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Abstract: The coronavirus disease 2019 (COVID-19) has spread over the world for more than one
year. COVID-19 often develops life-threatening hypoxemia. Endothelial injury caused by the viral
infection leads to intravascular coagulation and ventilation-perfusion mismatch. However, besides
above pathogenic mechanisms, the role of alveolar edema in the disease progression has not been
discussed comprehensively. Since the exudation of pulmonary edema fluid was extremely serious
in COVID-19 patients, we bring out a hypothesis that severity of alveolar edema may determine
the size of poorly-ventilated area and the blood oxygen content. Treatments to pulmonary edema
(conservative fluid management, exogenous surfactant replacements and ethanol–oxygen vapor
therapy hypothetically) may be greatly helpful for reducing the occurrences of severe cases. Given
that late mechanical ventilation may cause mucus (edema fluid) to be blown deep into the small
airways, oxygen therapy should be given at the early stages. The optimal time and blood oxygen
saturation (SpO2) threshold for oxygen therapy are also discussed.

Keywords: SARS-CoV-2; endothelial injuries; ventilation-perfusion mismatch; intravascular coagula-
tion; alveolar edema; oxygen therapy

1. Introduction

Since the outbreak of novel SARS-like coronavirus (SARS-CoV-2), over 181,521,067
confirmed cases and 3,937,437 confirmed deaths have been reported globally by the World
Health Organization (WHO) as of 1 July 2021. Acute respiratory distress syndrome (ARDS)
and the serious complications (mainly multiple organ failure) are the most frequent causes
of death [1–4]. However, the main cause of death was not direct ARDS, but the multiple or-
gan failure, such as RNAemia, acute cardiac injury, acute renal injury and septic shock [1–4].
ARDS is a type of respiratory failure whose definition is based on a ratio of arterial oxygen
tension to fractional inspired oxygen (PaO2:FiO2) of less than 300 mm Hg despite a positive
end-expiratory pressure of more than 5 cm H2O [5,6], which means that hypoxemia is a
necessary condition for the patient to have an ARDS. A longer-time hypoxemia may result
in cardiac ischemia, renal ischemia or RNAemia/septic shock, indicating a multiple organ
ischemia [1–4]. On the other hand, some features of COVID-19 pneumonia distinguish it
from typical ARDS. The patients at early stages often display little breathlessness, despite
profound hypoxemia, a symptom referred to as “happy hypoxemia”. A report showed
dyspnea in only 18.7% of 1099 hospitalized COVID-19 patients, despite their low ratios of
partial pressure of arterial oxygen to percentage of inspired oxygen; in contrast, as high as
86% of the patients showed abnormal computerized tomography scans [7]. Although the
profound hypoxemia was associated with a large intrapulmonary shunt (also different from
typical ARDS), alveolar cells are well preserved in COVID-19 relative to typical ARDS [8].
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In addition to the need for oxygen supply in a high proportion (41%) of COVID-19
patients [7], 56% of the patients admitted to intensive care unit (ICU) were given non-
invasive ventilation, 76% of whom required further orotracheal intubation and invasive
mechanical ventilation [9]. Nevertheless, in some underdeveloped countries, there is
extraordinary shortage of ventilators and extracorporeal membrane oxygenation (ECMO),
which may lead to higher mortality rates. More efficient therapies to improve patients’
breathing or treatments that could reduce the probability of the occurrence of severe cases
need to be developed immediately.

2. Endothelial Injuries in COVID-19

The multiple roles of alveolar endothelial and epithelial barriers have been well doc-
umented in many lung diseases, such as acute lung injury (ALI), idiopathic pulmonary
fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) [5]. However, the role of
alveolar injuries in the disease progression of COVID-19 has not been discussed compre-
hensively so far [10,11].

During the mechanism of dysfunction of the alveolar epitheliums, important roles are
related to alveolar epithelial cells type I/II (AEI/AEII). AEII coordinates the host defense
mechanisms, not only generating the restrictive alveolar epithelial barrier, but also secreting
pulmonary surfactant, which reduces surface tension at the pulmonary air–liquid interface,
thereby preventing atelectasis and alveolar edema [10–14]. Furthermore, the innate immune
responses to infection of AEII lead both to the cell death by pyroptosis and apoptosis and to
the activation alveolar macrophages [10–14]. In addition, the glucocorticoid receptor α acts
as a cellular rheostat to ensure that a proper response is elicited by the neuro-endocrine and
immune systems [6,15]. Actually, various chronic and acute diseases (including COVID-19)
are associated with intensive inflammations [1,2]. Hyperplastic AEII are considered to be
an essential part of the epithelialization processes and, consequently, endothelial injury
healing [10–14].

The lung’s initial response to acute viral infections has been characterized by innate
immunity-mediated damages of the alveolar endothelial and epithelial barriers and accu-
mulation of protein-rich edema fluid within the interstitium and alveolus, and then a great
decline in oxygen diffusion over the blood-air barrier [5]. Blood flow through severely-
damaged units, hereby, constitutes an intrapulmonary shunt and the hypoxia [5]. Acute
hypoxia inhibits Na/K-ATPase function by activating its endocytosis from the plasma
membrane to intracellular compartments. The endocytosis process is suggested to be
mediated by the accumulation of reactive oxygen species (ROS) in mitochondria. Then
ROS promotes the protein kinase C (PKC)-zeta dependent phosphorylation of the Na/K-
ATPase α subunit triggering its endocytosis in a clathrin-AP2 dependent pathway [16].
More prolonged hypoxia may cause the ubiquitination and degradation of Na/K-ATPase
subsequently. As a result, hypoxia inhibits K+ channels but activates voltage gated Ca2+

channels, which raises cytosolic Ca2+ levels in pulmonary artery smooth muscle cells
(PASMC) and causes vasoconstriction [5,17]. Thus at the tissue level, patients of acute lung
injury often develop the hypoxic pulmonary vasoconstriction (HPV), which is an essential
protection mechanism of the lung that directs blood perfusion from badly-ventilated to
well-ventilated alveoli to optimize gas exchange [18,19]. Endothelin-1 and thromboxane A2
may amplify, whereas prostacyclin and nitric oxide (NO) may moderate this process [19].
In addition, prostacyclin was suggested to be coupled mainly to cyclooxygenase-1 in acute
hypoxia, but to cyclooxygenase-2 in chronic hypoxia [19].

At the subcellular level, mitochondria in PASMC have been considered to be oxygen
sensors and initiate HPV [20–24]. Warburg metabolism (a phenomenon firstly found in
tumor cells, which almost exclusively use glycolysis to generate energy, even under aerobic
conditions) in PASMC mitochondria is initiated by the induction of a pseudo-hypoxic
state, where DNA methyltransferase-mediated regulation in redox signaling results in
normoxic activation of hypoxia inducible factor-1α (HIF-1α) and pyruvate dehydrogenase
kinase (PDK) accumulation [20–24]. On the other hand, mitochondrial division has been
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also proved to be coordinated with nuclear division via the cellular process named mi-
totic fission. Increased mitotic fission in HPV, driven by enhanced fission but repressed
fusion, accelerates the cell cycle and increases apoptosis resistance [20–24]. Thus, War-
burg metabolisms sustain energy homeostasis through inhibiting oxidative metabolism,
which may reduce mitochondrial apoptosis, and lead to uncontrolled cell division. Mito-
chondrial dynamic and metabolic disorders combine to show the hyper-proliferative and
apoptosis-resistant phenotypes in pulmonary artery smooth muscle cells [20–24].

The renin-angiotensin-aldosterone system (RAAS) also plays a key role in endothelial
injuries. RAAS is a key regulatory system of electrolyte homeostasis and pulmonary
artery status and functions through angiotensin-converting enzyme (ACE)/angiotensin II
(Ang II)/Ang II type 1 (AT1) receptor axis and angiotensin-converting enzyme 2 (ACE2)/
angiotensin-1–7 Ang-(1–7)/MAS receptor axis. RAAS dysfunction has been proved to
be related to the occurrence and development of acute pulmonary injuries and ARDS
and may cause a serious prognosis and even death [25–29]. A large number of studies
suggest that ACE2 works as the cellular receptor for SARS-CoV-2 entry [30–32]. Similar
to other families of Coronaviridae viruses, the protein interactions between the virus and
the membrane-bound ACE2 requires the cleavage of the spike glycoprotein S into two
subunits. After the binding of the S1 receptor-binding domain (RBD) to ACE2, the trans-
membrane protease/serine subfamily 2 (TMPRSS2) cleaves the S2 subunit and facilitates
membrane fusion [30–32]. It has been confirmed that SARS-CoV-2 cell entry results in
decline of the ACE2 protein, which converts Ang II into Ang-(1–7). Ang II induces pro-
inflammatory cascades when binding to the AT1 receptor, while Ang-(1–7) generates anti-
inflammatory effects through the interaction with the MAS receptor. Thus, down-regulation
of ACE2 would result in pulmonary injury and vasoconstriction [25–29,33]. Besides these
mechanisms, relative ACE2 deficiency may also lead to enhanced and protracted tissues,
and vessel exposure to Ang II, which then enhances thrombosis, cell proliferation and
recruitment, increases tissue permeability, cytokine production and results in inflammation
(Table 1) [33,34].

Table 1. Pulmonary pathological changes in COVID-19.

Injuries Pathogenic Mechanisms Refs.

Alveolar endothelial injury Endothelial barrier disruption induces intrapulmonary shunt, hypoxia,
intravascular coagulation and the release of pro-inflammatory factors. [1,5,35]

ACE2-decline-induced pulmonary
injury

ACE2 deficiency leads to enhanced and protracted tissues, and vessel exposure
to Ang II, which then enhances thrombosis and cell proliferation, increases

tissue permeability, cytokine production and inflammation.
[25–34]

Loss of hypoxic pulmonary
vasoconstriction (HPV)

HPV directs blood perfusion from badly-ventilated to well-ventilated alveoli
to optimize gas exchange. [36–38]

General pulmonary
vasoconstriction Lead to pulmonary hypertension and a risk of right-heart failure subsequently. [39–41]

Severe ventilation-perfusion
mismatch

Induce hypoxemia in the non-injured fraction or/and cause hyper-perfusion of
the small injured fraction. [42,43]

Intravascular coagulation and
microthrombi formation Lead to increased wasted ventilation and less efficient carbon dioxide removal. [44–62]

Diffuse alveolar damage (DAD) Lead to hypoxia at the edematous alveoli. [63–65]

Alveolar edema Lead to great decline in oxygen diffusion over the blood-air barrier (hypoxia);
Hypoxia in turn inhibits oedema fluid clearance. [5,66]

Impaired alveolar surfactant
production Increase alveolar surface tension and hamper alveolar fluid resorption. [67–71]
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3. Ventilation-Perfusion Mismatch and Intravascular Coagulation in COVID-19

HPV is thought to optimize gas exchange through shunting blood from poorly ven-
tilated areas to those rich in oxygen. However, a general pulmonary vasoconstriction
happens in both normoxic lung competencies and hypoxic lung competencies, which may
lead to the pulmonary hypertension (PH) and a risk of right-heart failure subsequently,
just as observed in patients with acute altitude sickness [19,35,36]. HPV has been ob-
served in COVID-19 patients [37,38]. Moreover, the pulmonary hypertension and the
subsequent right ventricular dysfunction also have been confirmed in severe COVID-19
patients (Table 1) [39,40]. Significant alternations in monocyte size, lymphocyte stiffness,
neutrophil size and deformability, and heterogeneity of erythrocyte size and deformation in
COVID-19 patients also indicated great changes in pulmonary blood stream dynamics [41].

Nevertheless, drugs to inhibit HPV, such as acetazolamide, calcium channel blockers
and phosphodiesterase-5 inhibitors, should be avoided for COVID-19 patients, given that
the consequences of COVID-19 may be exacerbated by loss of HPV, whether because
of the destructive effects of the virus on mitochondria or the ability of endotoxin and
inflammatory stimuli to eliminate HPV [38]. HPV attenuating drugs may exacerbate
hypoxemia in COVID-19 pneumonia [38].

In some cases, dysregulated HPV may also cause mismatched blood flow and alveolar
ventilation, which may restore the oxygen supply to the poorly-ventilated alveolar cells
and result in life-threatening hypoxemia [35]. Recently, Herrmann et al. [42] modeled
lung perfusion abnormalities and suggested that early COVID-19 hypoxemia may be
mainly attributed to severe ventilation-perfusion mismatch. Their model predicted that
calculated shunt fractions in excess of three times the injured fractions, which could be
explained by (a) extensive perfusion defect, (b) perfusion defect combined with ventilation-
perfusion mismatching in the non-injured fraction, or (c) hyper-perfusion of the small
injured regions, with up to 3-fold increases in regional perfusion to the afflicted fraction [42].
Clinical features of COVID-19 pneumonia also confirmed the malfunction of oxygen-
sensing responses including the ventilation-perfusion mismatch (Table 1) [43].

Pulmonary intravascular coagulation also plays an important role in the disease pro-
gression of COVID-19. After alveolar injuries, resident alveolar macrophages are activated,
causing the release of potent proinflammatory mediators and chemokines that promote the
accumulation of neutrophils and monocytes, such as vascular endothelial growth factor
(VEGF), angiotensin II (Ang II), glycosaminoglycans (GAGs), von Willebrand factor (vWF)
and soluble intercellular adhesion molecule (sICAM-1) [5]. Activated neutrophils further
contribute to injuries through releasing toxic mediators. On the other hand, intravascular
coagulation leads to platelet aggregation and micro-thrombi formation, which may aggra-
vate the pulmonary injuries [5]. Intravascular coagulation primarily leads to increased dead
space (increased wasted ventilation and less efficient carbon dioxide removal). Whereas
inflammatory mediators from endothelial injury may worsen hypoxemia through exac-
erbate ventilation-perfusion mismatching (Table 1) [35,44]. Coagulation and thrombosis
have been identified clinically as prominent symptoms of COVID-19 [45,46].

Nevertheless, neither intravascular coagulation nor ventilation-perfusion mismatch
could be easily corrected. Oxygen supply is a common treatment to COVID-19 patients.
Increasing inspired oxygen results in enhanced oxygenation but however does not im-
prove the ratio of arterial oxygen tension to fractional inspired oxygen (PaO2:FiO2) [42].
Inhaled nitric oxide decreases total pulmonary vascular resistance [47,48] but however
may increase blood flow to these low ventilation-perfusion regions, which causes further
arterial desaturation (Table 2) [35].
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Table 2. Putative drugs and treatments to SARS-CoV-2 pneumonia.

Drugs or Treatments Therapeutic Mechanisms Therapeutic Effects Refs.

Oxygen inhalation Oxygenation enhancement Alleviate hypoxia; however, high-flow oxygen lead
to pulmonary toxic effects. [35]

Mechanical ventilation Oxygenation enhancement
Alleviate hypoxia; however, mechanical ventilation
may cause mucus to be blown deep into the small
airways, which then aggravates alveolar hypoxia.

[9]

ECMO Oxygenation enhancement Alleviate hypoxia; however, patients receiving
ECMO still showed a high mortality rate. [9]

Inhaled nitric oxide Decrease pulmonary vascular
resistance

Improve ventilation-perfusion ratio; however, may
cause further arterial desaturation (hypoxia). [35,47,48]

Aspirin Anticoagulation Reduce ICU cases, but show no apparent association
with the fatality. [49–51]

Heparin Anticoagulation; block virus
entry; increase antibody titres

Reduce the risk of in-hospital mortality and decrease
the occurrence of severe cases; however, could not

completely prevent occurrence of severe cases.
[52–62]

Exogenous pulmonary
surfactant Alleviate alveolar edema

Reduce the mortality of infants with neonatal RDS;
however, clinical outcomes for COVID-19 patients

need further investigation.
[67–71]

Ethanol–oxygen vapor
therapy Alleviate alveolar edema May reduce occurrence of severe cases and the

mortality rate (need clinical verification). [72–75]

Conservative fluid
management Alleviate alveolar edema May reduce occurrence of severe cases and the

mortality rate (need clinical verification). [76,77]

Aspirin, the most commonly used anti-platelet agent, is a cyclooxygenase-1 inhibitor
and considered as a mild to moderate inhibitor of platelet function [49,50]. Hereby, aspirin
has been suggested for COVID-19 patients [49,50]. Aspirin administration had an associ-
ation with less mechanical ventilation and reduced ICU cases, but showed no apparent
association with the fatality rate (Table 2) [51]. The therapeutic effects of low molecular
weight heparin have also been investigated comprehensively [52–58]. Heparin may reduce
the risk of in-hospital mortality and decrease the occurrence of severe cases. However,
critically-ill COVID-19 patients still had high incidences of venous thromboembolism and
worse outcomes, despite the heparin administration at the prophylactic dosage [52–58].
Moreover, besides its anticoagulation effect, heparin relieves the symptoms through com-
plex mechanisms. SARS-CoV rolls onto the cell membrane by binding to cell-surface hep-
aran sulfate proteoglycans (HSPGs) and scans for the specific entry receptor ACE2 [59,60].
In addition, heparin may enhance the open conformation of the subsequent ACE2 bind-
ing. Thus, heparin potently blocks both viral adhesion and spike protein binding with
the host cell plasma membrane [59,60]. On the other hand, an heparin-binding sequence
immediately upstream of the S1/S2 cleavage site has been found on SARS-CoV-2 S protein,
indicating that heparin may promote the S1/S2 cleavage, induce exposure of the optimal
epitope, and therefore accelerate the virus clearance [61]. These assumptions have been
proved by a serological study that adding 10 µM heparins into the sera from COVID-19
patients led to a four-fold increase in antibody titers [62].

In summary, initial anticoagulant treatments with low-molecular-weight heparin or
aspirin may reduce mortality and achieve a significant improvement in PaO2:FiO2 in some
patients but however could not completely prevent occurrence of severe cases [49–58].

4. Alveolar Edema in COVID-19

Besides above pathogenic mechanisms, alveolar edema also plays a key role in the
disease progression. Diffuse alveolar damage (DAD) is the histopathological pattern
commonly described in COVID-19 (Table 1) [63–65]. Endothelial barrier disruption induces
interstitial flooding via activation of the actin-myosin contractile apparatus [5]. Then
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alveolar edema leads to hypoxia at the injured alveolar units [5]. Hypoxia in turn inhibits
edema fluid clearance, due in part to the disassembly of the keratin intermediate filament
network, a fundamental element of the cellular cytoskeleton, therefore destructing the
epithelial barrier [66]. Therefore, a long-term hypoxia aggravates the disease by inducing
more alveolar edema, which forms a vicious circle (Table 1).

Impaired alveolar surfactant production may be another molecular mechanism of alve-
olar edema in COVID-19 in that the limitation of alveolus superficial active substance would
increase alveolar surface tension and hamper alveolar fluid resorption (Table 1) [67–71].
Thus, treatments to alveolar edema may help to both reduce the size of poorly ventilated
area and increase the blood oxygen content (Figure 1). Although exogenous surfactant
replacements in animal models of ARDS and neonatal respiratory distress syndrome
(RDS) showed consistent improvement in gas exchange and survivals, some adult studies
have shown only improved oxygenation but no survival benefits [70]. Moreover, a few
exogenous pulmonary surfactants have been currently authorized to treat pulmonary
permeability edema in COVID-19 patients [70].

Figure 1. Hypothetically pathogenic mechanisms of COVID-19 and the corresponding therapies.
Virus infections cause alveolar edema and the hypoxic pulmonary vasoconstriction (HPV), which is an
essential protection mechanism of the lung that directs blood perfusion from badly-ventilated to well-
ventilated alveoli to optimize gas exchange. However, SARS-CoV-2 infections may cause mismatched
blood flow and alveolar ventilation, and may result in life-threatening hypoxemia. Treatments to
pulmonary edema might promote lung edema resorption and show good therapeutic effects. When
the disease develops into late stages, systemic alveolar edema and severe ventilation-perfusion
mismatch occurs, and the blood oxygen will decline sharply. Then the high-flow oxygen therapy will
be required. However, high-flow oxygen inhalation may not correct ventilation-perfusion mismatch
and cause several adverse effects. The blue to red gradient bar shows blood oxygen saturation (SpO2).

Besides exogenous surfactant replacements, other treatments that counter-balance the
inhibition of edema clearance during hypoxia or improve the lung’s ability to clear alveolar
edema should also be adopted. For example, a relatively high partial pressure of O2 in
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the alveolar gas facilitates alveolar fluid resorption by activating Na+ transport across the
alveolar epithelium, which makes an osmotic gradient responsible for the lung edema
clearance [66]. Hereby, appropriate oxygen inhalation would accelerate the resorption of
pulmonary edema fluid. However, simple oxygen therapy would not achieve adequate
effects on alveolar edema clearance. Ethanol/butanol-oxygen vapor therapy (oxygen
inhalation with 20% ethanol or butanol as humidifying agent) is a common treatment to
pulmonary edema with a long history of safety [72–75]. Ethanol/butanol vapor decreases
the surface tension of the foam inside the pulmonary alveoli and therefore alleviating
alveolar edema (Table 2) [72–75]. Moreover, conservative fluid management, in which
diuretics may be administered and intravenous fluid administration is minimized, would
reduce hydrostatic pressure and enhance serum oncotic pressure, and therefore limit the
development of pulmonary edema potentially (Table 2) [76–78]. Unfortunately, these
common therapies to pulmonary edema have not attracted enough attention in COVID-19
clinical practice.

Autopsy showed that pulmonary fibrosis was not serious in dead patients with SARS-
CoV-2 infections. Intact alveoli could still be seen, but exudation was serious [64,65,79–82],
suggesting the severe alveolar edema. COVID-19 has a prominent feature, that is, a large
amount of mucus (edema fluid) could be found in the small airway [64,65,79–82], which is
distinct from other acute pulmonary injuries.

When the disease develops into late stages, systemic alveolar edema and severe
ventilation-perfusion mismatch occur, and the blood oxygen will decline sharply. Then the
high flow oxygen therapy and mechanical ventilation will be required (Figure 1). However,
high-flow oxygen inhalation inhibits HPV because of the reversed diffusion of oxygen,
that is, if enough oxygen could bind the receptor in the small alveolar-capillary-arteriole
space, the vessels will not vasoconstrict [83]. Upon a high-flow and high-concentration
oxygen inhalation, the reflex stimulation to respiration by hypoxia will disappear, resulting
in a more serious retention of CO2, which may lead to the hypercapnic encephalopathy
(hypercapnic coma) or even a respiratory arrest [35]. Furthermore, high inspired oxygen
concentrations could lead to pulmonary-specific toxic effects, such as denitrogenation phe-
nomena, inhibition of surfactant production and severe acidosis, and therefore may worsen
ventilation-perfusion mismatch or induce a degree of hypoventilation (Table 2) [84,85]. On
the other hand, mechanical ventilation may cause mucus to be blown into the deep of
the small airways, which then aggravates intrapulmonary shunt and alveolar hypoxia
(Table 2) [86]. These deleterious effects may be an important reason for the high mor-
tality after high-flow oxygen inhalation and mechanical ventilation (The ICU mortality
rate among those who required non-invasive ventilation was 79% and among those who
required invasive mechanical ventilation was 86%.) [9]. Therefore, nebulized heparin
treatments, ethanol-oxygen vapor therapy should be given at the early stages of COVID-19.

5. The Optimal Time and SpO2 Threshold for Oxygen Therapy

In a retrospective case report that included 69 adults in Wuhan, China, 29% of patients
showed dyspnea and 20% of cases (14 patients) showed oxygen saturation SpO2 <90%
[oxygen index (OI) < 110 mmHg] during admission [87]. In their report, as of 4 February
2020, 18 (26.9%) of 67 patients had been discharged, and five patients had died, with a
mortality rate of 7.5%. Noticeably, all five deaths occurred in the SpO2 <90% group [87].
The median time from onset of symptoms to admission was six days (inter quartile range
4–9 days). However in the SpO2 <90% group, the median occurrence time of lowest SpO2
was only one day (inter quartile range 0–2 days) after admission [87]. In other words, SpO2
of some patients at admission were already very low, which may develop severe ARDS
subsequently (Table 3). Therefore, it may be too late for the patients to take oxygen therapy
after admission. The best window period of oxygen therapy may be the six days from
onset of symptoms to admission.

Dai et al. [88] classified COVID-19 patients into four stages according to the CT (Com-
puted tomography, which uses X-rays to produce cross-sectional images) performances.
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Stage I: one or more lesions, in irregularly patchy or round shapes, generally showing
ground-glass opacity with vascular enlargements. Stage II: more area lesions, found in bilat-
eral lobes mainly at the sub-pleural areas, in irregularly patchy, round or reverse-butterfly
shapes, diffused or scattered patches occasionally fusing into a large patch with a high
density, vascular enlargements, reticular signs and bronchial wall thickening, sometimes
with little fibrosis and atelectasis in sub-segments. Stage III: some lesions diminished or
absorbed, the focus could be entirely absorbed, showing residual fibers. Stage IV: bilateral
diffuse inhibitions, over half of the lung areas involved, occasionally extended to the entire
lung and defined as the white lung, implying the systemic alveolar edema. However, the
patients in the stage IV group showed only slightly-declined SpO2 (94.70 ± 0.20%). While
the stage II patients with only a small proportion of lung injury and HPV showed relatively
high SpO2 (97.2 ± 0.91%) [88]. SpO2 <95% may indicate late infection stages (Table 3) [88].

Moreover, a recent study demonstrated a high correlation between decreased SpO2
and severe cases that 78.0% (32/41) of the patients with SpO2 ≤95% would develop into
severe diseases (Table 3) [89]. The risk threshold of SpO2 was 95%.

WHO and BMJ Best Practice suggested SpO2 ≤90% or signs of severe respiratory
distress, central cyanosis, shock, coma and/or convulsions as diagnostic standards for
the severe pulmonary infections [90,91]. In addition, according to the novel coronavirus
pneumonia diagnosis and treatment plan (trial version 7) published by the National Health
Committee of China, either respiratory rate (RR) ≥30 times per minute, or resting state
SpO2 ≤93%, or OI ≤300 mmHg was defined as the severe condition, and then the oxygen
therapy was given (Table 3) [92]. However, the median SpO2/respiratory rate value was
significantly higher in COVID-19 patients than in non-COVID-19 patients, which implies
that a normal breathing rate could mask profound hypoxia and make severity assessment
in COVID-19 patients more difficult in out-of-hospital settings [93]. Besides, based on the
above analysis, the diagnostic standard of SpO2 either ≤90% or ≤93% may be too low to
take the oxygen therapy in time.

Table 3. Blood oxygen saturation (SpO2) lower limit and upper limit for oxygen therapy.

SpO2 Limits Corresponding Disease Stage Refs.

SpO2 Lower
Limit for

Oxygen Therapy

90% In the SpO2 <90% group, the median occurrence time of lowest SpO2 was only one day
after admission, indicating a very late stage. [87]

94.7% Stage IV: bilateral diffuse inhibitions, over half of the lung areas involved, occasionally
extended to the entire lung and defined as the white lung. [88]

95% 78.0% of the patients with SpO2 ≤95% would develop into severe diseases (late stages). [89]
93% Resting state SpO2 ≤93% indicates a severe condition (late stages). [92]

SpO2 Upper
Limit for

Oxygen Therapy

96% For most patients receiving oxygen therapy. [94,95]
88–92% For patients at risk of hypercapnic respiratory failure. [94]
88–92% For patients with chronic type II respiratory failure. [92]

6. Four Clinical Comments

Based on the above analysis, we propose four comments to prevent SARS-CoV-2
patients from developing into severe hypoxemia:

(a) For the suspected cases with symptoms, finger SpO2 (with finger oximeter ideally)
should be measured at each time of nucleic acid test sampling and daily after symptom
onset. However, finger SpO2 varies greatly with the altitude and the age [35], and
the finger oximeter itself may have a large deviation, so it is recommended that each
oximeter should be calibrated with several healthy people of different ages to get the
reference value. If the patient’s SpO2 was lower than the reference value by 3% or more
(e.g., if the reference value was 98%, then ≤95% is the threshold for oxygen therapy),
it is suggested that the patients were hospitalized immediately for standard low-flow
oxygen inhalation possibly combined with 20% ethanol as humidifier. If immediate
hospitalization was not possible, the patient was recommended to take oxygen in the
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home, such as with a portable oxygen respirator. During the in-home oxygen therapy,
finger SpO2 should be monitored continually to assure that SpO2 has been restored
to 96%, but not higher than that (Table 3). This is because saturation above this level
likely causes an increased risk of death without plausible benefits [94,95]. This upper
limit may be lower for the patients with chronic respiratory diseases. For instance, the
oxygen treatment goal should be 88–92% for patients with chronic type II respiratory
failure (Table 3) [92]. Nevertheless, if SpO2 cannot be enhanced afterwards, the patient
should seek medical advice or go to the hospital in time. The in-home oxygen therapy
may be of great significance for countries with a shortage of medical resources. The
COVID-19 patients usually require oxygen long-term oxygen supplies. However, if
humidification with 20% ethanol was adopted, long-time ethanol vapor inhalation
may generate adverse effects to the respiratory system and the nervous system [96,97].
The optimal length of ethanol-oxygen vapor therapy needs to be investigated in
clinical trials.

(b) For the patients with very low SpO2, high-flow oxygen inhalation should be applied.
Nevertheless, humidification with 20% ethanol might be also recommended on this
occasion.

(c) Fluid management might be considered for all COVID-19 patients and conservative
fluid management might be applied to severe cases. Some patients may be dehydrated
with evolving acute kidney injury at hospital presentation for COVID-19 pneumonia.
Therefore, conservative fluid management to these patients should be applied with
caution. Detailed guidance of fluid administration in patients with COVID-19 has
been discussed elsewhere [98]. For the in-home patients, appropriate reduction in
water intake might be an expedient measure.

(d) The prone position could reduce the risk of ventilation-associated lung injuries by the
combined effects of more uniform distribution of breathing and less compression of
the left lower pulmonary lobe by the heart [5,99–101]. Therefore, patients with low
SpO2 are advised to use prone position as much as possible. In addition, the patients
should avoid any vigorous activity that may increase respiratory rate and tidal volume
because pulmonary injury will be worsened by the mechanical stretch during the
strained breathing [5,99–101]. The benefit of prone ventilation is larger than that
for typical ARDS. HPV is regionally variable, resulting in heterogenous ventilation-
perfusion matching. Prone ventilation may minimize the heterogeneity and allow
HPV to divert blood flow to the caudal/dorsal regions of the lung. Although HPV
is considered to be weak in COVID-19, residual HPV might be optimized when
prone [38].

7. Clinical Outlook

In summary, we suggest that in the beginning of the COVID-19 pulmonary involve-
ment (decrease of SpO2 of 3%) the patients should receive immediate oxygen therapy and
pulmonary edema treatments. However, this is merely a concept paper that needs to be
tested in controlled randomized trials. It should be noted that not only SpO2 is important
but also the patient’s associated tachypnea or hyperpnea, and SpO2 should be interpreted
with caution as there is a left-sided shifting of the oxyhemoglobin dissociation curve due to
tachypnea/hyperpnea induced by hypoxemia [102]. Thus, SpO2 monitoring with a finger
oximeter is just a stop-gap measure, and the CT performance is still a “golden rule”.

Besides ventilation-perfusion mismatch, intravascular coagulation and alveolar edema,
COVID-19 ARDS is a very complex disease, with intrapulmonary shunting, impaired lung
diffusion, inflammation, etc. [103–109]. We cannot expect that early oxygen therapy and
pulmonary edema treatments can prevent every COVID-19 patient from the development
of ARDS. Antiviral drugs, anti-inflammatory agents and anticoagulant therapies (e.g.,
heparin as mentioned above) should be adopted along with pulmonary edema treatments.
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AEII alveolar epithelial cells type II
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Ang II angiotensin II
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ROS reactive oxygen species
SARS-CoV-2 SARS-like coronavirus 2
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VEGF vascular endothelial growth factor
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