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Abstract

Background: Mathematical modeling of biological processes is widely used to
enhance quantitative understanding of bio-medical phenomena. This quantitative
knowledge can be applied in both clinical and experimental settings. Recently, many
investigators began studying mathematical models of tumor response to radiation
therapy. We developed a simple mathematical model to simulate the growth of tumor
volume and its response to a single fraction of high dose irradiation. The modelling
study may provide clinicians important insights on radiation therapy strategies through
identification of biological factors significantly influencing the treatment effectiveness.

Methods: We made several key assumptions of the model. Tumor volume is composed
of proliferating (or dividing) cancer cells and non-dividing (or dead) cells. Tumor growth
rate (or tumor volume doubling time) is proportional to the ratio of the volumes of
tumor vasculature and the tumor. The vascular volume grows slower than the tumor by
introducing the vascular growth retardation factor, θ. Upon irradiation, the proliferating
cells gradually die over a fixed time period after irradiation. Dead cells are cleared away
with cell clearance time. The model was applied to simulate pre-treatment
growth and post-treatment radiation response of rat rhabdomyosarcoma tumors
and metastatic brain tumors of five patients who were treated with Gamma
Knife stereotactic radiosurgery (GKSRS).

Results: By selecting appropriate model parameters, we showed the temporal
variation of the tumors for both the rat experiment and the clinical GKSRS cases
could be easily replicated by the simple model. Additionally, the application
of our model to the GKSRS cases showed that the α-value, which is an indicator of
radiation sensitivity in the LQ model, and the value of θ could be predictors of the
post-treatment volume change.

Conclusions: The proposed model was successful in representing both the animal
experimental data and the clinically observed tumor volume changes. We showed that
the model can be used to find the potential biological parameters, which may be able
to predict the treatment outcome. However, there is a large statistical uncertainty of
the result due to the small sample size. Therefore, a future clinical study with a larger
number of patients is needed to confirm the finding.
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Background
Mathematical modeling of biological processes is widely used to enhance quantitative

understanding of bio-medical phenomena. This quantitative knowledge can be applied

in both clinical and experimental settings. One important application of modeling

exercises is in the area of cancer biology [1, 2]. Many mathematical models have been

developed to represent some aspects of cancer [3–6]. Those models vary from a simple

model trying to simulate the growth of tumor volume to sophisticated models

including many biologically important molecular processes [7, 8]. Macroscopic models

can emulate clinically relevant phenomena for anti-cancer therapy. Because of the

complexity of the biology, there is a need to link microscopic/molecular processes to

those macroscopic ones that we observe in the clinic. Accordingly, there would be a

need for a multiscale model rather than just a macroscopic one.

Recently, many investigators began studying mathematical models of tumor response

to radiation therapy. The models used for those studies can be categorized into either

stochastic or continuum model. Some did extensive studies of the growth and radiation

response of the tumor using stochastic models including many biologically important

processes at a cellular level, such as apoptosis, angiogenesis, and hypoxia [9–11]. Other

groups used a continuum model. The tumor growth was represented as diffusion in a

three-dimensional space and the model was successfully applied to study the tumor

growth and its response to radiation, mainly for brain tumors such as glioblastoma

multiforme (GBM) and low-grade glioma [12–14]. There were also several studies in

which the non-stochastic modelling approach was chosen to investigate the tumor

kinetics after irradiation [15–18]. In these studies, the tumor volume was represented

as a volume in one-dimensional space or the number of cancer cells, and the tumor

volume was considered to consist of two components, i.e., proliferating cells and dead

cells, after irradiation. Such a model was used to simulate the response of the tumor

volume to radiotherapy.

In this study, we proposed a new simple one-dimensional model for the time

evolution of the tumor volume before and after a radiosurgical procedure. We assumed

that the tumor volume is composed of actively dividing (or proliferating) cells and non-

dividing (or dead) cells after the irradiation. Such a two-component model was

originally developed in the 1970s [19]. This model was previously used to study the

radiation response of tumor during radiation therapy [15, 16, 20]. Our model is

different from these “standard” models in at least two aspects. First, the slow-down

process of tumor growth with increasing volume was modeled by assuming that the

growth rate is a function of the ratio of vascular and tumor volumes and the growth

rate of the vasculature is slower than that of the tumor itself. Secondly, our radiation

response model was created by assuming that the cells do not die instantly, but survive

for a few cell cycles. This is supported by some experimental results [21–24]. It is

noteworthy that the possibility of one or more mitotic potential of damaged cells was

recently considered in a mathematical model of low-grade glioma treated with

fractionated radiotherapy [13] although the authors eventually concluded that this effect

is not significant for this treatment. In the current model, the radiation-induced cell kill

rate was represented by introducing the probability that the cell stops dividing at the end

of the cell cycle. The probability was related to the survival fraction of the linear-quadratic

(LQ) model since the probability is not readily available in the current literature.
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To test the newly developed model, we exploited the model to reproduce the

temporal volume change of rat rhabdomyosarcoma tumors for varying radiation dos-

ages. In the 1960s to early 1970s, several British radiobiologists undertook extensive

animal studies about the effect of ionizing radiation on tumor volume [25–28]. These

studies provide useful data to test our model. Among those, the article of Barendsen et

al. [25] contains experimental data showing the tumor volume before and after a single

fraction dose of radiation. Additionally, the model was used to simulate the metastatic

tumors of five patients who were treated for their metastatic brain cancers with

Gamma Knife stereotactic radiosurgery (GKSRS) technique.

Our model is simple, but it includes two fundamental processes, the effect of the

blood supply to the growth rate and the prolonged mitotic capacity of the cells

damaged by radiation, which have not explicitly been included before together within a

simple formalism. The applications of the model to clinical cases of GKSRS suggested

some of the model parameters as a potential predictor of the treatment outcome.

The outline of this paper is as follows. In Section two, we present the mathematical

model with our reasoning behind the selection of the proposed formulae. Numerical

solution methods of the set of non-linear ordinary differential equations are briefly

discussed in the same section. We used two solution methods. One method employed

manual iterative adjustment of the model parameters to fit the model with experimen-

tal and clinical data. For another method, we applied a simulated annealing technique

to automatically estimate the parameters to achieve the best fit between the model and

the measurement data. In section three, we present the sources of tumor volume data,

to which our model was fitted. We used the data from the old literature of animal

experiments and in-house data of five patients treated by GKSRS. The results of the

application of the model to those data will be shown in Section four. After discussion

of the models and the results in Section five, we summarize this study in Section six.

Mathematical model

The proposed tumor-volume kinetic model

In this section, we summarized the proposed model used in this study. A detailed

description of the derivation of the equations and biologicl assumptions are given in

the following sections. Two cell types, or two-components, in the tumor, dividing cells,

and non-dividing cells, were included in the model. Figure 1 illustrates that under the

influence of radiation dose D, the dividing cells can continue dividing with the rate of

Fig. 1 Diagram of the proposed 2-component model
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the tumor-growth rate λ(t) times the cell proliferation probability p(D), or can transit

to the non-dividing state with a rate g(D). The non-dividing cells are eventually cleared

from the original location with the cell clearance rate ηcl.

This model can be represented by a set of three equations of three variables: the

volume of proliferating tumor, VT(t), the volume composed of non-dividing cells,

VND(t), and the tumor growth rate λ(t), with four constants, a radiobiological parameter

α, the initial tumor growth rate λ(0), the vascular growth retardation factor θ, and the

cell clearance rate ηcl.

Initially, the tumor volume grows, according to the following ODEs:

dVT

dt
¼ λ tð ÞVT ð1Þ

dλ
dt

¼ −θλ 0ð Þλ ð2Þ

After a single instantaneous irradiation of dose D given to the tumor at tR, the follow-

ing ODEs are solved for a time period of the active radiation-effect time τrad, i.e.,

in tR ≤ t < tR + τrad:

dVT

dt
¼ λ tð Þp Dð ÞVT−g Dð ÞVT ð3Þ

dVND

dt
¼ g Dð ÞVT−ηclVND ð4Þ

dλ
dt

¼ −θλ 0ð Þλ ð5Þ

For t > tR + τrad, VT, VND, and λ are the solutions of the following ODEs:

dVT

dt
¼ λ tð ÞVT ð6Þ

dVND

dt
¼ −ηclVND ð7Þ

dλ
dt

¼ −θλ 0ð Þλ ð8Þ

Note that three functions, VT(t), VND(t), and λ(t), are continuous at tR and tR + τrad.

The probability p(D) and the transition rate of tumor cells from dividing to non-

dividing, g(D), are given as a function of the characteristic time T*, the observation time

Tm, and a dose-dependent constat χ(D). Furthermore, for the LQ model, χ(D) is a func-

tion of α and α/β and it is given by [29]

χ Dð Þ ¼ αD 1þ D
α=β

 !
ð9Þ

The model parameters α, λ(0), θ, and ηcl were obtained to achieve the best fitting of

the temporal change of the total tumor volume, i.e., the sum of VT and VND, between

the model and the experimental/clinical data.
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Derivation of governing equations

By assuming that the volume of tumor is proportional to the number of cells in the

tumor [30], we considered the volume as the basic parameter instead of the tumor

mass. We denoted the total volume of malignant cells by VT. A malignant tumor cell

divides with a specific cell cycle time, Tcc. When these cells are exposed to radiation,

some of them stop dividing and die. Some fraction of the irradiated cells survives and

keeps dividing. The volume of the non-dividing cells is VND. The non-dividing cells are

removed from the original site. These processes are represented by the following two

ordinary differential equations (ODEs).

dVT

dt
¼ f VT ;Vv;Dð ÞVT−g Dð ÞVT ð10Þ

dVND

dt
¼ g Dð ÞVT−ηclVND ð11Þ

The function f is the growth rate of the malignant dividing cell and depends on both the

total volume of actively dividing cells, VT, and the tumor vascular volume, Vv. The

function g is the transition rate of the dividing cells to the non-dividing cells under the

influence of radiation. Both f and g are a function of dose D. The second term in

Equation (11) indicates that the non-dividing dead cells are removed away from

the original location with the rate of ηcl, which is related to the cell clearance time

Tcl by 0.693/ηcl.

In the current model, the dividing cells are the cells which can divide or proliferate

regardless of its clonogenic capacity. Hence, the dividing cells include the cells eventu-

ally die due to radiation. Meanwhile, the non-dividing cells are the cells which have

stopped dividing and eventually disappear from the tumor volume. Note that we do

not consider the cells in a quiescent state such as the cells in the reversible G0/G1 cell

cycle arrest state [31].

Growth rate limited by blood volume

Tumors require new vasculature to provide additional nutrient to grow beyond a

certain size, i.e., about 1 mm3. Angiogenesis, the process by which vascular structure

develops inside the tumor, is the main mechanism to keep the tumor supplied with

sufficient nutrients while it is growing. We represented the amount of the nutrient

supplied by the volume of blood or the vascular structure in the tumor, Vv. Then, we

assumed that the function f in Equation (10) is made of two factors and it is given by

f VT ;Vv;Dð Þ ¼ λ VT ;Vvð Þp Dð Þ ð12Þ

Here, λ is the growth rate, which is modulated by the dose-dependent cell prolifera-

tion probability p. The function λ depends on the volumes of both the tumor and the

vascular structure. Note that the tumor volume doubling time Td is defined as 0.693/λ

in this study.

The growth rate of the tumor may depend on the blood volume. Hence, we assumed

that the growth rate λ is proportional to the ratio of the vascular and tumor volumes:

λ ¼ a
V v

VT
ð13Þ

By taking the time derivative of Equation (13), one obtains
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dλ
dt

¼ 1
Vv

dV v

dt
−

1
VT

dVT

dt

� �
λ ð14Þ

This indicates that the rate of change in λ is the difference between the specific vol-

ume growth rates of the vasculature and the tumor. For simplicity, we replaced these

growth rates with the initial values. Then, we have

dλ
dt

¼ λv 0ð Þ−λ 0ð Þf gλ ð15Þ

We assumed that the volume of the vascular structure increases with the growth rate

of λv as the tumor grows, but the vascular volume grows slower than the tumor:

λv tð Þ ¼ θλ tð Þ ð16Þ

The constant θ is called the retardation factor of the vascular structure (or the

vascular growth retardation factor). We considered that θ ≤ 1 to realize the saturation

phenomena of tumor growth with increasing tumor volume. It is noteworthy that the

use of Equations (15) and (16) along with Equation (10) with only the growth term in

the right-hand side of the equation leads to the well-known Gompertzian solution of

the tumor growth. See Additional file 1 for further discussion.

Radiation-induced cell death

The standard model for radiation-induced cell death after a single dose assumes that a

portion of the tumor cells dies and the rest still maintains its proliferation capacity

[12, 15, 16, 20, 32]. By applying the linear-quadratic (LQ) equation for the cell survival

fraction S, then, the volumes of the dividing cells and the non-dividing cells after a single

pulse of irradiation at time t+ jump from those at pre-irradiation time t−:

VT tþð Þ ¼ S Dð ÞVT t−ð Þ ð17Þ

VND tþð Þ ¼ 1−S Dð Þf gVT t−ð Þ ð18Þ

where S(D) = e−χ(D) and χ(D) = αD + βD2. With this model, the function f and g do not

change before and after irradiation and those are given by

f ¼ λ ð19Þ

g ¼ 0 ð20Þ

Furthermore,VND(t) = 0 for t ≤ t− for single fraction treatment.

Some studies have shown that cancer cells do not lose their mitotic capability right

after exposure to radiation, but those may continue dividing [21–24]. Hence, the

volumes of the dividing cells and non-dividing cells gradually change in time. The

following radiation response model was formulated by considering this phenomenon.

Individual cell divides with probability p and does not divide with probability q (=1-p)

in the cell cycle time Tcc. Then, it is easy to derive the following rate equations for the

number of dividing cells, ND, and the number of non-dividing cells, NND:

dND

dt
¼ 2p−q

T � ND ð21Þ
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dNND

dt
¼ q

T � ND ð22Þ

Here T* is a characteristic time, which can be set equal to Tcc. The initial conditions are

ND 0ð Þ ¼ N0 ð23Þ

NND 0ð Þ ¼ 0 ð24Þ

The solutions of Equations (21) and (22) can be easily found as follows:

ND tð Þ ¼ N0 exp
2p−q
T � t

� �
ð25Þ

NND tð Þ ¼ q
2p−q

N0 exp
2p−q
T � t

� �
−1

� �
ð26Þ

We applied these expressions to a radiobiological experiment [33], by which one

measures the cell survival fraction after a single dose of radiation, D. The measured

survival fraction S(D) is the ratio of the number of dividing (or clonogenic) cells at a

specific observation time, or colony counting time, Tm, when the cells are irradiated

and the number of dividing cells at Tm when the cells are not irradiated. The data for

the surviving fraction is fitted well by the LQ equation [23, 29, 34]. Hence, we obtain

the following relationship:

exp
2p−q
T � Tm

� �
exp −

2
T � Tm

� �
¼ S Dð Þ ¼ exp −χ Dð Þð Þ ð27Þ

By solving Equation (27) for p, we obtain

p Dð Þ ¼ 1−
T �

3Tm
χ Dð Þ ð28Þ

The function g(D) is equal to q/Tm:

g Dð Þ ¼ χ Dð Þ
3Tm

ð29Þ

Note that Equations (28) and (29) indicate the probabilities p(0) = 1 and q(0) = 0 when

D = 0 as expected. For this study, we assumed that the dose is given by a single fraction

in duration negligible relative to the time scale in which we monitor the volume vari-

ation. Equation (28) indicates that the mitotic probability of the cell decreases from

unity to a value smaller than unity because of radiation. At the same time, the cells die

at the rate of g(D). It was assumed that the effect of the radiation on the cell killing

probability lasts for only a certain length, active radiation-effect time denoted as τrad.

In other words, after the period τrad, the probabilities p and q are back to 1.0 and 0.0,
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respectively. It is noteworthy that the total number of proliferating cells dying after

irradiation is approximately related to the survival fraction S(D) by

Z t−þτrad

t−
g Dð ÞND tð Þdt≈ 1−S Dð Þf gND t−ð Þ ð30Þ

The number of surviving cells after irradiation of the current model can be the same

as the standard model when τrad is set approximately equal to 3Tm. See Additional file 1

for details.

We assumed that the tumor growth rate is governed by Equation (15). During

the period of τrad, we set the right side of this equation to zero; thus assuming

that the volume ratio of the vascular structure and the tumor is constant while the

cells die due to the radiation effect.

Solution methods

A set of nonlinear ODEs, Equations (1, 2), (3, 4, 5), and (6, 7, 8), were numerically solved.

The initial conditions were the volume at the first radiology exam for the tumor volume

and zero for the volume of non-dividing cells. The initial value of the tumor growth rate

was obtained from the tumor doubling time, Td(0). By introducing a characteristic time

that was equal to the cell cycle time and the nominal volume of the dividing tumor cells,

those equations were non-dimensioned for the solution. The solution was obtained by the

ODE solver of MATALB, ode15s, which was developed for solving stiff ODEs (The

MathWorks Inc., Natick, MA). For the majority of cases in the current study, the

parameters were iteratively adjusted so that the temporal change of the tumor volume

obtained by the model fits the measured data the best through visual examination.

The parameter estimation was also automatically performed. To fit the mathematical

model to the measured tumor volume, we combined the least squares approach with

the simulated annealing algorithm [35]. In particular, we needed to compare the N

observed tumor volumes denoted by (y1,…, yN) and the model predicted volumes at the

corresponding times. For a set of parameters p→¼ α; θ; Td; Tclð Þ, we denoted the model

predicted volumes at the corresponding times by ŷ1 p→
� �

;…; ŷN p→
� �� �

. Then our

method for finding the best value of p→ was to solve the minimization problem:

min
p∈Γ

XN

i¼1
yi−ŷi p

→
� �n o2

ð31Þ

Here Γ is a set of feasible parameter values.

For the remainder of this study, we used that α/β = 10 days for tumor, the character-

istic time T* = 1 day, and the observation time Tm = 10 days. The active radiation

effect-time τrad is not an optimization parameter but is set to a value between 3 and

10 days. Currently, we do not know well how fast remaining alive cells grow while cells

are dying because of irradiation. Hence, it was assumed that λ is constant during the

time period of τrad and it keeps decreasing according to Equation (8) after that.

Quantitative evaluation of models

To evaluate the model performance for data fitting of the experimental data, we

calculated the mean square of differences (MSD) between the experimental data Ynf g
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and the volumes estimated by the models at the corresponding time ynf g . MSD was

defined by calculating a relative error at each measurement point. For N measurement

points of data, MSD was given by

MSD ¼ 1
N

XN
n¼1

yn−Yn

Yn

� �2

ð32Þ

In addition to MSD, the quality of models can be compared by calculating the

Akaike Information Criterion (AIC) [36]. We used the following definition of AIC:

AIC ¼ N ∙ln MSDð Þ þ 2k ð33Þ

Here, k is the number of parameters used in a model. The model parameters which

were optimized for the data fitting were α, θ, Td, Tcl, and τrad. It is noted, however, that

only α and θ were varied and Td, Tcl, and τrad were constant for modelling the volume

data of the rat experiments (see the next section), in which an experimently varied

parameter was only the dose to the tumor.

Experimental and clinical data

Rat rhabdomyosarcoma experiments

The article of Barendsen et al. [25] contains experimental data showing the tumor

volume before and after a single fraction dose of radiation. The dose levels considered

were zero (or control), 1000, 2000, 3000, and 4000 rads (or cGy). For their study,

rhabdomyosarcoma was grown in rats, which were treated either by 300 kV X-ray or

neutron beam. The data are reproduced as Figure 20.2A in the radiobiology textbook

[29]. We used the 300 kV X-ray data to test our model. It is noteworthy that the tumor

volume was measured with a caliper by visually identifying the tumor lesion since no

adequate imaging tool was readily available at that time.

Clinical examples: metastatic brain tumors treated by GKSRS

GKSRS is a common modality used to treat intracranial metastatic cancers. For GKSRS,

we deliver a large single fraction of the dose to the target by 1.25 MeV gamma rays

generated by radioactive cobalt-60 (Co-60) sources. The typical irradiation time is

about a half hour though it depends on the size of the target and the age of the Co-60

source. The typical dosage for malignant metastatic tumors increases as the tumor size

decreases [37]. GKSRS patients have at least one pre-treatment magnetic resonance

imaging (MRI) scan. The treatment plan is created with MRI data taken on the day of

the treatment. After the treatment, the patients have several follow-up MRI scans with

the first one, usually, 2 months post GKSRS. Consequently, during the course of the

treatment from the diagnosis to the termination of the follow-up, every GKSRS patient

receives several MRI scans that use the Gadolinium (Gd) -contrast enhanced T1-

weighted magnetic resonance imaging technique (CEMRI) with a spin-echo pulse

sequence. Therefore, we could collect clinical data showing the change of tumor

volumes before and after GKSRS by examining the MRI data. We selected five cases

among our patients. These cases were selected so that these can represent typical

changes of the tumor volume clinically observed with GKSRS patients. With these

clinical data, we investigated if our mathematical model could reproduce the characteristics

of the time variation of the observed tumor volume by adjusting the model parameters.
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There is a considerable uncertainty about what kind of substance is visualized with

CEMRI. It is known that the vasculature of cranial tumors is leaky and the blood–brain

barrier (BBB) breaks down [38]. Hence, the extracellular matrix around the cancer cells

can absorb the contrast agent, resulting in a contrast-enhanced volume. Meanwhile,

the area around the dead non-dividing cells produced by radiation may or may not

enhance on CEMRI. For the current study, we simply assumed that the CEMRI volume

is the sum of the dividing and non-dividing cells.

Five clinical cases analyzed for this study are summarized in Table 1. The local control

of the tumor after GKSRS are categorized into four groups: complete response (CR),

partial response (PR), stable disease (SD), and progressive disease (PD) [39]. If the size of

the tumor does not change more than 20 % after the treatment, it is designated by SD. CR

means the disappearance of the tumor. The volume change between CR and SD is

considered PR. PD indicates the treatment failure. Using this definition, the local control

status of five cases 1 to five was assigned to CR, PR, PR, SD, and PD, respectively. The

complete response which was seen in case one could be mainly due to the large mean

dose (38.3 Gy) given to the tumor in addition to other factors such as the primary tumor

type, i.e., non-small cell lung cancer. The failure of the local control of case five could be

explained by the low maximum dose and the type of the primary tumor. In fact, there is a

clinical evidence showing that 20 Gy marginal dose is not sufficient for melanoma

metastasis for local control [40].

One of the potential applications of a simple model such as ours is to discover a

predictor(s) of treatment outcome. Hence, the predictive capability of the proposed

model was examined for clinical GKSRS cases in the following way. Using the volume

data from the model, first we calculated the change in the tumor volume, R40, as the

ratio of the volume on the 40th day from GKSRS to that at the time of GKSRS. Then,

we evaluated the statistical correlation between R40 and five variables, i.e., the tumor

volume doubling time at GKSRS, Td(GKSRS), the α-value, the θ-value, the tumor

volume at GKSRS, Vtumor(GKSRS), and the mean target dose, Dmean. The correlation

was analyzed by taking the non-linear regression of the second-order polynomial

function between R40 and each of the variables. The P-value was estimated for each pair

by using the linear regression analysis tool “fitlm”, which is available in MATLAB.

Table 1 Treatment-related parameters for clinical Gamma Knife stereotactic surgery cases

Clinical case number

Parameters Unit 1 2 3 4 5

Primary cancera NSCL RCC RCC Testicular Melanoma

Prescription dose Gy 22 16 18 16 20

Prescription isodose line % 50 50 50 50 80

Maximum dose Gy 44.0 32.0 36.0 32.0 25.0

Mean dose Gy 38.3 21.2 26.0 22.0 24.3

Tumor volume at GKSRS cm^3 0.26 5.50 0.69 5.98 0.87

Tumor volume at end of follow-up cm^3 0.073 0.21 0.20 4.82 23.60

Total monitor duration days 137 680 276 106 80

Day of GKSRS from initial MRI day 34 117 13 78 29

Local controlb CR PR PR SD PD
aNSCL non-small cell lung cancer, RCC renal cell carcinoma
bCR complete response, PR partial response, SD stable disease, PD progressive disease
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Results
Rat rhabdomyosarcoma experiments

The model parameters of the rat rhabdomyosarcoma experiments are given in

Table 2. The initial tumor doubling time, Td(0), the α/β value, and the cell

clearance time, Tcl, were set to the same values for the five cases. The quality of

the parameter fitting can be seen in Fig. 2. The experimental data are shown as

points in the figure, whereas the volume changes estimated by the model are

plotted as solid lines for various dose levels, i.e., 0 (or control), 1000, 2000, 3000,

and 4000 rads. The excellent data fitting was achieved by adjusting only the α

value and the retardation factor θ for five different radiation doses. To quantify the

magnitude of radiation effect, the survival fraction, S, of the dividing cells at the

end of the active radiation period τrad was the lower and the values are shown in

the lowest row in Table 2. It is noted that the plotting of S as the function of dose

generates the typical curve obtained by the LQ model.

The model parameter optimization was also accomplished by using the simulated

annealing method for the 3000 rad case. A solution was obtained by selecting the

following feasible parameter domain Γ: α ∈(0.01, 0.2), θ∈(0, 1), Td ∈(0.5, 15), and
Tcl ∈(1, 50). We performed simulated annealing with 100000 steps to numerically

solve the minimization problem given by Equation (31). The optimal solution was

α = 0.1523 Gy−1, θ = 0.7941, Td = 1.5 days, and Tcl = 5.98 days. The residual error of

this solution was 0.4327; whereas the residual error was 0.5219 when the

parameters shown in Table 2 were used. Since the parameter values and the

fitting quality are not significantly different and the numerical parameter

optimization took much longer computing time, we decided to use the manual

iterative method to obtain the optimized values of the model parameters in the

rest of the current study.

Table 2 also shows the MSD values for five sets of the experimental data. We

did the same modeling study with the standard model. The comparison between

the two models is presented by comparing the MSD values in Additional file 2.

Table 2 Model parameters for rat rhabdomyosarcoma experiment data: the proposed modela

Parameter\Case Unit Control 1000 2000 3000 4000

α Gy−1 0.30 0.20 0.16 0.145

Dose Gy 10 20 30 40

Td(0) days 1.35 1.35 1.35 1.35 1.35

θ 0.72 0.72 0.74 0.795 0.838

Tcl days 4 4 4 4

N 11 11 19 18 14

MSDb 0.01883 0.01099 0.00816 0.00832 0.03039

AICc −59.76 −66.00 −137.31 −128.23 −75.86

Sd 1.00E + 00 9.83E-01 2.84E-01 5.38E-02 4.51E-03
aInitial volume = 0.0157 cm3. The radiation was turned on at the 11th day. The following model parameters were set constant:
α/β = 10 Gy, active radiation-effect time τrad = 8 days, cell cycle time Tcc = 1 day, colony counting time Tm = 10 days
bMean square of difference between the experimental data and the model estimated volumes
cAIC defined by Eq.(33) with k = 5. The number of data points, N, is shown in the table
dS is the fraction of surviving cells after irradiation. It is not a parameter used in the simulation model. But, it is included
in this table to show the degree of cell kill by radiation. See the text for details

Watanabe et al. Theoretical Biology and Medical Modelling  (2016) 13:6 Page 11 of 20



The results clearly indicate the superiority of the new model over the standard

model.

Clinical examples: metastatic brain tumors treated by GKSRS

The clinically observed changes of tumor volumes are presented as open circles in Fig. 3a–e.

The solid lines in the figure indicate the temporal volume change generated by the

solutions of the mathematical model developed for this study. Four parameters, α, Td(0),

Tcl, and θ were optimized for the best fit. Table 3 shows the model parameters used to

obtain these curves. Note that the radiobiological parameter α/β = 10 Gy, τrad= 8 days, and

the cell cycle time Tcc = 1 day for all cases. We assumed that the number of cell cycles in

which the survival fraction was measured to be ten, or Tm = 10 days. The dose used for the

simulation was the mean dose prescribed to the target. Due to the technical limitation, the

measured volume suffers from a large uncertainty. To assess the uncertainty of the mea-

sured tumor volume, hence, we calculated the volume of an equivalent sphere with 0.1 cm

expansion or reduction of the radius of the sphere having the same volume as the original

volume of the irregularly shaped tumor. Those values are indicated as error bars in Fig. 3.

From the model parameters shown in Tables 1 and 3 and the tumor growth patterns

seen in Fig. 3, we can make several observations:

a) The range of the α values is between 0.05 and 0.19. These values are on the smaller

side of the commonly used range between 0.1 and 0.3 for tumors.

b) The tumor volume doubling time at the time of GKSRS, Td(GKSRS), ranged from

7.9 days to 32.6 days.

c) The cell clearance time is between 10 and 40 days.

d) The vascular growth retardation factor θ is larger for the tumors that kept growing

even after GKSRS. Particularly, the continued rapid growth after the treatment seen

with case five required θ = 0.99, implying that the vasculature grew as rapidly as the

tumor volume in this tumor.

Fig. 2 Temporal change of the rat rhabdomyosarcoma tumor volume before and after irradiation. The
discrete points indicate the experimental data, whereas the solid lines show the tumor volume change
produced by the proposed model
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The results of the linear regression analyses were shown in Table 4. The P-values of

the correlation between R40 and five variables, Td(GKSRS), α, θ, Vtumor(GKSRS), and

Dmean, were 0.302, 0.026, 0.007, 0.324, and 0.817, respectively. The result indicates a

significant correlation between R40 and α or θ.

Fig. 3 Tumor volume as a function of time after the first diagnostic MRI scan. The time is in days. The
circles indicate the tumor volume measured on Gd contrast enhanced MRI of GK patients. Solid lines are
the volume variation predicted by the model. The vertical arrows indicate the time of GKSRS. The vertical
arrows indicate the time of GKSRS. The error bars of the measured volumes were obtained by calculating
the volume of an equivalent sphere with ±1 mm radius of the original volume. a case one, b case two,
c case three, d case four, and e case five
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Discussion
Cell growth model

It was demonstrated that the proposed model could reproduce the observed

growth pattern regardless the initial tumor volumes for the clinical GKSRS cases.

The initial volume doubling times of tumors, Td(0), varied from 6.0 to 29.0 days.

The volume doubling time of our model was not constant, but it increased with

increasing tumor volume. At the time of GKSRS, the doubling time ranged from

7.9 to 32.6 days. Our own clinical data for the metastatic tumors treated by

GKSRS show that the volume doubling time before GKSRS depends on the

primary tumor type and the mean values are 42.5, 66.7, and 17.1 days for NSCL,

renal cell, and melanoma, respectively [41]. The doubling time used for our model

was within the range of those clinically observed data.

One of the major assumptions made for our model was that the growth rate of

tumor volume is a function of the ratio of the volume of the tumor vascular

structure to the tumor volume. For simplicity, we assumed that the rate is linearly

proportional to the ratio of those volumes. We further assumed that the vascular

structure grows with a growth rate proportional to the tumor growth rate. The

proportionality constant is named as the vascular growth retardation factor, θ. This

factor is considered constant and the θ value was between 0.53 and 0.99 in the

clinical examples. The tumor growth rate, hence, decreases as the tumor size

increases. It is noteworthy that the current hypotheses naturally lead to the well-

known Gompertzian growth of the tumor volume.

Table 3 Model parameters for radiation response: clinical GKSRS casesa

Clinical case number

Parameters Unit 1 2 3 4 5

α 1/Gy 0.09 0.19 0.19 0.1 0.05

Tumor doubling time Td(0) days 29.0 6.0 9.0 6.6 7.8

Cell clearance time Tcl days 13.0 38.0 40.0 10.0 20.0

Retardation factor θ No dim. 0.62 0.77 0.53 0.78 0.99

Mean dose Gy 38.3 21.2 26.0 22.0 24.3

Initial volume cm^3 0.126 0.0065 0.271 0.031 0.101

Irradiation day for GKSRS day 34 117 22 78 29

Tumor volume at GKSRS cm^3 0.268 0.392 0.662 6.933 1.314

Tumor doubling time at GKSRS days 32.6 28.0 11.2 16.1 7.9

Volume ratio, R40
b 0.16 0.57 0.58 0.69 10.0

% Cell survival fraction 2.24 6.03 1.99 25.4 70.0
aIn all cases, α/β = 10, τrad = 8 days, TCC = 1 day, and Tm = 10 days
bR40 = the ration of the volume on the 40th day after GKSRS and the volume at GKSRS

Table 4 P-value for predictors of response R40
a

Predictor Td(GKSRS) α θ Vtumor(GKSRS) Dmean
b

P-value: linear 0.269 0.246 0.0950 0.652 0.720

P-value: 2nd order 0.302 0.0264 0.0073 0.324 0.817
aR40 is the ratio of the volume on the 40th day after GKSRS and the volume at the GKSRS, i.e., Vtumor(GKSRS)
bDmean is the mean dose delivered to the tumor for GKSRS
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Radiation response model

The mechanism of cell death after irradiation is adequately summarized by an excellent

review by B.G.Wouters in Chapter 3 of [23]. In response to radiation damage, cells lose

the replicative capacity and die in genetically controlled mechanisms such as apoptosis

(or programmed cell death), autophagy, senescence, and necrosis. These processes take

place right at irradiation regardless of the cell cycle phase. However, it is considered that a

major cell death mechanism in irradiated proliferating cells is a mitotic catastrophe, which

leads to the cell death due to one of the cell death mechanisms mentioned above, but at

the time of mitosis. Hence, this mechanism is also called reproductive or mitotic cell

death. Which mechanism is a dominant death process depends on the type of cells,

genetic status of the cells, and the microenvironment where the cells reside. Therefore,

for the current study, we did not differentiate these mechanisms in the model.

We do not advocate the use of the standard radiation response model for two

reasons. First, the survival fraction is a non-dimensional value and the coefficient of the

radiation term in the governing equation such as Equation (1) should have the unit of

1/Time. Second, the survival fraction was experimentally obtained by measuring the

number of growing colonies in a petri-dish sometime after the irradiation. This time

factor is not included in this expression. Hence, we proposed an alternative model,

which used a function given by Equation (29), instead. The function g(D) is the cell

killing probability that depends on the radiation dose and is inversely proportional to

the counting time of the surviving colonies, Tm, which is the time equal to about ten

cell cycles. In addition to the cell killing term, the dividing probability of cell is affected

by radiation. This is represented by the probability p(D), or Equation (28). After the

irradiation, the probabilities p(D) and q(D) remain constant for a certain period. This

implies that the cell proliferation capacity is temporarily altered and the tumor cells

continuously die during this period.

The probability of a cell to divide after irradiation, p, is represented as a function of

dose as given by Equation (28). We adopted the LQ formula to relate p with the dose

since we do not have alternative data for this relationship. However, for the parameter

optimization, p itself can be used. In other words, the LQ model has little meaning in

terms of modeling the actual radiation effects. This is one of the reasons that the α

value of the clinical cases was smaller than the normal range.

Often, tumor volume increases after the treatment. The repair capability of the non-

dividing cells, i.e., sublethal-cell repair mechanism [23, 29], helps to increase the tumor

volume after irradiation. However, this repair mechanism is not sufficient to explain

the volume growth because the repair takes place within a few hours after the

irradiation [34]. The current study showed that the surviving tumor cells after the

irradiation can explain the increase in the tumor volume. This phenomenon is often

called as “accelerated repopulation”. There is another potential mechanism, which helps

explain the tumor recurrence. It is known that tumor may be composed of proliferative

cells and cells that are slowly dividing. The latter cells termed as “cancer stem cells

(CSC)” exist for preserving self-renewal and to protect from external insults such as

chemotherapy and targeted therapies [42, 43]. It is worth pointing out here that there

is strong evidence that CSC in glial tumors may grow after irradiation [44, 45]. Explicit

modeling of this pathway was not attempted in the current study and the effect of CSC

will be investigated in the future.
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Our model was successfully fitted to the animal data. The difference among five data

sets was only the magnitude of the dose that varied from zero to 40 Gy (or 4000 rad).

These data contained many temporal data points before and after irradiation. The tumor

volume was measured visually with the aid of biopsy; hence, the uncertainty caused by the

MRI-based tumor delineation was reduced. Therefore, the application of our model to

these data is an excellent method of model testing. The results demonstrated the

soundness of the model more clearly than the results seen in the clinical cases.

Biological models and parameters

Our model has similarity to a two-component (or two-compartment) model that was

developed in the 1970s [19]. The model assumes that the tumor volume is made of

cells that are dividing (or proliferating) and cells that do not divide anymore because of

fatal radiation damage. The non-dividing cells that can be considered dead cells are

transported away from the original location with some time constant, i.e., the clearance

time. In the model, the tumor volume is a sum of those two types of cells. Hence, the

rate of tumor volume shrinkage is governed by the clearance time. The model has been

successfully applied to cervical and head-and-neck cancer cases [15–17]. We also

adopted this cell clearance model in this study.

Recently, the two-component model was extended to a three-component model that

includes a reversible state named as “cell-cycle arrest” state and denoted by C [31] in

addition to the proliferating cell (S) and dead cells in an irreversible state (P). Upon

responding to external cellular stress, the cells in state P transit to state C. Some

fraction of cells in C dies and moves to state S. However, the remaining fraction of cells

goes back to P. The transition rates between the states depend on the stress level. The

authors looked into the radiation as the stress to validate their hypothetical model.

Although the experiments were done in-vitro using human fibroblast cells, their results

suggest a possibility of another type of cell repair mechanism in addition to the

sublethally damaged cell repair. Our model can be easily extended to test those

hypothetical biological mechanisms in the future.

In this study, tumor volume was considered proportional to the number of cells by

assuming the tumor cell size does not change during the entire course of treatment.

We used the proportionality assumption to estimate the tumor volume change after

irradiation by applying the cell survival data of classic radiobiology experiments, i.e.,

the LQ model. It should be pointed out that there is an experimental evidence which

indicates a change in the cell size and the intercellular distance upon irradiation [28];

thus, leading to a breakdown of our assumption. Considering the strong dependence of

such phenomena on the microenvironment and the tumor type, however, we used the

current simplifying assumption. The effect of the cell size on the volume change will be

studied in the future.

Estimated biological parameters

The rhabdomyosarcoma experiment was done by changing only the radiation dose.

However, the best fitting of the model to the experimental data was achieved by varying

the α-value and the vascular growth retardation factor θ in addition to the dose. As the

dose increased, the α-value had to be decreased, whereas the θ-value had to increase as
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shown in Table 2. Note that the α-value is related to the survival fraction of cells, S, after

single 2 Gy exposure [34]. In fact, α = 0.145 and 0.3 with α/β = 10 lead to S = 71 and 49 %,

respectively. In other words, a smaller α value implies less effective cell killing capability

for the same dose. Thus, our modelling study suggests that the effectiveness of the

irradiation decreased as the total dose increased. Note that this result contradicts with the

standard LQ model, which would have a difficult time matching the experimental data

with a fixed alpha since the dosages are so large. The increase in the θ-value was needed

to reproduce the rapid growth of the tumor volume after irradiation. It is true that

the θ-value before irradiation should not depend on the radiation dose. However,

our model has only one θ-value. In the future model, it will be possible to assign

different θ-value before and after irradiation for the model consistency.

To accurately model the response to the radiation for the clinical cases, we had to

use α values (0.05 to 0.19 Gy−1), which are on the smaller side of the commonly

accepted range between 0.1 and 0.3 Gy−1. The reason for the small α value is not clear,

but it may be expected because the mean dose that was used for the modeling study

may not be representative for GKSRS due to the highly non-uniform nature of the dose

distributions. This warrants further investigation.

Delineation of tumor volume

In this study, we assumed that the volume visible as a contrast-enhanced area on

T1-weighted MR images indicates the tumor. There is uncertainty in the volume

delineated by this method, however. The Gadolinium contrast permeates into the

exogenous and endogenous cellular space by the blood brain barrier disruption caused by

the tumors [46]. It is a common assumption that the contrasted area contains both the

proliferating cells and the dead cells. Hence, we used the sum of the dividing and non-

dividing cells as the tumor volume to be compared with the MRI data. It is not clear,

however, if this disruption ceases to exist and BBB prevents the contrast material from

transporting into the region when the cell dies.

Future directions

Our model contains eight biological parameters, i.e., α, α/β, Td (tumor doubling time),

Tcl (cell clearance time), θ (vascular growth retardation factor), τrad (effective time of

radiation), Tcc (cell cycle time), and Tm (observation time or colony counting time).

The radiation dose is known, but there is a possibility to use the dose as an unknown

parameter because the physical dose is not uniform inside the tumor volume.

In this study, we showed that there was a significant correlation between the tumor

volume change after GKSRS, R40, and two model parameters: the α-value and the θ-value.

Since α indicates the sensitivity of the tumor to radiation, the result is easily predictable.

But, the strong correlation between R40 and the θ-value is not obvious. This may imply

that the tumor responds better to irradiation when the vascular structure grows much

slower than the tumor volume. In other words, the shortage of the vasculature slows

down or stops the regrowth of the tumor after irradiation. The current results were

obtained from only five samples; hence, the confirmation of θ as a predictor of the GKSRS

treatment outcome requires an extensive study with a much larger sample size. Such a

future study will enable us to find a correlation between the local tumor control and the
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model parameters. If these parameters can be diagnostically obtained before the

treatment, we should be able to design a patient-specific treatment by adjusting the

treatment parameter, that is, the radiation dose to achieve a favorable treatment outcome.

There is experimental evidence showing that the radiation damage to the vascular

structure may play a role in enhancing the cell killing capability of radiation for a single

large dose of irradiation [47, 48]. For the current study, we assumed the vascular

volume, Vv, changes along with the tumor volume by assuming its growth rate

proportional to the tumor growth rate. The proportional constant was given by the

retardation factor, θ. Evidence of this phenomenon was observed with the GKSRS cases

we studied as discussed in the above paragraph. To explicitly include the effect within

our current modelling framework, we can easily add another equation for Vv and

include the radiation damage effect. However, this can be done only when more data

on the magnitude of vascular damage as a function of the dose will become available.

Conclusions
We developed a simple mathematical model of tumor growth and its response to

radiation by incorporating two key characteristics: (i) the tumor growth rate decreases

as the tumor volume increases, and (ii) some radiation-damaged cells still keep dividing

for a few more cell cycles after a single pulse of irradiation.

The current model was successful in mimicking both the animal experimental data

and the clinically observed tumor volume changes. We showed that the volume

changes of five tumors of Gamma Knife stereotactic radiosurgery patients could be

fitted fairly well by using the proposed equations when appropriate model parameters

were chosen. A correlation analysis indicated a strong relation between the post-

GKSRS tumor volume change and the α and θ-values.

Further refinement of the model which includes the radiation-induced vasculature

damage is certainly desirable. Additionally, the model can be easily applied to a larger

number of patients treated for GKSRS to find predictors/biomarkers of the treatment out-

come. Such a study can confirm the importance of some of the modeling parameters

introduced in this study, in particular, the θ-value, to predict better treatment outcome.

Methods
Computational calculations

All calculations were executed on a PC using MATLAB. The code is available from the

first author.

Additional files

Additional file 1: Mathematical details. (DOCX 27 kb)

Additional file 2: Comparison of the proposed model with a traditional model. Table S1. Model parameters for rat
rhabdomyosarcoma experiment data: the old model(*). Figure S1. Temporal change of the rat rhabdomyosarcoma
tumor volume before and after irradiation. The discrete points indicate the experimental data, whereas the solid lines
show the tumor volume change produced by the old model. (DOCX 174 kb)
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