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-is paper aims at investigating how the media coverage and smoking cessation treatment should be implemented, for a certain
period, to reduce the numbers of smokers and patients caused by smoking while minimizing the total cost. To this end, we first
propose a newmathematical model without any control strategies to investigate the dynamic behaviors of smoking. Furthermore,
we calculate the basic reproduction number R0 and discuss the global asymptotic stabilities of the equilibria. -en, from the
estimated parameter values, we know that the basic reproduction numberR0 is more than 1, which reveals that smoking is one of
the enduring problems of the society. Hence, we introduce two control measures (media coverage and smoking cessation
treatment) into the model. Finally, in order to investigate their effects in smoking control and provide an analytical method for the
strategic decision-makers, we apply a concrete example to calculate the incremental cost-effectiveness ratios and analyze the cost-
effectiveness of all possible combinations of the two control measures.-e results indicate that the combination of media coverage
and smoking cessation treatment is the most cost-effective strategy for tobacco control.

1. Introduction

Tobacco use is the single greatest preventable cause of
death in the world today. Currently, about 6 million
people die from tobacco-related illnesses each year [1]. By
2030, this figure is expected to reach 10 million deaths [2].
If current patterns of smoking continue, about 500 million
of the world’s population alive today will eventually be
killed by smoking, half of them in productive middle age,
losing 20 to 25 years of life [3]. Statistical data indicate that
it will be very difficult to reduce tobacco-related deaths
over the next 30–50 years, unless adult smokers are en-
couraged to quit [4]. Hence, smoking control and re-
ducing smoking-related death are priority concerns that
government organizations must face in the respective
countries. Since tobacco contains nicotine which is ad-
dictive, it is very difficult to quit smoking [5]. Many
different measures have been used to control smoking,

including regulation of the packaging and labelling of
tobacco products, higher taxes and prices of cigarettes,
setting special smoking areas, mass media campaigns, and
psychosocial and pharmacological treatment, all of which
aim to enhance public consciousness and help tobacco
users to give up smoking and avoid subsequent relapse [6].

Many studies have been conducted to analyze the
smoking phenomenon and investigate the effects of different
control measures (Ham [7], Yen et al. [8], Ertürk et al. [9],
Castillo et al. [10], Sharomi and Gumel [11], and Guerrero
et al. [12]). Rowe et al., in 1992 [13], applied a dynamical
model to investigate smoking behavior. Zeb et al., in 2013
[14], proposed a model with square-root incidence rate to
describe smoking phenomenon. Lahrouz, et al., in 2011 [15],
used deterministic and stochastic models to study the dy-
namic properties of smokers. Guerrero et al., in 2011 [16],
used a mathematical model to successfully describe the
characteristics of smoking habit in Spain. In 2002, the
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Canadian Cancer Society released a study which indicated
that setting health warning on cigarette packages is very
effective in discouraging smoking [17]. In 2015 [18], we
proposed a mathematical model with saturated incidence
rate to explore the effects of controlling smoking by setting
special smoking areas and raising the price of cigarettes.
Results indicate that setting special smoking areas and
putting up the price of cigarettes are very effective in re-
ducing the number of smokers.

As a continuation of our previous work, we will further
investigate the effects of media coverage and smoking
cessation treatment in controlling smoking. We will use a
concrete example to provide an analytical method for
strategic decision-makers, so that we can find out which
strategy is the most cost-effective for all possible com-
binations of the two tobacco control measures. -e or-
ganization of this paper is as follows. In Section 2, we will
present a new mathematical model to describe the dy-
namic behavior of smokers. In Section 3, we will derive the
concrete form of the basic reproduction number R0 and
perform stability analysis of the model. In Section 4, we
will introduce media coverage and smoking cessation
treatment into the model to investigate the effects of two
control measures as well as the combination of them. In
Section 5, the cost-effectiveness analysis is carried out to
gain insight to which strategy is most cost-effective in
controlling smoking. Finally, the conclusions are sum-
marized in Section 6.

2. Construction of the Mathematical Model

In order to facilitate discussion, we introduce new oc-
casional smoker class L(t) and patient class C(t) caused by
smoking into our previous model [18]. Hence, we divide
the total population into six subpopulations: potential
smokers, occasional smokers, smokers, temporary quit-
ters, permanent quitters, and patients caused by smoking,
with sizes denoted by P(t), L(t), S(t), Qt(t), Qp(t), and
C(t), respectively.

-e transitions among these subpopulations are shown
graphically in Figure 1, which shows that the number of
potential smokers is increased at a constant recruitment
rate Λ. In addition, potential smokers can become occa-
sional smokers via effective “contact” with smokers. -e
incidence rate is bilinear (β is effective contact rate). -e
probability that an occasional smoker converts a smoker is
assumed as ω. -e rate of quitting smoking for smokers is c.
Smokers with the proportion cδ (δ ∈ (0, 1)) are shifted into
temporary quitters; nevertheless, smokers with the pro-
portion c(1− δ) become permanent quitters. -e relapse
rate of temporary quitters is α. -e conversion ratios from
occasional smokers, smokers, temporary quitters, and
permanent quitters to patients caused by smoking are τ, τξ,
ηθ (ξ, θ> 1), and η, respectively. -e natural death rates of
all the subpopulations are μ, and the mortality rate due to

the disease caused by smoking is d. Hence, we can establish
the following model:

_P � Λ− μP− βSP,

_L � βSP−(μ + ω + τ)L,

_S � ωL + αQt −(μ + c + τξ)S,

_Qt � cδS−(μ + α + ηθ)Qt,

_QP � c(1− δ)S−(μ + η)Qp,

_C � τL + τξS + ηθQt + ηQP −(μ + d)C.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

-us, the total population size is given by N(t) � P(t) +

L(t) + S(t) + Qt(t) + QP(t) + C(t) at time t. Adding all
equations of system (1), we can get

_N � Λ− μN− dC ≤Λ− μN, (2)

which yields that

lim
t⟶∞

N(t) �
Λ
μ

. (3)

-erefore, the biologically feasible region

Ω � 􏼚 P, L, S, Qt, QP, C( 􏼁 ∈ R
6
+ :

P(t) + L(t) + S(t) + Qt(t)

+ QP(t) + C(t)≤
Λ
μ

􏼛,

(4)

is positively invariant.
Since the first four equations in system (1) are in-

dependent of the variables Qp and C, it is sufficient to
consider the following reduced system:

_P � Λ− μP− βSP,

_L � βSP−(μ + ω + τ)L,

_S � ωL + αQt −(μ + c + τξ)S,

_Qt � cδS−(μ + α + ηθ)Qt.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

3. Basic Properties of the Model and
Parameter Values

In this section, the basic reproductive number R0 of
model (5) will be calculated, and the stabilities of equi-
libria will be investigated. For convenience, we note
a � μ + ω + τ, b � μ + c + τξ, c � μ + α + ηθ.

3.1. 6e Basic Reproductive NumberR0. Apparently, model
(5) always has a smoking-free equilibrium E0(Λ/μ, 0, 0, 0).
Let X � (L, S, Qt), from equation (5), we have

_X � F(X)−V(X), (6)
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where

F(X) �

βSP

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

V(X) �

aL

−ωL− αQt + bS

cQt − cδS

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(7)

By calculating, we obtain the Jacobina matrices ofF(X)

and V(X) at the smoking-free equilibrium E0 as follows:

F �

0
βΛ
μ

0

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V �

a 0 0

−ω b −α

0 −cδ c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(8)

-e inverse matrix of V is given by

V
−1

�
1

|V|

bc− αcδ 0 0

ωc ca αa

ωcδ acδ ab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

where

|V| � a(bc− αcδ),

bc− αcδ � (μ + τξ)(μ + α + ηθ) + c(μ + α + ηθ)− αcδ

� (μ + τξ)(μ + α + ηθ) + c(μ + ηθ) + αc(1− δ).

(10)

Clearly, bc− αcδ > 0 when 0< δ < 1. -en |V| �

a(bc− αcδ)> 0.

Hence, the basic reproductive number R0 (i.e., the
spectral radius of FV−1 [19]) is equal to

R0 �
βωcΛ

μa(bc− αcδ)
. (11)

Proposition 1. If R0 > 1, an unique positive equilibrium
E∗(P∗, L∗, S∗, Qt∗) exists in model (5), where P∗ � Λ/μR0,
L∗ � (Λ/a)(R0 − 1/R0), S∗ � μ(R0 − 1)/β, and Qt∗ �

μcδ(R0 − 1)/βc.

3.2. 6e Stability Analysis of the Model

�eorem 1. 6e smoking-free equilibrium E0 is globally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. -e Jacobian matrix of model (5) at E0 is

J E0( 􏼁 �

−μ 0
−βΛ
μ

0

0 −a
βΛ
μ

0

0 ω −b α

0 0 cδ −c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

whose characteristic equation is given by

(λ + μ) λ3 + a1λ
2

+ a2λ + a3􏼐 􏼑 � 0. (13)

Obviously, J(E0) has an eigenvalue λ1 � −μ, and the
remaining eigenvalues satisfy

λ3 + a1λ
2

+ a2λ + a3 � 0, (14)

where

μS

μC

dC
μQp

μQt

Qt
ηθQt

C

ηQp

QP

μP μL

ωL γS

γ(1 – δ)S

γδS

αQt

τL

τξS

L
βSPΛ P S

Figure 1: Flow chart of system (1).
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a1 � a + b + c,

a2 � ab−
βωΛ
μ

􏼠 􏼡 + ac +(bc− αcδ)

�
a(bc− αcδ)

c
+
αcδa

c
􏼠 􏼡−

a(bc− αcδ)

c
R0

+ ac +(bc− αcδ)

�
a(bc− αcδ) 1−R0( 􏼁

c
+
αcδa

c
+ ac +(bc− αcδ),

a3 � a(bc− αcδ)−
βωΛc
μ

� a(bc− αcδ) 1−R0( 􏼁,

a1a2 − a3 > c
a(bc− αcδ) 1−R0( 􏼁

c

− a(bc− αcδ) 1−R0( 􏼁 � 0.

(15)

Given that R0 < 1, we can obtain a2 > 0, a3 > 0, and
a1a2 − a3 > 0. Hence, by Routh–Hurwitz criterion, the
smoking-free equilibrium E0 is locally asymptotically stable
if R0 < 1. If R0 > 1, then a3 < 0, which implies that the
smoking-free equilibrium E0 is unstable.

To discuss the global stability of E0, we use a Lyapunov
function

V1 � ωc P−P
∗ −P
∗ ln

P

P∗
􏼒 􏼓 + ωcL + acS + aαQt, (16)

where P∗ � Λ/μ.
-e derivative of V1 along solutions of model (5) is

calculated as follows:
dV1

dt
� ωc

P−P∗

P

dP

dt
+ ωc

dL

dt
+ ac

dS

dt
+ aα

dQt

dt

� ωc
P−P∗

P
(Λ−μP− βSP) + ωc(βSP− aL)

+ ac ωL + αQt − bS( 􏼁 + aα cδS− cQt( 􏼁

� ωc
P−P∗

P
μP
∗ − μP− βSP( 􏼁 + ωc(βSP− aL)

+ ac ωL + αQt − bS( 􏼁 + aα cδS− cQt( 􏼁

� −
μωc

P
P−P
∗

( 􏼁
2

+ βωc
Λ
μ
− a(bc− αcδ)􏼠 􏼡S

� −
μωc

P
P−P
∗

( 􏼁
2

+ a(bc− αcδ) R0 − 1( 􏼁S.

(17)

-en (dV1/dt)≤ 0 if R0 < 1, and (dV1/dt) � 0 only if
P � P∗, S � 0. Hence, (P, L, S, Qt) |(dV1/dt) � 0􏼈 􏼉 � E0􏼈 􏼉.
-erefore, by the LaSalles Invariance Principle, every so-
lution of model (5) approaches E0 as t⟶∞. □

Theorem 2. 6e unique smoking-present equilibrium E∗ is
globally asymptotically stable in Ω if R0 > 1.

Proof. -e Jacobian matrix of system (5) at E∗ is

J E∗( 􏼁 �

−μ− βS∗ 0 −βP∗ 0

βS∗ −a βP∗ 0

0 ω −b α

0 0 cδ −c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

and the characteristic equation is

λ4 + b1λ
3

+ b2λ
2

+ b3λ + b4 � 0, (19)

where

b1 � μ + βS∗ + a + b + c,

b2 � μ + βS∗( 􏼁(a + b + c) +(bc− αcδ)

+ ab−ωβP∗( 􏼁 + ac> ab−ωβP∗,

b3 � abc− βωP∗c− αcδa( 􏼁 + μ + βS∗( 􏼁

ab−ωβP∗( 􏼁 + ac +(bc− αcδ)( 􏼁 + βS∗ωβP∗,

b4 � μ + βS∗( 􏼁 abc− βωP∗c− αcδa( 􏼁 + βS∗βωP∗c,

b1b2 − b3 � μ + βS∗( 􏼁
2
(a + b + c) +(a + b + c)( ab−ωβP∗( 􏼁

+ ac +(bc− αcδ) + μ + βS∗( 􏼁(a + b + c)
2

− βS∗βωP∗ > μ + βS∗( 􏼁(a + b + c)
2

− βS∗βωP∗ > βS∗ab− βS∗βωP∗

� βS∗ ab− βωP∗( 􏼁.

(20)

It is clear that b1 > 0. Note that ab−ωβP∗ � αcδa/c, abc

− βωP∗c− αcδa � c(ab−ωβP∗)− αcδa � 0, then b2 > 0,

b3 � (μ + βS∗)((ab−ωβP∗) + ac + (bc− αcδ)) + βS∗ωβP∗>
0, b4 � βS∗βωP∗c> 0, b1b2 − b3 > 0. We can also prove
b1b2b3 − b23 − b21b4 > 0 (see Appendix A for details). According
to Routh–Hurwitz criterion, the smoking-present equilibrium
E∗ is locally asymptotically stable. Next, we will apply the novel
approach based on the works [20–25] to explore the global
stability of the smoking-present equilibrium E∗. From -eo-
rem 1, we know that the smoking-free equilibrium E0 is
unstable ifR0 > 1.-e instability of E0 and E0 ∈ zΩ indicates
the uniform persistence, that is, there exist a constant const> 0,
such that

lim
t⟶∞

inf x(t)> const, x � P, L, S, Qt( 􏼁. (21)

-e uniform persistence, because of boundedness of Ω,
is equivalent to the existence of a compact set in the interior
of Ω, which is absorbing for system (5).

Denote x(t) � (P(t), L(t), S(t), Qt(t)) and m(t)

� (X(t), Y(t), Z(t), W(t)), we assign the vector field
generated by system (5) to f(x). -en system (5) can be
rewritten as

x(t)
·

� f(x),

m(t)
·

�
zf[3]

zx
(x)m,

(22)
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where zf[3]/dx stands for the third additive compound
matrix for system (5) (see Appendix B for details). It is given
by

zf[3]

zx
� −(3μ + βS)E +Φ, (23)

where E is an identity matrix and

Φ �

−(ω + τ + c + τξ) α 0 0

cδ −(ω + τ + α + θη) βP βP

0 ω −(c + τξ + α + ηθ) 0

0 0 βS −(ω + τ + c + θη + τξ + α− βS)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

Furthermore, the associated linear compound system is
given by

_X � −(3μ + βS + ω + τ + c + τξ)X + αY,

_Y � cδX−(3μ + βS + ω + τ + α + θη)Y + βP(Z + W),

_Z � ωY−(3μ + βS + c + τξ + α + ηθ)Z,

_W � βSZ−(3μ + ω + c + τ + τξ + α + θη)W.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

We construct a Lyapunov function given by

V2(x, m) � max |X| +|Y|,
L

S
(|Z| +|W|)􏼚 􏼛. (26)

Let ‖m‖ � |X(t)| + |Y(t)| + |Z(t)| + |W(t)|. Calculating
the derivative of V2 along the positive solution of system (25)
reduces to the following differential inequalities:

D+(|X| +|Y|)≤−(3μ + βS + ω + τ + c + τξ − cδ)|X|

−(3μ + βS + ω + τ + θη)|Y| + βP(|Z| +|W|)

� −(3μ + βS + ω + τ + τξ + c(1− δ))|X|

−(3μ + βS + ω + τ + θη)|Y| + βP(|Z| +|W|)

≤−(3μ + βS + ω + τ)(|X| +|Y|)

+
S

L
βP

L

S
(|Z| +|W|)􏼒 􏼓.

(27)

Similarly, we get

D+

L

S
(|Z| +|W|)􏼔 􏼕 �

L

S

_L

L
−

_S

S
􏼠 􏼡(|Z| +|W|)

+
L

S
D+(|Z| +|W|)

≤
_L

L
−

_S

S
−(3μ + c + τξ + α + θη)􏼠 􏼡

·
L

S
(|Z| +|W|)􏼒 􏼓 +

ωL

S
|Y|

≤
ωL

S
(|X| +|Y|)

+
_L

L
−

_S

S
−(3μ + c + τξ + α + θη)􏼠 􏼡

·
L

S
(|Z| +|W|)􏼒 􏼓.

(28)

Combining (27) and (28) yields

D+ V2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ sup h1(t), h2(t)􏼈 􏼉V2(t), (29)

where

h1(t) � −(3μ + βS + ω + τ) +
S

L
βP,

h2(t) �
ωL

S
+

_L

L
−

_S

S
−(3μ + c + τξ + α + θη)􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(30)

Form system (5), we have
_L

L
�
βSP

L
−(μ + ω + τ),

_S

S
�
ωL

S
+
αQt

S
−(μ + c + τξ).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(31)

Hence,
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h1(t) �
_L

L
− 2μ− βS≤

_L

L
− 2μ,

h1(t) �
_L

L
− 2μ−

αQt

S
− α− θη≤

_L

L
− 2μ,

(32)

which leads to

D+V2(t)≤
_L

L
− 2μ􏼠 􏼡V2(t). (33)

Accordingly, from (33), we can obtain

V2(t)≤
L(t)

L(0)
V2(0)e

−2μt ≤
ΛV2(0)

μL(0)
e
−2μt⟶ 0, as t⟶∞,

(34)

which indicates that the associated linear compound system
(25) is asymptotically stable. Hence, by results found in
[20–23], the smoking-present equilibrium E∗ is globally
asymptotically stable. □

3.3. Parameter Values. In order to estimate the parameter
values of the model (1), we make some reasonable hy-
pothesis. Assume that the average age of people is 70 years
old; then, we estimate the natural death rate
μ � 1/(365∗ 70) ≈ 4 × 10−5 persons per day. We suppose to
select a community with size about 1.5∗ 109 person as the
object of our investigation. -us, the recruitment rate of
potential smokers is Λ ≈ 1.5∗ 109 ∗ μ � 6000 persons per
day. -e convert rate of occasional smokers into smokers is
estimated as ω � 0.03 persons per day [14]. -e average
duration of smoking for a smoker is assumed as 10 years.
-us, the quit rate of a smoker is estimated as
c � 1/(365∗ 10) ≈ 2.74 × 10−4 persons per day. -e ratio of
quitters who temporarily quit smoking is assumed as δ � 0.2.
-e average time-span for temporary quitters from the time
quitting smoking to the time starting smoking again is as-
sumed as 2 years, then α � 1/(2∗ 365) � 0.0014 persons per
day. -e average duration after which an occasional smoker
will develop smoking-related illnesses is about 8 years. -us,
τ is estimated as 1/(8∗ 365) � 3.42 × 10−4 persons per day.
Based on that, a smoker have a higher probability of de-
veloping smoking-related illnesses than an occasional
smoker; we assume that a smoker develops smoking-related
illnesses at a rate τξ (where ξ � 3). Similarly, the average
duration after which a permanent quitter will develop
smoking-related illnesses is assumed as 10 years. Hence, η is
estimated as 1/(10∗ 365) � 2.74 × 10−4 persons per day.
Because that a temporary quitter have a higher probability of
developing smoking-related illnesses than a permanent
quitter, we assume that a temporary quitter develops
smoking-related illnesses at a rate ηθ (where θ � 6). It is
assumed that an individual with smoking-related illnesses
can averagely live for 20 years. -us, the death rate due to
illnesses is estimated as d � 1/(365 × 20) � 1.37 × 10−4.
Goyal, in 2014, applied the data derived from Canada to
deduce the effective contact rate between the potential
smoker and the smoker as 8.2192 × 10−7 persons per year

[26]. We take it as the effective contact rate β of this paper,
i.e., β � 8.2192 × 10−7/365 � 1.3177 × 10−11 persons per day.
We list each parameter value of system (1) in Table 1 to
provide a quick reference.

From the reasonably estimated parameter values in
Table 1, we can calculate the basic reproductive number
R0 � 1.4840> 1, which indicates that the smoking-present
equilibrium E∗ is globally asymptotically stable, i.e., smoking
is one of the enduring problems of society. Corresponding
time series plots with different initial values of S(t) are
shown in Figure 2.

4. Application of Optimal Control to the
Tobacco Control Model

Based on the analysis results above mentioned, we know that
smoking will become a huge social problem in the absence of
any control measure. In order to combat this trouble, we will
investigate the effects of media coverage and smoking ces-
sation treatment in controlling smoking. (a) Effects of media
coverage. -e mass media campaigns which propagate that
smoking is very harmful to health not only can cut down the
relapse probability of an ex-smoker who returns to cigarettes
and reduce the convert probability of an occasional smoker
into a smoker, but also can decrease the probability of
becoming an occasional smoker to a potential smoker due to
the contact with a smoker. Based on that, the probability of a
potential smoker becoming an occasional smoker is not only
influenced by the media coverage, and we denote the relapse
rate of an ex-smoker, the conversion rate of an occasional
smoker into a smoker, and the probability of a potential
smoker becoming an occasional smoker reduced by media
coverage as μ1(t), μ1(t), and bμ1(t), (where b1 ∈ (0, 1)),
respectively. (b) Effects of smoking cessation treatment.
Many treatment measures can be used for smoking cessa-
tion, including behavioral counseling and medications (such
as nicotine replacement therapy and varenicline). -ese
treatment measures do not only reduce withdrawal symp-
toms but also increase the success rate of quitting smoking.
u2(t) represents the success rate of quitting smoking en-
hanced by smoking cessation treatment. Taking into account
the extensions made above, system (1) is modified as the
following system:

_P � Λ− μP− β 1− b1u1( 􏼁SP,

_L � β 1− b1u1( 􏼁SP− μ + ω 1− u1( 􏼁 + τ􏼂 􏼃L,
_S � ω 1− u1( 􏼁L + α 1− u1( 􏼁Qt − μ + c 1 + u2( 􏼁 + τξ􏼂 􏼃S,

Qt

·

� c 1 + u2( 􏼁δS− μ + α 1− u1( 􏼁 + ηθ􏼂 􏼃Qt,

QP

·

� c 1 + u2( 􏼁(1− δ)S−(μ + η)Qp,

_C � τL + τξS + ηθQt + ηQP −(μ + d)C.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

Our aim is to minimize the cost arising from the con-
sumption of the social resources for smokers and the
consumption of the medical and health resources for pa-
tients caused by smoking, as well as the costs incurred by
media propaganda and smoking cessation treatment. For
this end, the total cost functional is defined as
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CT(u) � 􏽚
​ tf

0
ε0L(t) + ε1S(t) + ε2C(t) +

ε3
2

u
2
1(t) +

ε4
2

u
2
2(t)􏼔 􏼕dt ,

(36)

subject to the state system given by (35). We choose a linear
functional for the costs arising from the occasional smokers,
the smokers, and the patients. ε0 and ε1 represent the costs
arising from the consumption of the social resources for
every occasional smoker and smoker, respectively. ε2 de-
notes the cost produced by the consumption of the medical
and health resources for every patient caused by smoking.
However, we choose a quadratic functional to represent the
costs incurred by media coverage and smoking cessation
treatment; such a cost functional has been frequently used in
[27–34]. ε3 and ε4 are cost weights associated with the
controls u1 and u2, respectively. We seek to find an optimal
control pair, u∗1 and u∗2 , such that

CT u
∗
1 , u
∗
2( 􏼁 � min

Φ
CT u1, u2( 􏼁􏼈 􏼉, (37)

where the control set

Φ � 􏼚 u1, u2( 􏼁 ∈ L
∞ 0, tf( 􏼁( 􏼁

2
􏼌􏼌􏼌􏼌􏼌 0≤ u1(t)≤ u1max,

0≤ u2(t)≤ u2max, t ∈ 0, tf􏼂 􏼃􏼛.

(38)

-en the Hamiltonian H associated with problems
(35)–(37) reads

H � ε0L(t) + ε1S(t) + ε2C(t) +
ε3
2

u
2
1(t)

+
ε4
2

u
2
2(t) + λ1

dP

dt
+ λ2

dL

dt
+ λ3

dS

dt

+ λ4
dQt

dt
+ λ5

dQP

dt
+ λ6

dC

dt
,

(39)

where λi (i� 1, 2, . . ., 6) are the solutions of the following
equalities:

λ1
·

� λ1 μ + β 1− b1u1( 􏼁S􏼂 􏼃− λ2β 1− bu1( 􏼁S,

λ2
·

� −ε0 + λ2 μ + ω 1− u1( 􏼁 + τ􏼂 􏼃− λ3ω 1− u1( 􏼁− λ6τ,

λ3
·

� −ε1 + λ1 − λ2( 􏼁β 1− u1( 􏼁P + λ3 μ + c 1 + u2( 􏼁 + τξ􏼂 􏼃

− λ4c 1 + u2( 􏼁δ − λ5c 1 + u2( 􏼁(1− δ)− λ6τξ,

λ4
·

� −λ3α 1− u1( 􏼁 + λ4 μ + α 1− u1( 􏼁 + ηθ􏼂 􏼃− λ6ηθ,

λ5
·

� λ5(μ + η)− λ6η,

λ6
·

� −ε2 + λ6(μ + d),

(40)

satisfying the transversality condition

Table 1: -e biological meanings and estimated values of parameters.

Parameter Description Value Source
μ -e natural death rate 4 × 10−5 [18]
Λ -e recruitment rate 6000 Assumed
β -e effective contact rate 1.3177 × 10−11 [26]

ω -e ratio of occasional smoker class converted to
smoker class 0.03 [14]

c -e quit ratio of smokers 2.74 × 10−4 [18]
δ -e ratio of quitters who quit smoking temporarily 0.200 [18]
α -e relapse rate of temporal quitters 0.0014 [18]

τ -e ratio of occasional smokers who develop
smoking-related illnesses 3.42 × 10−4 Assumed

ξ A positive constant 3.00 Assumed

η -e ratio of permanent quitters who develop
smoking-related illnesses 2.74 × 10−4 Assumed

θ A positive constant 6.00 Assumed
d -e death rate due to smoking-related illnesses 1.37 × 10−4 Assumed
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Figure 2: Time series plots with different initial values of S(t) when R0 � 1.4840> 1.
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λi tf( 􏼁 � 0, i � 1, . . . , 6. (41)

By Pontryagin’s Maximum Principle [35] and results
obtained from Fleming and Rishel [36–38], we can get the
following result:

Theorem 3. 6ere exists an optimal strategy
u∗ � (u∗1 , u∗2 ) ∈Φ such that

CT u
∗
1 , u
∗
2( 􏼁 � min

u1 ,u2( )∈Φ
CT u1, u2( 􏼁, (42)

then the optimal controls u∗1 , u∗2 ∈Φ are given by

u
∗
1(t) � min u1max, max 0,

λ2 − λ1( 􏼁b1βS∗P∗ + λ3 − λ2( 􏼁ωL∗ + λ3 − λ4( 􏼁αQt∗

ε3
􏼨 􏼩􏼨 􏼩,

u
∗
2(t) � min u2max, max 0,

λ3 − λ4δ − λ5(1− δ)( 􏼁cS∗

ε4
􏼨 􏼩􏼨 􏼩,

(43)

where λi (i� 1, 2,. . . 6) are the solutions of (40) and (41), and
P∗, L∗, S∗, Q∗t are optimal state solutions with associated
optimal control variables (u∗1 , u∗2 ).

Proof. In order to prove the existence of optimal control
strategy u∗ minimizing CT(u), based on the method
mentioned in [34, 36, 37], we need to verify whether the
following hypotheses are met:

(H1) -e control set and state variables are nonempty
(H2) -e control set Φ is closed and convex
(H3) -e integrand of the objective functional CT is
convex in Φ and satisfies

∈0L(t) + ∈1S(t) + ∈2C(t) +
∈3
2

u
2
1(t)

+
∈4
2

u
2
2(t)≥ ]2 u

2
1(t) + u

2
2(t)􏼐 􏼑

]3/2 − ]1,
(44)

where ]1,]2 > 0 and ]3 > 1.
(H4) -e right hand side of system (35) is bounded by

the sum of the bounded control variables and state variables
and can be written as a linear equation of control variables
with coefficient depending on time and state

From P(t) + L(t) + S(t) + Qt(t) + QP(t) + C(t)≤Λ/μ,
we know that the solutions of state system are
bounded. Furthermore, based on the result in [39], we can
obtain the existence of the solution of system (35) with
bounded coefficients. Hence, condition (H1) is satisfied. It
is obvious that our control set Φ is closed and convex
defined by Φ � (u1, u2) ∈ (L∞(0, tf))2|0≤ u1(t)≤ u1max,􏽮

0≤ u2(t)≤ u2max, t ∈ [0, tf]}, which satisfies condition
(H2). Since the integrand of the objective functional is
positive and quadratic in the control variables, it is convex.
Notice that

ϵ0L(t) + ϵ1S(t) + ϵ2C(t) +
ϵ3
2

u
2
1(t)

+
ϵ4
2

u
2
2(t)≥

min ϵ3, ϵ4􏼈 􏼉

2
u
2
1(t) + u

2
2(t)􏼐 􏼑

≥ ]2 u
2
1(t) + u

2
2(t)􏼐 􏼑

]32 − ]1,

(45)

with ]1 > 0, ]2 � (min ε3, ε4􏼈 􏼉/2)> 0, and ]3 � 2. Hence, the
condition (H3) is satisfied. By definition, each right hand
side of system (35) is continuous and can be written as a
linear function of control u � (u1, u2) with coefficients
depending on time and states, which satisfies the condition
(H4). -erefore, we conclude that there exists an optimal
control.

Furthermore, by equating to zero the derivatives of the
Hamiltonian with respect to the controls, we obtain

u1 �
λ2 − λ1( 􏼁b1βS∗P∗ + λ3 − λ2( 􏼁ωL∗ + λ3 − λ4( 􏼁αQt∗

ε3
,

u2 �
λ3 − λ4δ − λ5(1− δ)( 􏼁cS∗

ε4
.

(46)

Using the property of the control space, we have

u
∗
1(t) � min u1max, max 0,

λ2 − λ1( 􏼁b1βS∗P∗ + λ3 − λ2( 􏼁ωL∗ + λ3 − λ4( 􏼁αQt∗

ε3
􏼨 􏼩􏼨 􏼩,

u
∗
2(t) � min u2max, max 0,

λ3 − λ4δ − λ5(1− δ)( 􏼁cS∗

ε4
􏼨 􏼩􏼨 􏼩.

(47)
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To find out the optimal control variables and state
variables, we will numerically solve the above systems (35),
(40), (41), and (43). □

5. Numerical Results and Cost-
Effectiveness Analysis

In this section, numerical simulations and cost-effective-
ness analysis [40] are performed to illustrate the effects of
control smoking by different control strategies. We apply
the parameter values listed in Table 1 to obtain numerical
results for the optimal system by using a forward-backward
iterative method [41]. -e cost-effectiveness of alternative
combinations of the two control measures will be
investigated.

According to the method mentioned in [27, 29, 40] and
our prior work [42], we will focus on comparing the fol-
lowing three control strategies. Strategy a: -e combination
of media coverage and smoking cessation treatment is
implemented to combat smoking habit. For this case, u1 and
u2 are defined as control variables. Strategy b: Single media
coverage is performed. In this case, only u1 is taken as
control variable. Strategy c: Single treatment measure is
carried out. In this case, only u2 is seen as the control
variable. Our purpose is to provide an analytical method for
the strategic decision-makers. Due to the lack of the available
literatures and data, as an example, we take cost coefficients
εi(i � 0, 1, 2, 3, 4) as ε0 � 1, ε1 � 1, ε2 � 1, ε3 � 36, ε4 � 36,
and b1 � 0.8, respectively.-emaximums of u1(t) and u2(t)

are taken as 1 and 4, respectively. -e smoking-present
equilibrium E∗ is served as the initial point of system (35),
and the control period is taken as 20 years, i.e., tf � 20 ×

365 � 7300 days (where E∗ � (1.011 × 108, 6.4411 × 104,
1.4693 × 106, 2.6111 × 104, 1.0258 × 106, 1.0472 × 107)).

5.1. Strategy a: 6e Combination of Media Coverage and
Smoking Cessation Treatment. For this strategy, corre-
sponding optimal control variables u∗1 , u∗2 and optimal state
variables S∗(t), C∗(t) are depicted in Figures 3(a)–3(d),
respectively.

Figures 3(a) and 3(b) tell us that media coverage in-
tensity and treatment intensity almost always take their
maximum and then subsequently reduce to zero. From
Figures 3(c) and 3(d), we know that adopting optimal
combined control strategies u∗1(t), u∗2(t) can significantly
reduce the numbers of smokers and patients with smoking-
related illnesses. In order to more clearly show the efficacy of
strategy a, the efficacy function of smokers averted by
strategy a is defined as

EaS �
S(0)− S∗a(t)

S(0)
, (48)

where S(0) is the initial number of smokers and S∗a(t) is the
corresponding optimal state associated with optimal control
strategy a. Efficacy function of smokers EaS(t) is depicted in
Figure 4(a), which indicates that taking the optimal com-
bined control strategy a can reduce the number of smokers

be highest up to more than 98%. Similarly, the efficacy
function of patients with smoking-related illnesses averted
by strategy a is defined as

EaC �
C(0)−C∗a(t)

C(0)
, (49)

where C(0) represents the initial number of patients with
smoking-related illnesses and C∗a(t) is the corresponding
optimal state associated with optimal control strategy a. -e
corresponding plot is shown in Figure 4(b), from which we
can know that taking the optimal control measures
u∗1(t), u∗2(t) can make decrement of patients be highest up to
more than 60%. In a word, optimal strategy a is very effective
in controlling smoking.

To investigate the the cost-effectiveness of different
control strategies, the total occasional smokers averted by
the optimal strategy a during the time period tf is firstly
defined as

AaL � tfL(0)−􏽚
​ tf

0
L
∗
a(t)dt, (50)

where L∗a(t) is optimal state associated with the optimal
strategy a and L(0) is the initial number of occasional
smokers. Similarly, the total smokers and patients with
smoking-related illness averted by the optimal strategy a
during the time period tf are, respectively, defined as

AaS � tfS(0)−􏽚
​
tf

0
S
∗
a(t)dt,

AaS � tfC(0)−􏽚
​
tf

0
C
∗
a(t)dt,

(51)

where S∗a(t) and C∗a(t) are optimal states associated with the
optimal control of strategy a, and S(0) and C(0) are the
initial numbers of smokers and patients, respectively. We
hope that the numbers of occasional smokers and smokers
are as less as possible. Especially, we further expect that the
number of patients with smoking-related illnesses ap-
proaches to 0. Hence, we use the weighted average of oc-
casional smokers, smokers, and patients as the total cases
averted by the optimal strategy a during the time period tf ,
i.e.,

TAa �
ε0AaL + ε1AaS + ε2AaC

ε0 + ε1 + ε2
. (52)

For strategy a, we can, respectively, calculate the values
of AaL, AaS, AaC, TAa, and CTa (see Table 2).

5.2. Strategies b and c: Single Media Coverage and Single
Smoking Cessation Treatment. For single media converge
strategy, we take u1 as the control variable to minimize the
objective functional CT (36) and take u2 � 0. Similarly, for
single smoking cessation treatment strategy, we take u2 as
the control variable and set u1 � 0. -e optimal control
variables of u∗1(t) and u∗2(t) for strategies b and c are shown
in Figures 5(a) and 5(b), respectively. Corresponding op-
timal state variables S∗(t) and P∗(t) are depicted in
Figures 5(c) and 5(d), respectively.
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Similarly, the efficacy functions of smokers and patients
averted for strategy k (k� b or c) are also, respectively,
defined as

EkS �
S(0)− S∗k (t)

S(0)
,

EkC �
C(0)−C∗k (t)

C(0)
, (k � b or c).

(53)

-e corresponding time series of efficacy functions are
depicted in Figures 6(a) and 6(b), respectively.

-e results of the strategy b are denoted by the blue
dotted lines, while the results of the strategy c are repre-
sented by the red solid lines. From Figures 5(a), 5(c), 5(d),
6(a), and 6(b), we know that taking single high-intensity
media coverage can effectively combat smoking behavior.

Similarly, Figures 5(b)–5(d) tell us that single treatment
measure can also obviously reduce the numbers of smokers
and patients with smoking-related illnesses. In comparison,
single optimal media coverage measure is more effective
than single treatment strategy in controlling smoking and
reducing the number of patients with smoking-related ill-
nesses. Furthermore, for single media coverage strategy b
and single smoking cessation strategy c, the values of AkL,
AkS, AkC, TAk, and CTk (k� b or c) are, respectively, cal-
culated and listed in Table 2.

5.3. Cost-Effectiveness Analysis. In this subsection, the cost-
effectiveness of the three alternative strategies is investigated
by the incremental cost-effectiveness ratio mentioned in
[27–29, 40]. -e differences between the costs and health
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Figure 3: (a) Optimal control variable u∗1(t) for strategy a; (b) optimal control variable u∗2(t) for strategy a; (c) optimal state variable S∗(t)

for strategy a; (d) optimal state variable C∗(t) for strategy a.
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outcomes of different control strategies are compared by this
ratio, which is used to investigate the additional cost per
additional health outcome. Based on the method mentioned
in [27–29, 40], we rank the strategies in increasing order of
effectiveness for the total cases (including occasional
smokers, smokers, and patients) averted by strategy k (k� a,
b, c) and list them in Table 3.

Next, we define and calculate the ICERs as follows:

ICERc �
CTc

TAc

�
5.7229 × 1010

1.0139 × 1010
� 5.6444,

ICERb �
CTb −CTc

TAb −TAc

�
5.3703 × 1010 − 5.7229 × 1010

1.1313 × 1010 − 1.0139 × 1010
� −3.0034.

(54)

Comparing ICERb with ICERc reveals a cost-saving of
3.0034 for strategy b over strategy c, which indicates that
strategy b is more inexpensive and more effective than
strategy c. Hence, the single smoking cessation strategy is
ruled out from the set of alternatives strategies. We rule out
strategy c and further compare strategy a and strategy b.
Hence, we can get the following values of the ICER:

ICERb �
CTb

TAb

�
5.3703 × 1010

1.1313 × 1010
� 4.7470,

ICERa �
CTa −CTb

TAa −TAb

�
5.1856 × 1010 − 5.3703 × 1010

1.1929 × 1010 − 1.1313 × 1010
� −0.2315.

(55)

From above calculations, we know that strategy b is
more costly and less effective than strategy a. -erefore,
strategy b is excluded. Consequently, strategy a, com-
bining of mass media and smoking cessation treatment, is
the most cost-effective among the three strategies
considered.

6. Further Discussion and Conclusion

In this paper, we apply an example to investigate the effects
of media coverage and smoking cessation treatment on
controlling smoking. Firstly, we give the concrete form of
the basic reproduction number R0 and discuss the exis-
tence and stabilities of equilibria. Secondly, from the es-
timated parameter values, we obtain the basic reproduction
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Figure 5: (a) Optimal control u∗1(t) for strategy b; (b) optimal control u∗2(t) for strategy c; (c) optimal state variables S∗(t) for strategies b
and c, respectively; (d) optimal state variables C∗(t) for strategies b and c, respectively.

Table 2: -e cases averted and the total cost.

Strategy k AkL AkS AkC TAk CTk

a 3.0392 × 108 1.0016 × 1010 2.5468 × 1010 1.1929 × 1010 5.1856 × 1010
b 1.8916 × 104 9.3533 × 109 2.4397 × 1010 1.1313 × 1010 5.3703 × 1010
c 4.0424 × 108 9.1958 × 109 2.0816 × 1010 1.0139 × 1010 5.7229 × 1010
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number R0 � 1.4840 > 1, which indicates that the smoking
is one of the enduring problems of society. Hence, we
introduce two control measures (media coverage and
smoking cessation treatment) into the previous model to
find out which strategy is the most effective in combating

smoking behavior. Finally, from the numerical results
and cost-effectiveness analysis, we conclude that the
combination of media coverage and smoking cessation
treatment is the most cost-effective strategy. Although we
have investigated the effects of media coverage and
smoking cessation treatment in controlling smoking, we
still do not consider the impact of second-hand smoke on
nonsmokers. We will use the real data about tobacco in
China to model the parameters and discuss the impact of
second-hand smoke on individuals, society, and economy
in our future work.

Appendix

A. Proof of b1b2b3 2 b23 2 b21b4 > 0

Proof. For the sake of convenience, we let x � bc− αcδ.
Note that bc− αcδ > 0, so x> 0.

Since

b1 � μ + βS∗ + a + b + c,

b2 � μ + βS∗( 􏼁(a + b + c) +(bc− αcδ) + ab−ωβP∗( 􏼁 + ac,

b3 � μ + βS∗( 􏼁 (bc− αcδ) + ab−ωβP∗( 􏼁 + ac( 􏼁 + βS∗ωβP∗,

b4 � βS∗βωP∗c,

(A.1)

where

a � μ + ω + τ,

b � μ + c + τξ,

c � μ + α + ηθ,

P∗ �
Λ

μR0
,

S∗ �
μ R0 − 1( 􏼁

β
,

R0 �
βωcΛ

μa(bc− αcδ)
,

(A.2)

we can easily obtain

ab−ωβP∗ �
αcδa

c
,

βS∗ � μ R0 − 1( 􏼁,

μ + βS∗ � μR0,

βωP∗c � ax,

βωP∗ �
ax

c
.

(A.3)

Hence, we rewrite b1, b2, b3, b3, b4 as follows:

Time (days)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
E S

Strategy b
Strategy c

0 7000600050004000300020001000

(a)

Strategy b
Strategy c

0
Time (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E C

7000600050004000300020001000

(b)

Figure 6: (a) Efficacy functions of EkS(t) (k� b and c) for strategies
b and c; (b) efficacy functions of EkC(t) (k� b and c) for strategies b
and c.

Table 3: Incremental cost-effectiveness ratio in increasing order of
total cases averted.

Strategy k Total cases averted TA Total cost CT ICER

No strategy 0 0 −
Strategy c 1.0139 × 1010 5.7229 × 1010 5.6444
Strategy b 1.1313 × 1010 5.3703 × 1010 −3.0034
Strategy a 1.1929 × 1010 5.1856 × 1010 −0.2315

12 Computational and Mathematical Methods in Medicine



b1 � μR0 + a + b + c,

b2 � μR0(a + b + c) + x +
αcδa

c
+ ac,

b3 � μR0 x +
αcδa

c
+ ac􏼠 􏼡 + μ R0 − 1( 􏼁

ax

c
,

b4 � μ R0 − 1( 􏼁ax.

(A.4)

In the following, we will calculate b1b2b3 − b23 − b21b4:

b1b2b3 − b
2
3 − b

2
1b4 � μR0 + a + b + c( 􏼁 μR0(a + b + c) + x +

αcδa

c
+ ac􏼠 􏼡 μR0 x +

αcδa

c
+ ac􏼠 􏼡 + μ R0 − 1( 􏼁

ax

c
􏼠 􏼡

− μR0 x +
αcδa

c
+ ac􏼠 􏼡 + μ R0 − 1( 􏼁

ax

c
􏼠 􏼡

2

− μR0 + a + b + c( 􏼁
2μ R0 − 1( 􏼁ax

� d1μ + d2μ
2

+ d3μ
3

+ (a + b + c)d4μ +
1
c2

d5μ
2

+ d6μ
3

􏼒 􏼓 R0 − 1( 􏼁 + d7μ
2

+ d8μ
3

􏼐 􏼑 R0 − 1( 􏼁
2

+ d9μ
3
R0 − 1( 􏼁

3
,

(A.5)

where

d1 � (a + b + c) x + ac +
αcδa

c
􏼠 􏼡

2

,

d2 � (a + b + c)
2

x + ac +
αcδa

c
􏼠 􏼡,

d3 � (a + b + c) x + ac +
αcδa

c
􏼠 􏼡,

d4 � x
2

+
ax c2 + αcδ( 􏼁

c
+

a2 c4 + 2c2αcδ + αcδ(x + αcδ)( 􏼁

c2
,

d5 � 2c
2
(b + c)

2
x + c 2c

2
+ x + 2αcδ􏼐 􏼑 b

2
+ c

2
+ 3x + 2αcδ􏼐 􏼑a

+ 4c
4

+ x
2

+ c
2
(x + 4αcδ) + bc 4c

2
+ x + 4αcδ􏼐 􏼑􏼐 􏼑a

2
+ c 2c

2
+ x + 2αcδ􏼐 􏼑a

3
,

d6 �
1
c

3c(b + c)x + a
2

bc + 3c
2

+ 2αcδ􏼐 􏼑 + a b
2
c + 6bc

2
+ 3c

2
+ 2bαcδ􏼐 􏼑􏼐 􏼑,

d7 �
1
c

aαcδ 2ab + b
2

+ 3αcδ􏼐 􏼑 + a ab + b
2

+ 6αcδ􏼐 􏼑x + 2ax
2

􏼐 􏼑 + a
2
(ab + 4αcδ)

+ 2a
2

+ b
2

􏼐 􏼑x + a
3

+ 3αcδ􏼐 􏼑 +(3a + 2b)x􏼐 􏼑c + 2a
2

+ x􏼐 􏼑c
2

+ ac
3
,

d8 �
1
c

3c(b + c)x + a
2 2x + 3c

2
+ 3αcδ􏼐 􏼑 + a 3c

3
+ 6bc

2
+ 2bx + 3bαcδ􏼐 􏼑􏼐 􏼑,

d9 � (b + c) x + ab + ac + a
2

􏼐 􏼑.

(A.6)

Obviously di > 0, i � 1, . . . , 9. Note thatR0 > 1; hence,
b1b2b3 − b23 − b21b4 > 0. □

B. The Third Additive Compound Matrix

-e third additive compound matrix A[3] for a matrix A �

(aij)4×4 is given by
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A
[3]

�

a11 + a22 + a33 a34 −a24 a14

a43 a11 + a22 + a44 a23 −a13

−a42 a32 a11 + a33 + a44 a12

a41 −a31 a21 a22 + a33 + a44

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.1)
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