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Abstract: Magnetic induction tomography (MIT) is a powerful imaging system for monitoring the
state of metallic materials. Tomographic methods enable automatic inspection of metallic samples
making use of multi-sensor measurements and data processing of eddy current-based sensing from
mutual inductances. This paper investigates a multi-frequency MIT using both amplitude and phase
data. The image reconstruction algorithm is based on a novel spectrally-correlative total variation
method allowing an efficient and all-in-one spectral reconstruction. Additionally, the paper shows
the rate of change in spectral images with respect to the excitation frequencies. Using both spectral
maps and their spectral derivative maps, one can derive key structural and functional information
regarding the material under test. This includes their type, size, number, existence of voids and
cracks. Spectral maps can also give functional information, such as mechanical strains and their
thermal conditions and composition.
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1. Introduction

Material characterization as well as substance examination are important procedures in many
sectors. A comprehensive knowledge on a sample is desired before, during, and after a process. In the
case of a metallic target, passive electromagnetic properties such as conductivity and permeability
convey crucial information about its structural and functional traits. This leads to the employment of
inspection techniques based on electromagnetic measurements.

Eddy currents are widely used for examining a metal embodiment. Their application for
non-destructive testing has been continuously developed and adapted [1]. In addition to a direct defect
observation, electrical conductivity is also measured using the eddy current method [2,3]. Commonly,
a coil probe is employed to detect magnetic fields, primarily from an exciter and secondarily from
the target’s response, then both amplitude and phase in the induced signal are extracted to give
an indication of the target’s characteristics. The coil probe is relatively more sensitive to drastic
disruptions in the eddy current flow with high dynamic range.

The multi-frequency technique expands the capability of the single-frequency technique.
The wide-band signal can profile the structural depth inside metallic materials [4]. Therefore, it is
able to accurately examine the properties since the use of only a single lower frequency results in
a reduced signal-to-noise ratio in the detection. Furthermore, data at different frequencies can be
correlated to characterize the object under test. Some reports studied the spectral response of pulsed
eddy current [5], a multi-frequency technique for material characterization [6], and frequency sweep
and impedance normalization methods [7].
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The measurement of field and impedance variations also facilitate conductivity imaging in
materials. The inversion of inductive spectra was employed to determine characteristics such as
magnetic permeability, electrical conductivity and thickness [8]. Multiple frequency data can be
reconstructed simultaneously to exploit the correlation among conductivity distributions at different
frequencies [9]. Thus, different excitation frequencies enrich the information, improving the inverse
method, and strengthens the system against experimental noises [10].

Magnetic induction spectroscopy (MIS) is a method for measuring the conductivity spectrum
using a non-destructive and contactless technique [11]. The term was introduced in [12] which then
has been followed by subsequent works to measure the conductivity spectrum using gradiometer
coil sensors [13], utilizing differential methods [14] and signal improvement schemes [15]. The use of
inductance spectroscopy has been exploited for imaging both continuous conductivity profiles [16]
and the permeability distribution of a layered sample [17].

Applications of magnetic induction spectroscopy have been found in biological and industrial
areas. The design of a practical MIS system was reported specifically for bioelectrical impedance
spectroscopy on yeast suspension in saline, fruits and tissue [18]. Recent spectroscopic bioimpedance
measurements were described for industrial-scale agricultural produce [19]. In the medical domain,
gradiometer sensors were designed to perform in vivo spectroscopic measurements on a human
hand [20]; meanwhile electromagnetic phase-shift spectroscopy was developed to diagnose brain
oedema and brain hematoma [21]. On the other hand, industrial implementations vary from detection,
classification and characterization. Spectroscopic metal detection provides rich and distinctive
information about a target to help reduce the false alarm rate in landmine detection [22], as well as
for buried pipeline tracing in difficult terrain [23]. Additionally, the metal recycling sector requires
sorting processes, for which a classification of non-ferrous metals based on MIS was developed
in [24]. A particular frequency feature was proposed for imaging a welding cross-section [25].
Internal material structure examinations using inductance spectroscopy measurements were presented
in many investigations, such as in [26–28]. The demand for in-line monitoring of phase transformation
in the steel industry is answered by multi-frequency electromagnetic instruments [29–32].

Our previous studies on MIS deal with hardware development [33], as well as characterizing
ferromagnetic materials [34]. Various image reconstruction methods for soft field tomography
techniques have been reviewed in [35]. The Tikhonov regularization method is commonly used in
solving the MIT inverse problem. This least-square solution has disadvantages, such as an overly
smoothed image so that boundaries between samples become obscure. The use of an L1-norm
regularization, e.g., total variation (TV), can improve the MIT image quality. It is a more suitable
method for both sharp edges and high contrast. However, this method faces difficulty in low-contrast
recovery. The iterative technique has been proposed to fix the low-contrast recovery problem [36].
It provides a sequence of solutions which allows recovering the contrast lost. In this work, we aim
to inspect metallic samples with functional and structural variations. The algorithm is proposed for
spectrally correlative imaging as magnetic induction tomography spectroscopy (MITS). Spatial maps
of the conductive spectrum and its derivative are presented.

2. Experimental Setup

A multi-frequency data collection is proposed to cover a wide range of the frequency spectrum.
The experimental setup is depicted in Figure 1.

The sensors comprise eight coils arranged encircling the sensing space with diameter of 50 mm.
An individual sensor is an off-the-shelf induction coil with a self-inductance value of 0.1 mH and
0.3 Ω intrinsic resistance. Amplitude and phase measurements of mutual impedance between
sensors (transmitting-receiving coils) are acquired by an LCR meter (frequency range 20 Hz–300 kHz).
For eight-coil arrays, the switch module is introduced to accommodate 28 independent coil-pair
measurements. Synchronous operation between mutual coil selection (switch) and current-source
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with potential-sense (LCR) is controlled by the instrument programming interface on PC. It takes
approximately 10 min to collect a complete cycle of measurement.
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Figure 1. Measurement setup: (a) sketch of the sensor array and object in the sensing region, switch,
LCR meter and PC connection (signal, solid-line; control, dashed-line); (b) photograph of the system.

Background measurement is taken for free space (air) condition in the sensing region as a reference.
The amplitude spectrum is formed as the normalized mutual impedance of an object (Z) against free
space (Z0), whereas the phase spectrum is the difference between the measured phase in the presence
of an object (θ) and that of free space (θ0), shown in Figures 2 and 3.
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Figure 3. Amplitude (left) and phase (right) spectrum of a test sample plotted against the background.

For simplicity, norm values of 28 measurements are presented to show spectral plots of the
upcoming investigated cases. Fundamental plots are given for several cases: conductivity, size and
structure variations.

Figure 4 shows spectral plot for different metallic samples whose conductivity are varied. From the
highest to the lowest are copper (58.4 MS/m), aluminum (26.3 MS/m), brass (16.1 MS/m) and Galinstan
(3.2 MS/m). The left vertical axis is the normalized amplitude for the solid-line plot, while the phase
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difference for the dashed-line plot is on the right axis. The inclinations (for amplitude) and peaks
(for phase) are distributed following the respective conductivity values.
Materials 2020, 13, 2639 4 of 22 

 

 
Figure 4. Spectral plot for metallic samples (conductivity variations). Solid line for amplitude ratio 
(left vertical axis); dashed line for phase difference (right vertical axis). 

Figure 5 shows spectral plot of aluminum rods with different diameter (small = 0.25 inch, large 
= 0.5 inch). Both amplitude and phase curves have larger scales for a larger object’s size. 

 
Figure 5. Spectral plot for size variations. Solid line for amplitude ratio (left vertical axis); dashed line 
for phase difference (right vertical axis). 

Figure 4. Spectral plot for metallic samples (conductivity variations). Solid line for amplitude ratio
(left vertical axis); dashed line for phase difference (right vertical axis).

Figure 5 shows spectral plot of aluminum rods with different diameter (small = 0.25 inch,
large = 0.5 inch). Both amplitude and phase curves have larger scales for a larger object’s size.
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Figure 6 shows spectral plot of aluminum samples with different structures: pipe (hollow cylinder
with outer diameter 0.5 inch and inner diameter 0.4 inch), pipe (as previous) with 0.25 inch aluminum
rod inside, and solid aluminum rod 0.5 inch. There are no significant differences in amplitude curves,
whereas in phase curves, peaks’ signatures reveal distinct fashions according to the object’ structures.
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Spectral data measured from coil arrays are then transformed into imaging domain utilizing
reconstruction technique in magnetic induction tomography. The 2D spatial position is evaluated
along the diameter across the centre (see Figure 1). Therefore, it turns into 1D values of image
versus frequencies.
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3. Sensor Modelling

MIT utilizes an array of inductive coils, distributed equally around an imaging region, to visualize
the electromagnetic property distribution of the electrical conductivity of an imaging subject.
The imaging principle is based on the laws of induction and eddy currents which are induced
in an AC magnetic field [37]. The formulation can be obtained from the Maxwell’s equations [38,39]:

∇×
1
µ
∇×A + jωσA = Js (1)

where ω is the angular frequency, µ is the permeability, A is the total magnetic vector potential as
a result of the effect of eddy current induced by the electrical conductivity σ and the current source Js.

Equation (1) can be solved by approximating the system as a combination of linear equations in
small elements with appropriate boundary conditions using the Galerkin’s approximation [40]:∫

Ωc+Ωs

(
∇×Ni·

1
µ
∇×A

)
dv +

∫
Ωc+Ωs

( jωσNi·A)dv =

∫
Ωs

(∇×Ni·Ts)dv (2)

where Ts is the electric vector potential and Js = ∇× Ts, Ni is the linear combination of edge shape
functions, and ΩC and ΩS are the eddy current region and current source region or excitation coil
region, respectively.

The right-hand side of Equation (2) can be solved with the aid of Biot–Savart Law. When J0 is
the unit current density passing through coil, the measured induced voltage in sensing coil can
be calculated:

Vmn = − jω
∫

Ωs

(A·J0)dv (3)
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Then Jacobian matrix can be formulated by:

J =
∂Vmn

∂σx
= −ω2

∫
Ωx

Am·Andv

I
(4)

where σx is the conductivity of pixel x and Ωx is the volume of the perturbation, An is the forward
solver of sensor coil excited by unit current, Am is the forward solver of excitation coil m excited with I.
Amplitude and phase Jacobian are given:

Jamp =
Vr Jr + Vi Ji

|V|
(5)

Jphs =
Vr Ji −Vi Jr

|V|2
(6)

where Vr and Vi are real and imaginary part of the measurement voltage. If we reconstruct real
and imaginary part of the impedance, then real and imaginary part of J in Equation (4) can be used.
For forward modelling, we used non-ferrous materials, which means relative permeability of 1,
and conductivity according to the metal sample.

4. Spatio-Spectral Image Reconstruction Algorithm

The linear inverse problem in MITS can be defined as the recovery of a change in complex
conductivity ∆σ from a change in measured data ∆u, where ∆u = J∆σ. The Jacobian J is computed
by the Fréchet derivative of u with respect to σ [41]. The complex conductivity includes the resistive
component and reactive component of the admittivity of the samples under test. In this case,
a reference boundary voltage u0 is available, where u0 = F(σ0), ∆u = u − u0, and ∆σ = σ − σ0.
Measured data in this case is real and imaginary part of mutual inductance, or amplitude and phase of
the mutual inductance.

In spectral imaging, the unknown conductivity changes and data are multidimensional. Let us
redefine ∆σ = [∆σ1, . . . , ∆σI] and data ∆u = [∆u1, . . . , ∆uI], where ∆u = J̃∆σ, for i = 1, . . . , I, and I is
the number of spectral frames. It is common to recover each frame independently, but this is not
optimal, as it does not exploit redundant information across frames. In this case, previous works have
defined the inverse problem as follows [42]:

argmin
∆σi

φ(∆σi) s.t. ‖J∆σi − ∆ui‖
2
2 ≤ δ, ∀ i = 1, . . . , I (7)

where φ(∆σi) is a convex regularization functional that carries a priori information of the unknown
conductivity distribution for a single frame.

This paper proposes a spatio-spectral reconstruction framework that exploits regularization [43].
Spatio-spectral total variation is implemented as MIT images can be well approximated by a piecewise
constant function and consecutives frames are expected to be similar. This allows to exploit redundant
information across consecutive frames. The spatio-spectral total variation problem can be written as
follows [44,45]:

argmin
∆σ
‖∇x,y,z∆σ‖1 + ‖∇ f ∆σ‖1 s.t. ‖J̃∆σ− ∆u‖22 ≤ δ (8)

where first and second terms correspond to isotropic spatial TV and spectral TV functional, respectively,
and where ∆σ represents a spectrally correlated conductivity distribution and J̃ is an augmented
Jacobian operating on a frame-by-frame basis.
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The constrained optimization problem (Equation (7)) can be solved using the split Bregman
formulation, which efficiently handled constrained optimization and L1-regularization [46,47].
Using the Bregman iteration, the constrained problem (Equation (7)) is converted to an iterative scheme:

∆σk+1 = argmin
∆σ
‖∇x,y,z∆σ‖1 + ‖∇ f ∆σ‖1 +

I∑
i=1

µ

2
‖J̃∆σ− ∆uk

‖
2
2 (9)

∆uk+1 = ∆uk
− J̃∆σ

k+1
+ ∆u, (10)

where Equation (8) is an unconstrained optimization problem and Equation (9) is a Bregman iteration
that imposes the constraint iteratively. The cost function in Equation (8) is still difficult to minimize
given the non-differentiability of the TV functional, but this can be easily done with a splitting technique.
Including auxiliary variables allow splitting L1- and L2-functional in such a way that they can be
solved in separate steps in an easy manner. Images ∆σ are given analytically by solving a linear
system and L1-functional are solved using shrinkage formulae. To perform the split, we include
dx = ∇x, dy = ∇y, dz = ∇z, d f = ∇ f , so Equation (8) becomes:(

∆σk+1, dx, dy, dz, d f
)
= arg min

∆σ,dx,dy,dz,d f
‖

(
dx, dy, dz

)
‖

1
+ ‖d f ‖1 +

µ
2 ‖ J̃∆σ− ∆uk

‖
2
2

st. di = ∇i∆σ,
(11)

Constraints in Equation (10) can be handled using the Bregman iteration as above, which leads to
the following iterative scheme:µJ̃T J̃ + λ

∑
i=x,y,z, f

∇
T
i ∇i

∆σk+1 = µJ̃T∆uk + λ
∑

i=x,y,z, f

∇
T
i

(
bk

i − dk
i

)
(12)

dk+1
i = max

(
pk
−

1
λ

, 0
)∇i∆σk+1 + bk

i

pk
, for i = x, y, z (13)

pk =

√ ∑
i=x,y,z

∣∣∣∇i∆σk+1 + bk
i

∣∣∣2 (14)

dk+1
f = max

(∣∣∣∣∇ f ∆σk+1 + bk
f

∣∣∣∣− 1
λ

, 0
) ∇ f ∆σk+1 + bk

f∣∣∣∣∇ f ∆σk+1 + bk
f

∣∣∣∣ (15)

bk+1
i = bk

i +∇i∆σk+1
− dk+1

i , for i = x, y, z, f (16)

∆uk+1 = ∆uk + ∆u− J̃∆σk+1 (17)

Equation (11) is a linear system that can be solved efficiently using a Krylov solver [44,45,48],
such as the bi-conjugate gradient stabilized method, which involves only matrix-vector multiplications.
Number of Bregman iteration and other imaging parameters are selected empirically.

Distinct information is extracted from the data, where (for example) amplitude gives conductivity
level; phase reveals structural detail. Therefore, both data are used and can complement each other.
Method to combine amplitude and phase data and/or image is necessary. An example of image fusion
procedure is illustrated in Figure 10.
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Figure 10. Flowchart of image fusion procedure from amplitude and phase reconstructions. 

5. Results and Analysis 

Images were reconstructed for different circumstances of metallic materials: a single conductive 
sample, different samples at different positions, and non-conductive inclusion in a conductive body. 
For each condition, a contrast is observed in both measurement data and its spectral derivative. 
Spatial reconstruction along the frequency is also given. Due to either measurement setup or ambient 
disturbance, the noise will be present in the data (especially at low frequency). Therefore, additional 
smoothing is applied. 

5.1. Single Metal Sample 

Figures 11–14 show the spectral profiles and the derivative of spectral profile with respect to the 
frequency for various metal samples. All samples are of the same size and located at the centre of the 
imaging area. These are the images using phase data from mutual inductance. The maxim phase 
profile coincides with when the derivative profile goes down to 0. The frequency for which the phase 
profile is its maximum and the derivative tends to 0 is an indicator of the electrical conductivity of 
the test sample. 

 

Figure 10. Flowchart of image fusion procedure from amplitude and phase reconstructions.

5. Results and Analysis

Images were reconstructed for different circumstances of metallic materials: a single conductive
sample, different samples at different positions, and non-conductive inclusion in a conductive body.
For each condition, a contrast is observed in both measurement data and its spectral derivative.
Spatial reconstruction along the frequency is also given. Due to either measurement setup or
ambient disturbance, the noise will be present in the data (especially at low frequency). Therefore,
additional smoothing is applied.

5.1. Single Metal Sample

Figures 11–14 show the spectral profiles and the derivative of spectral profile with respect to the
frequency for various metal samples. All samples are of the same size and located at the centre of
the imaging area. These are the images using phase data from mutual inductance. The maxim phase
profile coincides with when the derivative profile goes down to 0. The frequency for which the phase
profile is its maximum and the derivative tends to 0 is an indicator of the electrical conductivity of the
test sample.

Materials 2020, 13, 2639 9 of 22 

 

 
Figure 10. Flowchart of image fusion procedure from amplitude and phase reconstructions. 

5. Results and Analysis 

Images were reconstructed for different circumstances of metallic materials: a single conductive 
sample, different samples at different positions, and non-conductive inclusion in a conductive body. 
For each condition, a contrast is observed in both measurement data and its spectral derivative. 
Spatial reconstruction along the frequency is also given. Due to either measurement setup or ambient 
disturbance, the noise will be present in the data (especially at low frequency). Therefore, additional 
smoothing is applied. 

5.1. Single Metal Sample 

Figures 11–14 show the spectral profiles and the derivative of spectral profile with respect to the 
frequency for various metal samples. All samples are of the same size and located at the centre of the 
imaging area. These are the images using phase data from mutual inductance. The maxim phase 
profile coincides with when the derivative profile goes down to 0. The frequency for which the phase 
profile is its maximum and the derivative tends to 0 is an indicator of the electrical conductivity of 
the test sample. 

 

Figure 11. Spectral profile and its derivative (data and reconstructed image values) for a 0.25 inch
copper rod (σ = 58.4 MS/m).
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Figure 12. Spectral profile and its derivative (data and reconstructed image values) for a 0.25 inch
aluminum rod (σ = 26.3 MS/m).
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(σ = 16.1 MS/m) rod 0.25 inch.
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Figure 14. Spectral profile and its derivative (data and reconstructed image values) for liquid GaInSn 
(σ = 3.2 MS/m) in a 0.25 inch tube. 

It can be seen for different samples with different conductivity levels that there are value shifts 
in phase spectra. The signatures’ locations are marked in spectral derivative data/images, where zero 
values indicate the extremes of the norm data or the respective reconstructed images. 

5.2. Different Samples at Different Locations 

The distribution of different samples at different locations is evaluated. Figure 15a shows a more 
conductive sample (copper) at position = 10 and less conductive sample (brass) at position = 40. In 
the reconstructed image, there are two distinct regions depicting the objects, one starts at lower 
frequency (for higher conductive), whereas the other (for lower conductive) lies at higher frequency. 
In the spectral derivative there is pronounce line cutting-through ‘position’ that shows the location 
of both samples, initiating from a more conductive sample at bottom position, then it turns to a less 
conductive sample at top position. 

Figure 14. Spectral profile and its derivative (data and reconstructed image values) for liquid GaInSn
(σ = 3.2 MS/m) in a 0.25 inch tube.

Norm of measurement data (ndata) and spectral derivative (dndata/df ), with the respective spatial
reconstruction from data (image) and spectral derivative (df ) are given. For reconstruction figures
(top), vertical axis is spatial cross-section (pixelated) where position = 0 is the location of sensor coil 1;
and position = 50 is that of sensor coil 5. The horizontal axis represents frequency points associated
with the horizontal log(freq) axis of the bottom figures.

It can be seen for different samples with different conductivity levels that there are value shifts in
phase spectra. The signatures’ locations are marked in spectral derivative data/images, where zero
values indicate the extremes of the norm data or the respective reconstructed images.

5.2. Different Samples at Different Locations

The distribution of different samples at different locations is evaluated. Figure 15a shows a more
conductive sample (copper) at position = 10 and less conductive sample (brass) at position = 40. In the
reconstructed image, there are two distinct regions depicting the objects, one starts at lower frequency
(for higher conductive), whereas the other (for lower conductive) lies at higher frequency. In the
spectral derivative there is pronounce line cutting-through ‘position’ that shows the location of both
samples, initiating from a more conductive sample at bottom position, then it turns to a less conductive
sample at top position.

Figure 15b shows three samples (two at both edges, one at centre) the lowest conductive sample
(brass) at position = 10, moderate conductive sample (aluminum) at position = 25, and the highest
conductive sample (copper) at position = 40. In the reconstructed image, there should be three different
regions representing the objects. However, due to non-uniformity in the sensitivity (highest at near
sensors, lower at central region) and further affected by regularisation, the object in the middle is
obscure. Still there is an inclined line in the spectral derivative that shows the gradation from low
conductive (bottom position), mid-range (centre) to high conductive (top position).
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Figure 15. Spectral profile and its derivative (data and reconstructed image values) for (a) copper (σ 
= 58.4 MS/m) rod 0.25 inch at pos = 10 and brass (σ = 16.1 MS/m) rod 0.25 inch at pos = 40; (b) brass (σ 
= 16.1 MS/m) rod 0.25 inch at pos = 10, aluminum (σ = 26.3 MS/m) rod 0.25 inch at pos = 25, and copper 
(σ = 58.4 MS/m) rod 0.25 inch at pos = 40. 

Figure 15. Spectral profile and its derivative (data and reconstructed image values) for (a) copper
(σ = 58.4 MS/m) rod 0.25 inch at pos = 10 and brass (σ = 16.1 MS/m) rod 0.25 inch at pos = 40; (b) brass
(σ = 16.1 MS/m) rod 0.25 inch at pos = 10, aluminum (σ = 26.3 MS/m) rod 0.25 inch at pos = 25,
and copper (σ = 58.4 MS/m) rod 0.25 inch at pos = 40.
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5.3. Non-Conductive Inclusion in Conductive Liquid

Particular case likely to be found in the pratical applications is the presence of non-conductive
substance in a conductive body.

An eutectic GaInSn alloy (σ = 3.2 MS/m) was prepared in a one-inch diameter tube. A wood cube
(s = 1 cm) is immersed on the side of the tube (position = 10 relative in sensing region). This makes
up a conductive body with inner void. Figure 16 shows spectral recostruction and its derivative.
It is obvious in the image, there is low value centering around 40 kHz which indicates the void.
This corresponds to a zero-valued line occurs between high-valued contours in the spectral derivative.
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Figure 16. Spectral profile and its derivative (data and reconstructed image values) for wood cube
1 cm3 at pos = 10 in liquid GaInSn 35 mL 1 inch tube.

Three plastic rods (diameter = 0.25 inch) are inserted in the liquid metal tube, located at centre
and both edges (position 10, 25 and 40) to construct multiple structural void in a conductive body.
In Figure 17, spectral image reveals an elongated low-valued region from spatial positions 10–40.
This should indicate the three inclusions, yet the sensitivity and regularisation effect fail to separate
those voids. Accordingly, in the spectral derivative, there is a distinct zero-valued line at around
40 kHz cutting along the spatial position.
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Figure 17. Spectral profile and its derivative (data and reconstructed image values) for plastic rods 
0.25 inch at pos = 10, pos = 25, pos = 40 in liquid GaInSn 35 mL in a one-inch tube. 

5.4. Spectral Derivative for Structural and Functional Classification 

Taking curve characteristics in Section 2, spectral gradient is applied to correlate metallic object 
circumstances with the respective image spectrums. The following Figures 18–20 show spectral 
gradient of amplitude (Z) and phase (θ) reconstruction. 

 
Figure 18. Z (left) and θ (right) spectral gradient (df) metallic samples with conductivity variations. 

Figure 18 illustrates spectral derivative for amplitude and phase reconstructions from single 
sample with different conductivity levels (GaInSn, brass, aluminum and copper) at fixed position (Y 
= 25). Both amplitude and phase can be indications of different conductivity following particular 
location along the horizontal (frequency) axis. Peak values are the indicator on amplitude spectrum, 
whereas zero-valued lines across spatial (vertical) axis are the marker on phase spectrum. 

Figure 17. Spectral profile and its derivative (data and reconstructed image values) for plastic rods
0.25 inch at pos = 10, pos = 25, pos = 40 in liquid GaInSn 35 mL in a one-inch tube.

5.4. Spectral Derivative for Structural and Functional Classification

Taking curve characteristics in Section 2, spectral gradient is applied to correlate metallic object
circumstances with the respective image spectrums. The following Figures 18–20 show spectral
gradient of amplitude (Z) and phase (θ) reconstruction.
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Figure 18. Z (left) and θ (right) spectral gradient (df) metallic samples with conductivity variations.

Figure 18 illustrates spectral derivative for amplitude and phase reconstructions from single
sample with different conductivity levels (GaInSn, brass, aluminum and copper) at fixed position
(Y = 25). Both amplitude and phase can be indications of different conductivity following particular
location along the horizontal (frequency) axis. Peak values are the indicator on amplitude spectrum,
whereas zero-valued lines across spatial (vertical) axis are the marker on phase spectrum.
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Spectral gradient for aluminum rod with different diameter (small = 0.25 inch, large = 0.5 inch) 
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Figure 20. Z (left) and θ (right) spectral gradient (df) metallic structures. 

Three different structures are arranged from the same material (aluminum): pipe (hollow 
cylinder with outer diameter 0.5 inch and inner diameter 0.4 inch), pipe with 0.25 inch solid rod 
inside, and solid rod 0.5 inch. In the experiment, they are fixed at the centre (Y = 25) of sensing region. 
Figure 20 shows the respective gradient of amplitude and phase spectra. Aside from scrutinizing the 
value, it is difficult to distinguish the structure directly from spectral derivatives. Hence, the 
underlying Z-θ is further examined. 

From only amplitude or phase spectrum as in Figure 21, it is also difficult to distinguish between 
structures. Therefore, normalised amplitude and phase images are combined (referring to method in 
Figure 10) to reveal both object conductivity (pronounce in amplitude image) and inner structure 
(phase signature). 
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Figure 20. Z (left) and θ (right) spectral gradient (df) metallic structures.

Spectral gradient for aluminum rod with different diameter (small = 0.25 inch, large = 0.5 inch) at
the centre region is plotted in Figure 19. While it is not straightforward from locus spectrum, the size
variations can be inferred from the area of high-valued pixels. Larger area is associated with a larger
sample and vice versa.

Three different structures are arranged from the same material (aluminum): pipe (hollow cylinder
with outer diameter 0.5 inch and inner diameter 0.4 inch), pipe with 0.25 inch solid rod inside, and solid
rod 0.5 inch. In the experiment, they are fixed at the centre (Y = 25) of sensing region. Figure 20
shows the respective gradient of amplitude and phase spectra. Aside from scrutinizing the value, it is
difficult to distinguish the structure directly from spectral derivatives. Hence, the underlying Z-θ is
further examined.

From only amplitude or phase spectrum as in Figure 21, it is also difficult to distinguish between
structures. Therefore, normalised amplitude and phase images are combined (referring to method
in Figure 10) to reveal both object conductivity (pronounce in amplitude image) and inner structure
(phase signature).
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Figure 22 shows subtraction of normalised phase spectrum from normalised amplitude spectrum.
It can be seen that the negative spectral region is associated with the inner structure; while the positive
value corresponds to the conductivity level. The interpretation of this spectral image fusion example
can assist the subsequent post-processing to determine the object condition.

Materials 2020, 13, 2639  16 of 22 

 

Figure 21. Z‐θ spectrum metallic structures: hollow, hollow‐with‐inclusion, solid. 

Figure  22  shows  subtraction  of  normalised  phase  spectrum  from  normalised  amplitude 

spectrum. It can be seen that the negative spectral region is associated with the inner structure; while 

the positive value corresponds  to  the conductivity  level. The  interpretation of  this spectral  image 

fusion example can assist the subsequent post‐processing to determine the object condition. 

 

Figure  22.  Combination  of  normalised  Z‐θ  spectrum  metallic  structures:  hollow,  hollow‐with‐

inclusion, solid. 

5.5. Complex Plot from Reconstruction 

Analogous  to Cole‐Cole model  [49]  and dielectric  spectroscopy  [50],  complex plots  are  also 

generated using reconstruction values to represent the behaviour. Region (group of pixels) making 

up the object is chosen for every investigated case where real and imaginary parts of the image are 

taken into account. Mean of pixel values in the region produces the following complex plots. 

It can be seen from Figure 23 that metallic samples with different conductivity levels have similar 

shapes with different foci and vertices in the impedance plane. Here we allocate the horizontal axis J 

for imaginary value; the vertical axis I for real value. The plot starts from lower frequency near the 

origin (0,0) and curves to high frequency at the other end. 

Figure 22. Combination of normalised Z-θ spectrum metallic structures: hollow, hollow-with-
inclusion, solid.

5.5. Complex Plot from Reconstruction

Analogous to Cole-Cole model [49] and dielectric spectroscopy [50], complex plots are also
generated using reconstruction values to represent the behaviour. Region (group of pixels) making up
the object is chosen for every investigated case where real and imaginary parts of the image are taken
into account. Mean of pixel values in the region produces the following complex plots.

It can be seen from Figure 23 that metallic samples with different conductivity levels have similar
shapes with different foci and vertices in the impedance plane. Here we allocate the horizontal axis J
for imaginary value; the vertical axis I for real value. The plot starts from lower frequency near the
origin (0,0) and curves to high frequency at the other end.
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Figure 24 represents structural circumstances of the aluminum body. The complex plots have the
same shape with increasing vertices. The solid structure has the lowest vertex and the nearest focal
point relative to the origin, while the pipe structure has the highest vertex. The vertex level of the pipe
with the rod is between that of the solid and pipe, but it has the farthest focal point.
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As for size variations (aluminum with diameter of: small = 0.25 inch, large = 0.5 inch), Figure 25
shows an obvious difference on the curves’ sizes.
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The complex plot for the conductive liquid GaInSn with void distribution is depicted in Figure 26a.
It is shown that although the curves’ shape are similar due to the embodiment of liquid metal, the level
and inclination are varied for a single void and three distributed voids, respectively. This corresponds
to the setup in Section 5.3. Focusing on 1 void a wooden cube inside of liquid metal, we can depict the
cole-cole plot in three set of data, one pure metal from air background, one wood and liquid metal from
air background, and finally liquid metal when the reference data is liquid metal including wooden
block. Figure 26b shows various plots in these three situations.
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Figure 26. (a) Complex plot of the impedance for inclusions; (b) focusing on one void, but various
background data.

The circumstances in Section 5.2 are plotted in Figure 27, taking the position of the sample in
sensing region and evaluating their values in the confined area. For two different samples (a), the plot
shows each curve that follows the trend in Figure 23 (copper and brass). However, for three samples
(b), the curves are tilted to the side; still, each focal point and vertex are consistent with the trend for
the samples with different conductivity levels.
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Figure 27. Complex plot of impedance for different samples at different locations: (a) two samples at
left and right side; (b) three samples located at left, centre and right side.

6. Conclusions

This work offers an introduction to a spectrally-correlative MITS using both amplitude and phase
data. Image reconstruction is plotted along a wide bandwidth with sufficient resolution, and its
frequency derivative is exposed. Samples with conductivity, size, location and internal structure
variations have been investigated. When a lower conductive sample, such as GaInSn, is mixed
with a non-conductive sample the signature frequency is pushed slightly higher. Therefore, if lower
conductive metals are of interest, the measurement must go to a higher frequency range to capture that
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effect. As opposed to a more conductive contrast (i.e., aluminum structure variations), the result shows
that it is not the case as aluminum is much more conductive relative to the inner structure (air).

Although we used a TV (in fact, a spectral TV), which normally gives a sharp and clear image,
in our iterative TV process we did not aim for a very sharp (near binary) image. There is a reason for
this: if one obtains a very sharp boundary, one starts losing quantitative consistency with the measured
data. Thus, the iterative TV is a good choice that gives a good balance between the image quantitative
information and shapes. Image quantitative information is key in this study as it forms the basis of
our complex Cole-Cole plots. Having said that, for future study more work needs to be conducted
on hyperparameter tuning as when dealing with complex data and images in such a wide range of
frequency. Additionally, for this wide frequency range, it is challenging to assign a parameter set that
works very well in all these ranges. In our study, we had to maintain uniformity of these parameters
so that we could produce reliable quantitative values. The same can be said for the measured data,
as future studies will need to evaluate the noise performance for different frequencies, which may vary
for real and imaginary parts.

The paper proposes the spatio-spectral method to characterize a metallic object in terms of
electromagnetic and structural properties. The algorithm is explained and supporting experimental
works are described. We have also presented complex plots from reconstruction which comprehensively
indicate functional and structural behaviours in the metallic materials. This research is contributive in
the context of eddy current, imaging, and induction spectroscopy of materials as significant information
for characterization techniques.
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