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Abstract
This review describes the current models for how the subunit abundance of the Ndc80 complex, a key kinetochore component, 
is regulated in budding yeast and metazoan meiosis. The past decades of kinetochore research have established the Ndc80 
complex to be a key microtubule interactor and a central hub for regulating chromosome segregation. Recent studies further 
demonstrate that Ndc80 is the limiting kinetochore subunit that dictates the timing of kinetochore activation in budding 
yeast meiosis. Here, we discuss the molecular circuits that regulate Ndc80 protein synthesis and degradation in budding 
yeast meiosis and compare the findings with those from metazoans. We envision the regulatory principles discovered in 
budding yeast to be conserved in metazoans, thereby providing guidance into future investigations on kinetochore regulation 
in human health and disease.
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Introduction

The kinetochore is an evolutionarily conserved multi-subunit 
protein complex that mediates chromosome segregation. 
Since the discovery of the kinetochore in 1980s, this large 
protein complex has emerged as a crucial regulatory hub that 
directs faithful genome partitioning. Its mis-regulation now 
serves as a biomarker for cancer. The past 30 years of kine-
tochore research have illuminated the structure and function 
of the kinetochore. Until recently, however, relatively little is 
known about how the abundance of each kinetochore subunit 
is regulated in specialized cellular contexts, such as meio-
sis. In this review, we focus on the regulation of the protein 
abundance of one kinetochore subcomplex, the Ndc80 com-
plex, which dictates when kinetochores are active in meiosis.

In a simplified view, kinetochore subunits are organized 
into two main parts: the inner and outer kinetochore. The 
inner kinetochore forms at the centromere, providing the 
foundation for the outer kinetochore to assemble. The outer 
kinetochore interacts with dynamic spindle microtubules. 

The Ndc80 complex constitutes a major subcomplex within 
the outer kinetochore, composed of Ndc80 (also known as 
Hec1 in humans), Nuf2, Spc24, and Spc25 (reviewed in Big-
gins 2013). The Spc24-Spc25 heterodimer links the Ndc80 
complex to the inner kinetochore (Janke et al. 2001; Wigge 
and Kilmartin 2001; Ciferri et al. 2005; Wei et al. 2005; Hor-
nung et al. 2011), while Ndc80-Nuf2 pair binds to microtu-
bules through their calponin-homology domains, a protein 
fold commonly found in microtubule-interacting proteins 
(Wei et al. 2005, 2007; Ciferri et al. 2008; Alushin et al. 
2010; Lampert et al. 2013). In the current model, when the 
inner kinetochore binds to Spc24–Spc25, the intracomplex 
interaction within the Ndc80 complex is inhibited, thereby 
promoting the binding of Ndc80-Nuf2 to microtubules 
(Kudalkar et al. 2015). Unique to Ndc80, its N-terminal flex-
ible region contributes to microtubule-binding (Wei et al. 
2007; Miller et al. 2008; Alushin et al. 2010, 2012; Sundin 
et al. 2011). This region also contains phosphorylation sites 
important for regulating microtubule-kinetochore attach-
ments (Cheeseman et al. 2006; DeLuca et al. 2006, 2011; 
Guimaraes et al. 2008; Akiyoshi et al. 2009; Alushin et al. 
2010, 2012; Umbreit et al. 2012; Zaytsev et al. 2014) and for 
mediating spindle-assembly checkpoint signals (McCleland 
et al. 2003; Kemmler et al. 2009; Aravamudhan et al. 2015; 
Hiruma et al. 2015; Ji et al. 2015).

Given the importance of Ndc80, it is perhaps not surpris-
ing that Ndc80 has evolved to become the linchpin subunit 
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of the outer kinetochore in budding yeast meiosis, the spe-
cialized cell division that generates gametes. In normal 
meiosis, one round of DNA replication is followed by two 
consecutive chromosome divisions: homologous chromo-
somes are segregated in meiosis I, and then sister chromatids 
are pulled apart in meiosis II. In budding yeast, all subunits 
of the Ndc80 complex, with the exception of Ndc80, have 
constant protein levels throughout meiosis (Meyer et al. 
2015; Chen et al. 2017). In meiotic prophase, Ndc80 pro-
tein levels decline, which results in the disassembly of the 
outer kinetochore. Shortly before the first meiotic division, 
Ndc80 levels increase to allow outer kinetochore re-assem-
bly, just in time for chromosome segregation (Asakawa 
et al. 2005; Miller et al. 2012; Meyer et al. 2015; Chen et al. 
2017, 2020). This dynamic behavior of the outer kinetochore 
allows two key events to take place in meiosis I. First, the 
kinetochores of the sister chromatid pair attach to the spindle 
microtubules emanating from the same spindle pole (monop-
olar attachment) (Meyer et al. 2018). Second, the centro-
meric cohesion between sister chromatids are protected 
during anaphase I (Miller et al. 2012). Premature expres-
sion of Ndc80 in meiotic prophase can alter chromosome 
segregation pattern such that sister chromatids segregate in 
meiosis I. This abnormal meiosis leads to both defective and 
reduced number of gametes (Miller et al. 2012). Therefore, 
a key aspect of establishing meiosis I boils down to regulat-
ing Ndc80 protein levels, which are intricately controlled by 
the synthesis and degradation of Ndc80 proteins in meiosis.

Ndc80 synthesis: toggling of two 
functionally distinct mRNAs

To dial up or down Ndc80 abundance, meiotic yeast cells 
modulate Ndc80 synthesis by controlling the levels of two 
mRNA isoforms expressed from the NDC80 gene (Chen 
et al. 2017; Chia et al. 2017). These two mRNA isoforms 
share the entire coding sequence of NDC80 but vary in their 
5′ end. The longer isoform, named the long undecoded tran-
script isoform (NDC80LUTI), has a 5′-extension that contains 
nine upstream open reading frames (uORFs). Translation 
of the uORFs prevents ribosomes from accessing the main 
ORF; consequently, NDC80LUTI cannot be translated into 
Ndc80 protein. The shorter, canonical mRNA (NDC80ORF) 
lacks the 5′-extension and is capable of Ndc80 protein pro-
duction. Rather than being a protein-coding unit, NDC80LUTI 
serves a regulatory function such that its transcription inac-
tivates the canonical NDC80 promoter through co-transcrip-
tional histone marks and nucleosome re-positioning. As a 
result, upregulation of NDC80LUTI expression causes down-
regulation of Ndc80 protein synthesis and hence, downregu-
lation of the NDC80 gene.

Meiotic cells control the relative expression of two 
NDC80 mRNA isoforms through the action of two key mei-
otic transcription factors. Budding yeast meiosis is induced 
by nutrient deprivation. Upon meiotic entry, the transcrip-
tion factor Ime1 is upregulated and binds to Ume6 (Kassir 
et al. 1988; van Werven and Amon 2011). This Ime1-Ume6 
transcription factor complex drives expression of NDC80LUTI 
and early meiotic genes (Fig. 1). NDC80LUTI transcription 
in turn shuts down NDC80ORF, which is expressed before 
meiosis onset, and hence inhibits Ndc80 protein synthesis. 
Meanwhile, Ndc80 turnover is upregulated in meiotic pro-
phase (described in the next section). Due to the dual action 
of synthesis repression and degradation enhancement, the 
protein level of Ndc80 precipitously drops in meiotic pro-
phase, leading to outer kinetochore disassembly. After cells 
exit from meiotic prophase, the mid-meiotic transcription 
factor Ndt80 (Xu et al. 1995; Chu and Herskowitz 1998) 
induces NDC80ORF expression. Since NDC80ORF is capable 
of translating Ndc80 protein, Ndc80 is rapidly resynthesized 
to allow assembly of the Ndc80 complex onto the inner kine-
tochore and reactivation of the kinetochore for mediating 
meiotic chromosome segregation. Therefore, the timely fluc-
tuation of Ndc80 levels (hence outer kinetochore assembly) 
is ensured by coupling the expression of NDC80LUTI and 
NDC80ORF to master meiotic transcription factors.

Several mechanistic details of the NDC80LUTI-based 
repression remain unresolved. For example, nucleosomes 
are repositioned at the canonical NDC80ORF promoter in 
response to NDC80LUTI expression; however, the iden-
tity of the chromatin remodeler(s) responsible for this 
change is unknown. In addition, it is not understood how 
the NDC80LUTI-based repression mechanism is turned off 
after NDC80LUTI expression subsides at prophase exit, the 
same time when the transcription factor Ndt80 re-induces 
NDC80ORF. Do the histone modifications and nucleosome 
positioning reset to the pre-meiotic state? If so, does the 
transcription factor Ndt80, or histone demethylase(s), or 
nucleosome remodeler(s) play a role in resetting the chro-
matin states? Deeper mechanistic understanding into how 
LUTI-based repression is established and erased will help 
generate models to predict LUTIs and uncover LUTI regula-
tors in other genomes.

Ndc80 degradation: a new function 
for the conserved kinase‑substrate pair

In concert with the repression of Ndc80 synthesis in mei-
otic prophase, the premeiotic pool of Ndc80 proteins is also 
degraded in a regulated manner (Chen et al. 2020). Central 
to Ndc80 degradation is the phosphorylation of Ndc80 by 
Aurora B/Ipl1 (Fig. 1). Aurora B/Ipl1 is the catalytic subu-
nit of the chromosome passenger complex, which regulates 
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diverse cellular processes, including the assembly of bipo-
lar spindles and kinetochore, kinetochore orientation, and 
cytokinesis (reviewed in Lampson and Grishchuk 2017). 
The functional significance of Ndc80 phosphorylation 
has been primarily characterized in mitotic cells: Aurora 
B-dependent phosphorylation weakens Ndc80’s binding 
to microtubules, leading to kinetochore detachment and an 
opportunity for the kinetochore to re-attach to microtubules 
in the correct orientation (reviewed in Biggins 2013; Wimb-
ish and DeLuca 2020).

In budding yeast meiotic prophase, phosphorylated 
Ndc80 is a target for degradation. The Aurora B/Ipl1-
dependent Ndc80 phosphorylation triggers a set of down-
stream events that depend on a short N-terminal segment of 
Ndc80 (the 2–28 residues) and the meiotic ubiquitin ligase 
 APCAma1, ultimately driving Ndc80 for proteasomal degra-
dation (Chen et al. 2020). Notably, Ndc80 phosphorylation 

results in kinetochore detachment from microtubules in 
meiotic prophase, similar to its role in mitosis. And yet, it 
is unlikely that this detachment directly drives Ndc80 deg-
radation in meiotic prophase, as microtubule depolymeriza-
tion cannot rescue the defect in Ndc80 degradation resulting 
from Aurora B/Ipl1 depletion (Chen et al. 2020).

Besides regulating Ndc80 degradation, Aurora B/Ipl1 also 
plays an important role in suppressing kinetochore–micro-
tubule interactions in meiotic prophase. Aurora B/Ipl1 
does so by preventing bipolar spindle formation in mei-
otic prophase (Shirk et al. 2011; Kim et al. 2013). During 
this meiotic stage, Aurora B/Ipl1 localizes to the spindle 
pole bodies (SPBs, the centrosomes in yeast) and the short 
nuclear microtubule arrays. It has been proposed that these 
Aurora B/Ipl1 molecules prevent premature separation of the 
duplicated SPBs and formation of bipolar spindles (Shirk 
et al. 2011; Kim et al. 2013). By restricting microtubule 
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Fig. 1  Regulation of Ndc80 abundance during budding yeast meiosis. 
Top: Meiotic kinetochore dynamics. The outer kinetochore becomes 
dissociated from the inner kinetochore during S/prophase I, thus turn-
ing off kinetochore activity. The outer kinetochore reassembles after 
prophase I exit and reactivates kinetochore activity for chromosome 
segregation during meiosis I and meiosis II. Middle: Synthesis regu-
lation of Ndc80. During vegetative growth and premeiotic cell divi-
sions, Ndc80 protein is synthesized from the NDC80ORF transcript. 
Expression of the NDC80LUTI transcript is inhibited by the Ume6 
repressor. After meiotic entry, the master transcription factor Ime1 is 
expressed. Together with Ume6, the Ime1-Ume6 coactivator induces 
NDC80LUTI expression, which turns off NDC80ORF expression, lead-

ing to inhibition of Ndc80 protein synthesis. At prophase I exit, 
another master transcription factor Ndt80 re-expresses NDC80ORF, 
leading to re-synthesis of Ndc80 proteins. Bottom: Degradation 
regulation of Ndc80. During S/prophase I, the Aurora B/Ipl1 kinase 
phosphorylates Ndc80. Such phosphorylation, together with a short 
sequence (aa2-28) at Ndc80’s N-terminus, triggers Ndc80 to undergo 
 APCAma1- and proteasome-dependent degradation. After the kineto-
chores are properly attached to spindle microtubules in metaphase I, 
a time when  APCAma1 activity and Aurora B/Ipl1 phosphorylation are 
low, Ndc80 protein becomes stable to mediate chromosome segrega-
tion



514 Current Genetics (2021) 67:511–518

1 3

activity and irreversibly abolishing the microtubule-binding 
site of the kinetochore through Ndc80 degradation, Aurora 
B/Ipl1 ensures that the kinetochore interacts with spindle 
microtubules only after meiotic prophase. This delayed 
kinetochore–microtubule interaction is required to set up a 
meiosis I-specific chromosome segregation pattern (Miller 
et al. 2012).

Several mechanistic details of Ndc80 degradation remain 
unresolved. For example, it is unknown how the 2–28 resi-
dues of Ndc80 mediate Ndc80 degradation. These 27 resi-
dues are necessary for Ndc80 degradation and not for Aurora 
B/Ipl1-dependent phosphorylation. Importantly, this region, 
together with the Aurora B/Ipl1 phosphorylation sites, is 
sufficient to induce the degradation of another kinetochore 
protein (Chen et al. 2020). We posit that Ndc80 phospho-
rylation may recruit a bipartite protein or a protein complex 
that binds to the 2–28 region, or Ndc80 phosphorylation 
may induce local conformational changes to expose the 2–28 
region for factor binding. Alternatively, the 2–28 region 
may act in parallel with Ndc80 phosphorylation to signal 
for Ndc80 degradation.

Another fascinating question is which pool of Ndc80 pro-
tein is most efficiently targeted by the degradation pathway: 
soluble Ndc80 or the Ndc80 protein that is part of the Ndc80 
complex (on or off the kinetochore)? In one model, the deg-
radation pathway only acts on the soluble pool of Ndc80. 
Molecular factors would first extract Ndc80 from its com-
plex, and Ndc80 gets degraded once it becomes soluble. In 
another model, Ndc80 is locally degraded at the kinetochore, 
while soluble Ndc80  is protected from degradation. It would 
be interesting to directly measure the degradation rate of 
soluble Ndc80 proteins versus those localized to the kine-
tochore to determine whether Ndc80’s kinetochore localiza-
tion is required for its degradation.

Also unknown is the role of  APCAma1. While  APCAma1 
is a meiosis-specific ubiquitin ligase, whether Ndc80 is a 
direct substrate of  APCAma1 remains to be tested. If Ndc80 
is a direct substrate of  APCAma1, it would be interesting to 
test how Aurora B/Ipl1-dependent phosphorylation of Ndc80 
affects the interaction between Ndc80 and  APCAma1.

Lastly, Ndc80 degradation is turned off in metaphase I  
through an unknown mechanism (Chen et al. 2020). We pro-
pose two non-mutually exclusive models. First, the com-
pletion of error correction may repress Ndc80 degradation. 
After the chromosomes correctly attach to the spindle micro-
tubules, phosphatases remove Ndc80 phosphorylation to 
stabilize the microtubule attachments (reviewed in Biggins 
2013). Consequently, the trigger for Ndc80 degradation 
(phosphorylation) would be eliminated. Second, Clb-CDK 
activity becomes elevated in prometaphase I, leading to inac-
tivation of the ubiquitin ligase  APCAma1 (Oelschlaegel et al. 
2005; Tsuchiya et al. 2011). Without  APCAma1, Ndc80 would 

be stabilized even before the completion of error correction. 
Future studies will be necessary to test these models.

Regulation of the Ndc80 complex 
in metazoan meiosis

The basic composition and many subunits of the kinetochore 
are conserved between yeast and metazoans (reviewed in 
Musacchio and Desai 2017). The inner kinetochore of 
metazoans consists of the Constitutive Centromere Associ-
ated Network (CCAN). Most of the CCAN subunits have 
orthologs in yeast along with additional metazoan specific 
proteins (reviewed in Musacchio and Desai 2017). CCAN 
binds to centromeric chromatin throughout the cell cycle. 
The metazoan outer kinetochore is called the KMN network 
(Knl1/Mis12/Ndc80 complexes). The protein structure and 
core domains of the Ndc80 complex are conserved between 
yeast and metazoans (Wei et al. 2007). Also conserved is 
the role of Aurora B in correcting the erroneous attach-
ments between the Ndc80 complex and spindle microtubules 
(Cheeseman et al. 2006; DeLuca et al. 2006, 2011; Alushin 
et al. 2012; Zaytsev et al. 2014, 2015).

One difference, however, lies in the assembly timing of 
the Ndc80 complex during cell division: the Ndc80 complex 
assembles onto CCAN only after nuclear envelope breakdown 
in metazoans (Gascoigne and Cheeseman 2013) while the 
yeast Ndc80 complex associates with the inner kinetochore 
during most of the mitotic cell cycle except briefly in S phase 
(Kitamura et al. 2007). In HeLa cells, the assembly and dis-
assembly of the Ndc80 complex are controlled by at least 
two means. First, the Ndc80 complex is excluded from the 
nucleus until after nuclear envelope breakdown (Gascoigne 
and Cheeseman 2013). Second, high CDK activity promotes 
the Ndc80 complex to assemble on the kinetochore by phos-
phorylating CENP-T, which enhances the binding between 
CENP-T and the Ndc80 complex (Gascoigne et al. 2011; 
Nishino et al. 2013; Huis In’t Veld et al. 2016). At mitotic exit, 
the declined CDK activity dampens the interaction between 
CENP-T and Ndc80, resulting in reduced levels of the Ndc80 
complex at the kinetochore. The timely disassembly of the 
Ndc80 complex is required for faithful chromosome segrega-
tion in subsequent cell divisions (Gascoigne and Cheeseman 
2013).

In metazoan meiosis, the Ndc80 complex also disas-
sembles during meiotic prophase as in yeast meiosis. For 
example, in mice oogenesis, Nuf2 and Spc24 form puncta 
on chromosomes (indicating kinetochore localization) only 
after germinal vesicle breakdown, which corresponds to an 
exit from prophase I (Zhang et al. 2015, 2016). The locali-
zation pattern of Ndc80 and Spc25 is less clear since anti-
body staining did not show distinct puncta on chromosomes 
even during metaphase I and metaphase II (Sun et al. 2010, 
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2011). While there is no direct evidence currently, Ndc80 
and Spc25 likely follow the localization pattern of Nuf2 
and Spc24 because the four subunits form a complex both 
in vitro and in vivo (Janke et al. 2001; Wigge and Kilmartin 
2001; Ciferri et al. 2005; Wei et al. 2005; Hornung et al. 
2011). The mechanistic details are unknown for how mice 
oogenesis ensures the timely assembly of the Ndc80 com-
plex. It would be interesting to explore how the synthesis, 
degradation, and nuclear localization of the Ndc80 complex 
are regulated during oogenesis in this organism.

In C. elegans oogenesis, the KMN subunits (Spc105/
KNL-1 and Nuf2/HIM-10) are first detected throughout 
chromatin in late pachytene/diplotene and transition to 
chromosome surface immediately before the oocytes enter 
spermatheca, the time of nuclear envelope breakdown in 
oocytes (Howe et al. 2001; Monen et al. 2005). In metaphase 
I, the KMN (NDC-80, Nuf2/HIM-10, MIS-12, KNL-1, and 
KNL-3) cups the poleward ends of chromosomes. Surpris-
ingly, these proteins disappear from the chromosomes after 
the onset of anaphase I and reappear only after metaphase 
II (Monen et al. 2005; Dumont et al. 2010; Davis-Roca et al. 
2017). Consequently, while the outer kinetochore facilitates 
response to erroneous microtubule-kinetochore attachments, 
it is not required for segregating chromosomes in the meiosis 
I of C. elegans oocytes (Dumont et al. 2010; Muscat et al. 
2015; Davis-Roca et al. 2017; Laband et al. 2017).

How the KMN disassembles during anaphase I in C. ele-
gans oogenesis remains unknown. It has been shown that 
this disassembly requires the Y-complex nucleoporin MEL-
28, which recruits protein phosphatase 1 to the kinetochore 
(Hattersley et  al. 2016). In addition, a protein complex 
known as the midbivalent ring may mediate KMN disassem-
bly. As the KMN, the midbivalent rings are also removed 
from chromosomes in anaphase I (Dumont et al. 2010; Mus-
cat et al. 2015), and defective ring removal correlates with 
delayed kinetochore disassembly (Davis-Roca et al. 2017). 
Interestingly, Aurora B/AIR-2 localizes to these rings (Wig-
nall and Villeneuve 2009; Davis-Roca et al. 2017). Inspired 
by the finding in yeast meiosis, we propose that Aurora B 
might trigger kinetochore degradation to disassemble the 
outer kinetochore during anaphase I in C. elegans oocytes.

Beyond C. elegans and mice oogenesis, less is known 
about the timing and regulation of the Ndc80 complex 
assembly during meiosis in other organisms. Any differences 
during the meiosis of different sexes (male, female, her-
maphrodites, etc.) are also not well characterized. Interest-
ingly, the localization and function of some spindle assembly 
checkpoint proteins display sex-specific differences in mice. 
For example, Mad2 localizes to kinetochores throughout 
meiosis I in males but is lost from kinetochores in females 
(Kallio et al. 2000). While oocyte meiosis requires Bub3 for 
accurate chromosome segregation (Li et al. 2009), spermato-
cyte meiosis does not (Jeganathan and van Deursen 2006). 

Given that the kinetochore is a key component of the spin-
dle assembly checkpoint (reviewed in Musacchio and Desai 
2017), it would be interesting to test whether the assembly 
and/or function of specific kinetochore subunits also differ 
between male and female meiosis.

Conclusions

As a central hub for ensuring accurate chromosome segrega-
tion, the kinetochore is subjected to intricate regulation of 
its subunit abundance, composition, assembly, and activity. 
Studies of budding yeast meiosis have revealed an integrated 
network that regulates the synthesis and degradation of one 
specific kinetochore subunit, Ndc80. Since Ndc80 is a limit-
ing component of the yeast meiotic kinetochores, its timely 
synthesis and degradation determines when the kinetochores 
are active in meiosis. Whether similar regulation of Ndc80 
abundance occurs in metazoan meiosis remains to be tested. 
Interestingly, proteins that localize to the kinetochores (e.g., 
spindle assembly checkpoint proteins) seem to have sex-
specific dynamics and functions. It would be interesting to 
examine how regulation on kinetochore subunit abundance 
contributes to the observed differences in male and female 
meiosis.

More broadly, it is of great importance to understand 
the regulatory mechanisms of kinetochore abundance since 
altered  levels of kinetochore proteins have been observed 
in many types of cancer. For example, for many kinetochore 
subunits, their depletion hinders timely chromosome segre-
gation and causes lagging chromosomes at the cleavage fur-
row (reviewed in Ganem and Pellman 2012; Biggins 2013). 
Genome instability occurs when the inner kinetochore com-
ponent CENP-A is overexpressed in flies and human cells 
(Heun et al. 2006; Au et al. 2008; Shrestha et al. 2017). 
The excess CENP-A proteins, along with additional kine-
tochore subunits, mislocalize to non-centromeric regions. 
These ectopic kinetochores put chromosome arms under ten-
sion due to spindle microtubule interactions and/or reduce 
the protein levels of kinetochore subunits at centromeres, 
leading to chromosome segregation errors. Additionally, 
overexpression of the outer kinetochore subunits Hec1/
Ndc80 or SKA1 is associated with multiple cancers and 
tumorigenesis (Chen et al. 1997; Chen et al. 2018; Hayama 
et al. 2006; Li et al. 2014; Shen et al. 2016). These studies 
highlight the significance of maintaining a proper level and 
stoichiometry of kinetochore subunits in ensuring accurate 
chromosome segregation. A better understanding of these 
regulatory pathways can provide new molecular targets for 
cancer treatments.
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