Y
∗
. At the

same time,
→
Y
∗

is kept or updated to the optimal position in each iteration.
There are two whales foraging behaviors, namely, shrinking encircling mechanism

and spiral position updating. The probability of both behaviors is 50%. The model is given
as follows:

→
Y i+1 =


→
Y
∗
i −

→
A ·
→
D p < 0.5

→
D
∗
· ebl · cos(2πl) +

→
Y
∗
i p ≥ 0.5

(9)

When p < 0.5:
→
D =

∣∣∣∣→C ·→Y∗i −→Y i

∣∣∣∣ (10)

→
Y i+1 =

→
Y
∗
i −

→
A ·
→
D (11)

Among, i is the number of iterations, which is restricted to less than the maximum

number of iterations.
→
A = 2 ·→a ·

→
d −→a and

→
C = 2 ·

→
d are coefficient vectors,

→
a is linear

regressive from 2 to 0, and
→
d is a random vector in [0,1].

When p ≥ 0.5:
→
D
∗
=

∣∣∣∣→Y∗i −→Y i

∣∣∣∣ (12)

→
Y i+1 =

→
D
∗
· ebl · cos(2πl) +

→
Y
∗
i (13)

where b is a constant which determines the logarithmic spiral shape, and l is a random
number in [−1,1].
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In order to strengthen global search ability of WOA, whales also randomly search for

the prey. If
→
A ≥ 1,

→
Y i+1 will be updated according to a random whale position

→
Y rand. The

mathematical model is:
→
D =

∣∣∣∣→C ·→Y rand −
→
Y i

∣∣∣∣ (14)

→
Y i+1 =

→
Y rand −

→
A ·
→
D (15)

During each iteration, the prey position
→
Y
∗

always corresponds to the current max-

imum kurtosis of cross-correlation coefficients between s(t) and hk(t). In the end,
→
Y
∗

is
consisted of optimal α and K. Then s(t) is decomposed by VMD with optimal parameters.
Select FOD IMFs and clutter IMFs by the average of cross-correlation coefficients between
s(t) and hk(t).

3.2. SVDD Classification

Support vector data description (SVDD) [27] algorithm is one of the machine learning
algorithms, based on traditional support vector machines (SVM) [28,29]. The SVDD has
been widely applied in anomaly detection, fault detection and diagnosis process. The
basic principle of SVDD is that a minimum hypersphere containing all training samples is
generated in the high-dimensional space. The support vectors are the sample points on
the surface of the hypersphere. Test samples are normal if them are in the hypersphere,
otherwise them are abnormal samples. The training samples (clutter signals in this paper)
are Xt = {xt1 , xt2 , . . . , xtN}. The optimization problem of SVDD can be expressed as
the follows:

minB(c, r′) = r′2 + C∑N
i=1 ξi

s.t.(xti − c)T(xti − c) ≤ r′2 + ξi
ξi ≥ 0, ∀i = 1, . . . , N

 (16)

where C∑N
i=1 ξi is used to reduce the influence of outliers. ξi is the slack variable, and

every data point has a corresponding one. When two data points have the same the slack
variable, the hyperspheres are the same. C determines the decision boundary of training
samples. r′ is the radius. c is the sphere center. The hypersphere can be obtained by using
kernel function [30] and Lagrange multipliers. This paper uses the popular Gaussian kernel
function, which is defined as:

K(xti , xtj) = exp(
−‖xti − xtj‖

2

σ2 ) (17)

where δ is a parameter that is used to control tightness of the boundary. Gaussian kernel
function provides an efficient technique to map the data of the input space into the high-
dimensional feature space. The dual form of the Equation (16) guided by the Gaussian
kernel function and Lagrange multipliers is:

maxL = ∑n
i=1 α′ iK(xti , xtj)−∑i,j α′ iα

′
jK(xti , xtj)

s.t.∑n
i=1 α′ i = 1

0 ≤ α′ i ≤ C, ∀i = 1, . . . , N

 (18)

where α′ i corresponds to xti . when α′ i > 0, xti is the support vector. Then the sphere center
c and the radius r′ can be obtained. The hypersphere is inversely mapped to the original
data space to get the decision boundary of the FOD and clutter.

Before SVDD classification, it is necessary to extract two-dimensional features of
the FOD and clutter as inputs of the classifier. The autocorrelation distribution of FOD
signals is more concentrated while that of ground clutter is more dispersive on account of
target echo signals have stronger correlation than clutter signal. The second-order center
distance (F1) and fourth-order cumulant (F2) of normalized autocorrelation are chosen as
two-dimensional features, which can increase the difference between FODs and clutter. F1
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represents the distribution of normalized autocorrelation relative to the geometric center of
mass. The more dispersed of the distribution is, the smaller F1 is. F2 can further solve the
problems that cannot be solved by F1, such as Gaussian noise. The calculation is as follows:

The normalized autocorrelation coefficient of hk is ri = {r1, r2, . . . , rK},

ri =
∑M−h

m=1 (rim − r̃i)(rim+h − r̃i)

∑M
m=1 (rim − r̃i)

2 (19)

where M is the length of rim . 0 ≤ h ≤ M. 0 ≤ i ≤ K. r̃i is the average of rim .
Feature 1: the second order center distance of the normalized autocorrelation coefficient

F1 =
M

∑
m=1

(m− m̃)2rim (20)

where m̃ = ∑M
m=1 m ∗ pm, pm = rim / ∑M

m=1 rim .
Feature 2: fourth-order cumulant of normalized autocorrelation coefficient

F2 =
M

∑
m=1

(m− m̃)4rim − 3[
M

∑
m=1

(m− m̃)2rim ]

2

(21)

4. Discussion

The operation and signal processing parameters of the radar system are provided in
Table 1. The carrier frequency is 96 GHz, and the modulation signal is the linear frequency
modulated signal with the bandwidth of 1.5 GHz. The polarization is VV. Radar antenna
beam width should be as small as possible to obtain better resolution of transverse range.
In this paper, the horizontal beam width is 1.9◦, the pitch beam width is 5◦, and the range
resolution is 0.1 ms. The angular step is 12◦/s, so the maximum pulse accumulation time
is calculated to be 158 ms. The paper adopts the cumulative time of 60 ms, according to
the actual target detection strategy and the transmission between upper computer and
radar sensor.

Table 1. Parameters of the LFMCW radar system.

Parameter Value Parameter Value

bandwidth 1.5 GHz antenna gain 20 dBi
sampling frequency 20 MHz horizontal beam width 1.9◦

farthest monitoring distance 70 m pitch beam width 5◦

range resolution 0.1 m beam width in azimuth 120◦

FFT point number 1024 beam width in downward 28◦

frequency modulation cycle 128 us angular step 12◦/s
pulse accumulation number 468 cumulative time 60 ms

4.1. Signal Decomposition and Mode Selection

In the simulation, the ground clutter signal is the signal whose amplitude distribution
satisfies Rayleigh distribution, and the target signal is linear frequency modulation signal.
Suppose that there is a target at a distance of 40 m, which is marked with red star in the
following figures. Without clutter signals, the target signal is obvious after frequency
mixing and fast Fourier transform (FFT) processing that shown in Figure 3a. When the
signal-to-clutter rate (SCR) is −20 dB, the target signal almost hides in clutter signals in
Figure 3b. It can be seen that the target at 40 m is obscured by the surrounding strong
clutter in the amplitude spectrum. At this point, it is difficult to detect the target with the
ordinary CFAR method.
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Figure 3. Simulation data: (a) Target signals without clutter; (b) Target signals with clutter.

In the proposed method, firstly, quadratic penalty parameter α and decomposition
layer number K of variational mode decomposition (VMD) need to be searched by whale
optimization algorithm (WOA). In the experiment, the initial ranges of α and K are
and [5, 10]. The fitness function (objective function) is the maximum kurtosis of cross-
correlation coefficients between s(t) and hk(t) of the updating VMD. The maximum itera-
tion is 15. The parameter optimization process of WOA is shown in Figure 4. The maximum
kurtosis appears after 11 iterations. At this time, the optimal parameters searched by the
WOA are K = 7.69 and α = 1497.10, and the integer formats of them are K = 7 and α = 1500,
which are provided for the VMD.
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Then, the signals in Figure 3b are decomposed by the optimal VMD. The result is
shown in Figure 5. These modes are distributed from low frequency to high frequency. The
target is assigned to the IMF3, and clutter signals are divided into other IMFs. It can be
seen form the IMF3 that the clutter signals around the target is reduced.
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To select FOD mode component, set a selection threshold which is the average of
cross-correlation coefficients of s(t) and hk(t). The first IMF has no value by analyzing
measured data and the last IMF is the residual, these two modes are discarded in the
threshold estimation. The threshold value is calculated as follows:

Corrk =
∑n

i=1 (si − s̃)(hki
− h̃k)√

∑n
i=1 (si − s̃)2∑n

i=1 (hki
− h̃k)

2
, k = 2, 3, . . . , K− 1 (22)

Tcorr =
1
5
(Corr2 + Corr3 + . . . + CorrK−1) (23)

n is the length of s(t) and hk(t). s̃ is the average of s(t). h̃k is the average of hk(t).
Figure 6 shows the mode selection result of modes in Figure 5, and the red dotted

line is the threshold. The mode whose cross-correlation coefficient exceeds the threshold is
selected as FOD mode component; otherwise, it is classified as clutter mode component.
The cross-correlation coefficient of the mode component including targets is bigger due to
target echo signals have stronger correlation than clutter signals. Here, IMF3 and IMF5
are FOD mode components, and IMF2, IMF4 and IMF6 are clutter mode components. The
IMF1 includes strong clutter signals near radar sensor, which will improve the threshold
value of mode selection. So, it will be discarded in the later signal processing.
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In addition, the following experiments have been conducted to illustrate the impor-
tance of setting appropriate VMD parameters and the cross-correlation threshold.

The simulation data in Figure 3b is decomposed by VMD with different penalty factor
α and decomposition layer number K. These mode components are shown in Figure 7. The
yellow parts are selected as target modes by the cross-correlation threshold. Compared
with the results in Figure 7b,c, the target signal at 40 m in Figure 7a is intact when VMD
parameters are α = 2000 and K = 7. In Figure 7b, α = 2000 and K = 5. The inaccurate
decomposition is caused by improper K, bringing false components. In Figure 7c, α = 1000
and K = 7. The integrity of target signal is destroyed by the inappropriate α. In Figure 7b,c,
the target signals in selected target modes are weaken, which are almost undetectable in
the next signal processing. Therefore, it is necessary to optimize VMD parameters by WOA,
which ensures the integrity of target signals.
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Figure 8 shows the results of mode selection based on the the cross-correlation thresh-
old in four cases. There is a target 40 m form the radar sensor in Figure 8a,c. And there are
two targets in Figure 8b,d: one is 25 m from the radar sensor, the other is 55 m from the radar
sensor. The SCR is−15 dB in Figure 8a,b, and the SCR is−20 dB in Figure 8c,d. In Figure 8,
the abscissa is the serial number of the mode, the y-coordinate is the cross-correlation
coefficient, and the red dotted line is the threshold.
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Figure 8. Mode selection results in four cases: (a) Single target with SCR = −15 dB; (b) Two targets
with SCR = −15 dB; (c) Single target with SCR = −20 dB; (d) Two targets with SCR = −20 dB.

It can be seen from these selection results that, with the decrease of signal-to-clutter
rate (SCR), the number of modes below the threshold decreases and the selected clutter
modes decrease, regardless of single target or multiple targets. From the above simulation
results, the number of clutter data used to train the classifier is sufficient, although some of
clutter modes are selected as target modes. Moreover, if the number of targets increases
further, more clutter modes can be obtained by increasing the decomposition layer of VMD.
But this case of too many targets on airport runways is not common.

4.2. SVDD Classification and Fod Detection

After the mode components are divided into FOD modes and clutter modes by the
cross-correlation threshold, the SVDD classifier is used to distinguish FOD signals from
clutter signals.

In the simulation, two important parameters of SVDD are set as follows: δ = 0.5
and C = 1, which are optimized by particle swarm optimization (PSO) [15]. According to
Equations (20) and (21), feature vectors of the training samples (clutter signals) are obtained
to train SVDD classifier.
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Without VMD processing, after the SVDD classifier is trained by clutter signals in the
Figure 3b, the red optimal decision boundary is obtained as shown in Figure 9a. In the
training stage, the optimal decision boundary is obtained. In the testing stage, if sampling
points falls within the boundary, they are considered as clutter signals. Otherwise, they will
be considered as non-clutter signals. The simulation data from Figure 3b are tested by the
trained SVDD classifier. The classification result is shown in Figure 9b. The sampling points
outside the boundary are false alarms, which are marked with yellow cross in figures. The
sampling points of the target can hardly be found due to the effect of strong clutter.
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With VMD processing, the clutter modes in Figure 5 are selected to train the classifier
and the FOD modes are tested by the trained VMD-SVDD classifier. Figure 9c shows the
training result and Figure 9d shows the testing result. Although there are still some false
alarms outside the decision boundary, some sampling points of the target can be detected.
Here, a target corresponds to multiple sampling points in the figure due to radar signals
are linear frequency modulated continuous wave signals. By Comparing the results in
Figure 9b,d, it is easier to detect targets in Figure 9d under the same SCR. As can be seen
from above experiments, VMD processing can reduce the effect of clutter on target signals,
which improves the SVDD classification efficiency.

In order to test the classification performance of VMD-SVDD classifier, the proposed
method is tested on a clutter data set without targets. In this case, the cross-correlation
mode selection algorithm will mistakenly select some of the clutter modes as the target
modes (called false target modes). However, sampling points of these false target modes
are likely to be classified into the decision boundary by the trained classifier. As can be
seen from Figure 10, false alarms appear very close to the decision boundary. After a large
number of repeated experiments, it is found that the false alarm probability of the proposed
method is about 0.8%.
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For the training of VMD-SVDD classifier, the training set includes clutter modes
selected by the cross-correlation threshold after VMD processing. While, the testing set
includes target modes, and may also include other clutter modes. From above simulation
and test results, it can be seen that using clutter modes as a test set results in an error
probability of about 0.8%, which has little effect on target detection. So, the training way of
the VMD-SVDD classifier proposed in this paper is reliable.

To compare the detection performance of the proposed VMD-SVDD method, four
methods are applied to detect a same target under different SCR. The cell-average CFAR
(CA-CFAR) method is to obtain a detection threshold by averaging the clutter power around
the target. If the amplitude of a signal exceeds the threshold, the signal is considered
as a target. The principle of VMD-CACFAR method is to detect targets in FOD mode
components by CA-CFAR method. In SVDD method and the proposed VMD-SVDD
method, target sampling points are marked in advance, and the target is detected by
confirming that sampling points outside the decision boundary are labeled.
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The numbers of simulation are 1000 in every case and the detection probability (Pd)
result is shown in Figure 11. Under different SCR, Pd of the proposed VMD-SVDD method
is higher than that of other methods. Especially, the target can almost always be accurately
detected when SCR > −10 dB. It can be seen from Figure 10 that the detection performance
based on SVDD or VMD-SVDD is better than that based on CA-CFAR or VMD-CACFAR.
Compared with the SVDD classifier, the proposed VMD-SVDD classifier has the higher
detection probability, which proves that the optimal VMD can improve the accuracy of
SVDD classification.
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Figure 11. Detection probabilities of four detection methods.

Then the real-time analysis of above four methods is carried out, and the time required
to run these algorithms is shown in Table 2. Among them, the running time of the proposed
algorithm is 10.93 s, which is acceptable in actual projects. By comparing the running
time and detection probability of above four detection methods, it can be seen that while
the detection probability of the proposed method is high, the running time is long. In
particular, VMD algorithm increased running time. In future work, the VMD module can
be optimized to improve the run time of the proposed method.

Table 2. Real-time analysis of four methods.

Method CA-CFAR VMD-CACFAR SVDD VMD-SVDD

Run time (s) 0.25 9.87 4.91 10.93

4.3. Field Measure and Validation Result

To verify general validity of the proposed VMD-SVDD method, it is applied to a radar
sensor system in reality. Figure 12 is the photograph of field measure scenario. Two cases
were tested in this field: in scene 1, a metal ball was placed 40 m from the radar sensor; in
scene 2, two bolts were placed 40 m and 55 m from the radar sensor. The radar echo signals
are processed by the proposed VMD-SVDD method.
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Figure 12. Field measure scenario.

For scene 1, the original signal after frequency mixing and FFT processing is shown in
Figure 13a. As can be seen that the signal of the metal ball 40 m from the radar sensor is
obscured by surrounding strong clutter signals. After the proposed method processing, the
detection result is shown in Figure 13b that the target signal can be detected with two false
alarms existing around the target. The problem of false alarms will be discussed later.
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Figure 13. Signals in scene 1: (a) Original signal; (b) Target detection result.

Figure 14a shows mode components after VMD processing of scene 1. Where, IMF2,
IMF3, IMF6 and IMF7 are selected as clutter modes to train the SVDD classifier, and target
modes are IMF4 and IMF5. Through analysis of the measured data, the first IMF and
the last IMF have a great influence on the final selection result. Therefore, both modes
are discarded in the selection threshold estimation, which is the same as the simulation.
According to the actual situation, the decomposition layer number K of VMD is adaptively
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adjusted to 8. The SVDD classification result is shown in Figure 14b. The sampling points
outside the decision boundary belongs to the target or false alarm.
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Figure 14. Signal processing for scene 1: (a) Mode components after VMD processing; (b) SVDD
classification result.

Here, both Figures 13b and 14b show the detection result of single target. Figure 13b
represents the result in the distance dimension, while Figure 14b represents the result in
the feature space. For scene 1, the final detection result is that two false alarms appear
around the single target, so there are three lines in Figure 13b, corresponding to three points
outside the decision boundary in Figure 14b.

For scene 2, the original signal is shown as Figure 15a,b shows the detection result
that both targets are correctly detected. There are still false alarms around the target 40 m
from the radar sensor.
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In fact, if false alarm objects are very close to the target, it has little impact on the
detection result. In the future work, how to improve the detecting probability of such
situation will be further researched.

5. Conclusions

The FOD detection method in the MMW radar sensor system is limited by the strong
ground clutter on the airport runway. This work presents an improved VMD-SVDD method
to detect FODs. In this method, the echo signal received by MMW radar system are is firstly
decomposed into BLIMFs with the optimal VMD. Then the mode components divided
into two parts: FOD mode components and clutter components. The selected clutter mode
components are used to train the SVDD classifier, and then the FOD mode components
are tested by the classifier. This method relies on the SVDD classifier to distinguish FOD
signals from clutter signals, what’s more, the accuracy and stability of the classifier is
improved by the optimal VMD. The proposed method has two significant advantages:

(1) The VMD-SVDD method is more adaptable. There is no need to set VMD parameters,
among which quadratic penalty parameter α and decomposition layer number K are
searched by the WOA algorithm;

(2) The VMD-SVDD method can effectively suppress ground clutter signals and has the
higher detection probability.

After analytically describing the procedure, the effectiveness of the approach has been
proven by simulation. Furthermore, the general validity of the method is evidenced with
the measured data.
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