Clinical and Experimental Dental Research

Open Access

Efficacy of stem cells on the healing of peri-implant defects:
systematic review of preclinical studies

Ménica Yuri Orita Misawa’, Guy Huynh-Ba?, Gustavo Machado Villar' & Cristina Cunha Villar'2

"Division of Periodontics, Department of Stomatology, School of Dentistry, University of Sdo Paulo, Sao Paulo, Brazil
“Department of Periodontics, University of Texas Health Science Center at San Antonio Dental School, San Antonio, Texas, USA

Keywords

Animal experimentation, bone formation,
dental implants, mesenchymal stem cells,
systematic review.

Correspondence
Cristina Cunha Villar, Division of Periodontics,
Department of Stomatology, School of

Dentistry, University of Sao Paulo, Avenida Prof.

Lineu Prestes, 2227, Sao Paulo 05508-000,
Brazil.

Tel: + 55 (11) 2648-8055

Fax: + 55 (11) 3091-7833

E-mail: villar@usp.br

Received: 24 August 2015; Revised:
23 November 2015; Accepted:
30 November 2015

doi: 10.1002/cre2.16

Introduction

Abstract

This systematic review considers the evidence from animal studies evaluating the
effectiveness of mesenchymal stem cells (MSC) in the treatment of intraoral peri-
implant defects. MEDLINE, EMBASE, and LILACS databases were searched for
quantitative preclinical controlled animal model studies that evaluated the effect
of MSC on bone healing at intraoral peri-implant bone defects. The primary out-
come was the amount of (re-)osseointegration reported as bone-to-implant con-
tact in the defect area. The systematic review was conducted according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement
guidelines. Ten studies met the inclusion criteria. Only one study induced peri-
implant inflammation to produce peri-implant bone defects. In all others, defects
were surgically created at implant installation. Differences in defect morphology
were identified among the studies. Both xenogenous and autogenous MSC were
used to treat peri-implant defects. These included bone marrow-derived MSC,
periodontal ligament-derived MSC, umbilical cord MSC, bone marrow-derived
mononuclear cells, and peripheral blood mononuclear cells. Meta-analysis was
not possible because of heterogeneities in study designs. Nonetheless, in most
studies, local MSC implantation was not associated with adverse effects and
had a positive effect on bone healing around peri-implant defects. Combination
of MSC with membranes and bioactive factors appears to provide improved
treatment outcomes. In large animal models, intraoral use of MSC may provide
beneficial effects on bone healing within peri-implant defects. The various de-
grees of success of MSC in peri-implant bone healing are likely to be related to
the use of cells from various populations, tissues, and donor species. However,
human safety and efficacy must be demonstrated before its clinical use can be
considered.

situations may be represented by bone defects around
immediate implants (Capelli et al. 2013, Vignoletti and

Dental implant therapy is a well-accepted treatment modality
among clinicians and academicians to replace missing teeth
(Mertens et al. 2012; Ostman et al. 2012; Pjetursson et al.
2005). The prerequisite for implant success is, on the short
term, the presence of direct bone-to-implant contact (BIC)
following healing and, on the long term, maintenance
of osseointegration with minimal bone loss over time
(Albrektsson et al. 1986). Initially, it was suggested that
implants should be placed in healed ridges with adequate
amounts of bone. Developments over time have allowed
to successfully address more challenging clinical situa-
tions where insufficient amount of bone is present. Such

Sanz 2014), insufficient alveolar ridge width (Benic and
Hiammerle 2014, Wachtel et al. 1991), and defects
resulting from peri-implantitis lesions (Heitz-Mayfield
and Mombelli 2014).

While different bone grafting materials have been imple-
mented in the treatment of the aforementioned peri-implant
bone defects, autogenous grafts have the unique ability to form
bone by osteogenesis, osteoinductivity, and osteoconductivity
and may therefore be considered as a gold standard for bone
regeneration (Kao and Scott 2007). However, this advantage
is counterbalanced by the limited amounts that may be
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available for harvesting and need for a second surgical site that
is associated with potential patient morbidities (Nkenke and
Neukam 2014). Alternatives including allografts, xenografts,
and alloplastic material have demonstrated only limited regen-
erative potential at best. Therefore, an ideal treatment alterna-
tive would overcome the shortcomings of autogenous grafts
while maintaining similar regenerative properties. Such an al-
ternative may be represented by tissue-engineering therapies.

Tissue-engineering therapy is widely applied in the med-
ical and dental fields to regenerate the function of lost or
damaged tissue. To achieve this goal tissue-engineering
strategies rely on a triad, which encompasses cells with re-
generative potential (i.e., stem cells), signaling molecules
such as growth factors, and a biocompatible matrix serving
as a scaffold (Langer and Vacanti 1993). Recent advances
in tissue-engineering strategies led to the development of
living cell-based therapies to regenerate lost or damaged
tissues, including myocardial tissue (Genovese et al.
2007), long bones (Bueno and Glowacki 2009), and skin
(El-Mesallamy et al. 2014). In the dental field, reconstruc-
tion of the craniofacial skeleton and the temporomandibu-
lar joint (Shanti et al. 2007), regeneration of the pulpal
(Hargreaves et al. 2013), and periodontal tissues (Hynes
et al. 2012; Pejcic et al. 2013) and bone regeneration
(Nishimura et al. 2012) illustrate a few applications of
cell-based therapies. Mesenchymal stem cells (MSC) are
non-hematopoietic progenitor cells that have the ability
to differentiate into distinct mesenchymal cell lineages, in-
cluding into osteoblastic lineages. Accordingly, MSC rep-
resent a promising alternative to bone grafts in the
treatment of intraoral peri-implant defects, and its effec-
tiveness will be evaluated in the present systematic review.

Material and Methods

Focused question

We conducted a systematic review of the literature to ad-
dress the following focused Patient, Intervation, Control,
Outcome (PICO) question: “In animal models, do mesen-
chymal stem cells improve bone healing at intraoral peri-
implant bone defects, as compared to controls?”

This systematic review was conducted according to the
Preferred Reporting Items for Systematic Reviews and
Meta-analyses statement guidelines (Liberati et al. 2009).

Eligibility criteria
Type of studies

Only preclinical controlled animal model studies using MSC
for the treatment of intraoral peri-implant bone defects were
eligible for this review.
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Study population

The population of interest for this review included large
animals with no systemic conditions or genetic modifications.

Type of intervention and type of comparison

Treatment of intraoral peri-implant bone defects using
MSC (test group) was compared with control treatments.
The protocol of control groups varied according to the
type of intervention in each study.

Outcome measures

The primary outcome was the amount of (re-)osseointegration
of the implant reported as BIC in the defect area. The secondary
outcome variable was new bone formation within peri-implant
defects.

Search strategy

Search strategies were developed for MEDLINE, EMBASE,
and LILACS databases. Medical subject headings terms and
keywords were combined with Boolean operators and used
to search the databases. All searches were performed without
language restriction, up to March 2015. The following key-
words and medical subject headings terms were used ((((stem
cells OR mesenchymal dental cells OR mesenchymal dental
follicle OR mesenchymal dental papilla OR mesenchymal
dental stem OR mesenchymal derived OR mesenchymal dif-
ferentiation OR mesenchymal epithelial OR mesenchymal fi-
broblast OR mesenchymal fibroblastic OR mesenchymal like
OR mesenchymal lineage OR mesenchymal multipotent OR
mesenchymal odontoblasts OR mesenchymal origin OR
mesenchymal papilla OR mesenchymal soft tissue OR mes-
enchymal stem OR mesenchymal stem/precursor cells OR
mesenchymal stem/progenitor cells OR mesenchymal
stem/stromal cells OR mesenchymal stem cell OR mesen-
chymal stem cell derived OR mesenchymal stem cell like
OR mesenchymal stem cell MSC OR mesenchymal stem
cell MSCS OR mesenchymal stromal cells OR dental pulp
stromal OR periodontal ligament like OR periodontal lig-
ament stem OR periodontal ligament stromal cells OR
periodontal mesenchymal cells OR periodontal ligament
progenitor OR periodontal ligament cells OR gingival
margin derived cell OR periapical follicle cells OR dental
follicular cells OR dental follicle cells OR dental follicle
precursor cells OR dental follicle progenitor cells OR den-
tal follicle stem OR oral mucosa stem cells OR bone mar-
row cells OR bone marrow derived OR bone marrow stem
OR bone marrow stroma OR IPS cell OR adipose mesen-
chymal stem OR adipose MSCS OR adipose progenitor
cells OR adipose stem cell OR adipose stroma OR adipose
stromal cells OR pluripotent cells OR multipotent cells))

©2016 The Authors. Clinical and Experimental Dental Research published by John Wiley & Sons Ltd 19



Use of Mesenchymal Stem Cells in Peri-implant Defects

AND (peri-implant defects OR peri-implant defects OR
peri-implantitis OR peri-implantitis OR dental implants
OR implant infection OR implant bone defect)) NOT
“clinical trial”) NOT review. Manual searches of reference
lists from selected full articles complemented the elec-
tronic search.

Exclusion criteria

Reviews, in vitro and human studies, and animal studies with-
out control groups were excluded.

Screening methods and data extraction

Two calibrated reviewers (C.C.V. and G.H.) screened inde-
pendently titles and abstracts. Studies appearing to meet the
inclusion criteria, or those with insufficient information in
the title and abstract to make a clear decision, were selected
for evaluation of the full manuscript, which was carried inde-
pendently by the same two reviewers to determine study eligi-
bility. Any disagreement was solved by discussion and
agreement between the reviewers. All studies that met the in-
clusion criteria underwent a validity assessment. Reasons for
rejecting studies were recorded for each study. Agreement
between reviewers was described by kappa coefficient. Data
were extracted independently by two reviewers (C.C.V. and
G.M.V.), with disagreements resolved by discussion with a
third reviewer (M. Y. O. M.). Authors of six publications were
contacted to clarify data or to provide missing information
(Park et al. 2014; Yun et al. 2014; Ribeiro et al. 2012; Wang
et al. 2011; Kim et al. 2009; Ito et al. 2006).

The following data were extracted and recorded: citation,
MSC origin, stem cell characterization, animal model, num-
ber of animals, number of defects per group, defect type and
size, location of the defect, treatment, and length of follow-up.

Quality assessment and data synthesis

Quality assessment of included studies was performed inde-
pendently by two reviewers (C.C.V. and G.M.V.), blinded
to the name of the authors, institutions, and journal titles.
Any disagreements were solved by discussion with a third re-
viewer (M. Y. O.M.). The following six domains were assessed
as having “low risk,” “high risk,” or “unclear risk” of bias, ac-
cording to the Cochrane Collaboration’s tool for assessing risk
of bias (Higgins et al. 2011).
+ Selection bias

+ Random sequence generation

+ Allocation concealment
+ Performance bias

+ Blinding of participants and personnel
+ Detection bias

+ Blinding of outcome assessor

M. Y. O. Misawa et al.

+ Attrition bias

+ Incomplete outcome data
+ Reporting bias

+ Selective reporting
+ Other bias

+ Other sources of bias (related to the design and conduct

of the trial, precision, reporting standards, and ethical
criteria).

Using the Cochrane’s Risk of Bias tool, included studies
were categorized as follows: (1) “low-risk” of bias (plausible
bias unlikely to seriously alter the results), if all domains were
met; (2) “unclear risk” of bias (plausible bias that raises some
doubt about the results), if one or more domains were classi-
fied as having unclear risk of bias; and (3) “high risk” of bias
(plausible bias seriously weakens the confidence in the re-
sults), if one or more domains were not met.

Results

The computerized search strategy yielded 678 citations, of
which, 104 were screened for potentially meeting the inclu-
sion criteria (x=0.83; Fig. 1). Independent screening of
abstracts led to the rejection of 90 articles (x =0.66; Fig. 1).
Full texts of the remaining 14 publications were obtained for
review and possible inclusion in the systematic review and
meta-analysis. Out of these, four articles were further ex-
cluded (x=1.00) (Hao et al. 2014a; Hosgor et al. 2013; Zhang
etal. 2007; Ribeiro et al. 2010) for reasons indicated in Table 1.

Eletronic search
678 titles

Kappa score 574

0.83 —_— — Excluded based

. on the title
Relevant abstracts
104
90

Kappa score | — — Excluded based

0.66 on the abstract

Relevant full-texts

14
|

Full-texts analysis

0 Included as a
result of hand
search

4 Excluded
based on the
full-text

Kappa score

14
1.00 ﬁ

0 Included as a
result of final
search

h

Included publications
10

Figure 1. Simplified search strategy outline.
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Table 1. Excluded studies.

Use of Mesenchymal Stem Cells in Peri-implant Defects

Study

Reason for exclusion

Hao et al. (2014a)
Hosgor et al. (2013)
Ribeiro et al. (2010)
Zhang (2007)

Repeated article.

Implants were installed in extraoral sites
The study lacked a negative control without cells; two experimental groups received BM-MSC and PDLSC, respectively
None of the experimental groups evaluated the treatment of peri-implant defects with MSC

MSC, mesenchymal stem cells; BM-MSC, bone marrow-derived mesenchymal stem cells; PDLSC, periodontal ligament-derived mesenchymal stem cells.

Manual search of reference lists of selected studies yielded no
additional articles (Fig. 1). Characteristics of the final 10
retained studies are reported in Table 2.

Most of the studies (nine out of 10) reported on the pri-
mary outcome selected: BIC. (Han et al. 2013; Hao et al.
2014b; Ito et al. 2006; Kim et al. 2009; Park et al. 2014; Ribeiro
et al. 2012; Xu et al. 2015; Yun et al. 2014; Zou et al. 2012).
Multiple secondary quantitative histological parameters were
also used, including new bone formation (Hao et al. 2014b;
Kim et al. 2009; Park et al. 2014; Ribeiro et al. 2012; Xu
et al. 2015), bone density (Han et al. 2013; Yun et al. 2014;
Zou et al. 2012), bone height (Hao et al. 2014b; Ribeiro
et al. 2012), first BIC height (Park et al. 2014), ratio of re-
osseointegrated bone height (Park et al. 2014), bone fill
(Ribeiro et al. 2012), and bone width (Ribeiro et al. 2012).
Furthermore, few studies evaluated bone mineral apposition
rates using double or triple fluorochromes (Wang et al.
2011; Zou et al. 2012). Only in one study micro-computed to-
mography (CT) findings were reported, including bone fill,
bone density, trabecular volume, and trabecular thickness
(Zou et al. 2012). Because of the high degree of methodolog-
ical heterogeneity among the included studies (defect mor-
phology, cell source and phenotype, healing time, numbers
of experimental groups, types of control groups, and methods
for BIC evaluation), no meta-analysis was performed.

Research methods and experimental model
Experimental animals

Dogs were the only animal model used to study the efficacy of
MSC on the healing of peri-implant defects. All studies exam-
ined a single species in small groups of four to eight animals,
all males, with age ranging from 1 to 2 years old.

Experimental models

Only one study induced peri-implant inflammation to pro-
duce bone defects around implants (Park et al. 2014). In con-
trast, in all other studies, bone defects were surgically created
at implant installation (Han et al. 2013; Hao et al. 2014b; Ito
et al. 2006; Kim et al. 2009; Ribeiro et al. 2012; Wang et al.
2011; Xu et al. 2015; Yun et al. 2014; Zou et al. 2012). Differ-
ences in defect morphology were identified among the

included studies that evaluated supra-alveolar (Kim et al.
2009; Park et al. 2014; Wang et al. 2011), dehiscence (Ribeiro
etal. 2012), and three-wall intrabony defects (Han et al. 2013;
Hao et al. 2014b; Xu et al. 2015; Yun et al. 2014; Zou et al.
2012). In one study, defect morphology was not clearly de-
scribed (Ito et al. 2006).

In all studies, implants were left submerged during healing
(Han et al. 2013; Hao et al. 2014b; Ito et al. 2006; Kim et al.
2009; Park et al. 2014; Ribeiro et al. 2012; Wang et al. 2011;
Xu et al. 2015; Yun et al. 2014; Zou et al. 2012).

Mesenchymal stem cells

Both xenogenous (human) (Hao et al. 2014b; Yun et al. 2014)
and autogenous MSC (Han et al. 2013; Ito et al. 2006; Kim
et al. 2009; Park et al. 2014; Ribeiro et al. 2012; Wang et al.
2011; Xu et al. 2015; Zou et al. 2012) were used to treat
peri-implant defects. These encompassed five different
types/sources of stem cells. Among these, bone marrow-
derived MSC were the most commonly used cells and were
utilized in six trials (Ito et al. 2006; Kim et al. 2009; Wang
et al. 2011; Xu et al. 2015; Yun et al. 2014; Zou et al. 2012).
Periodontal ligament-derived MSC were used in two studies
(Kim et al. 2009; Park et al. 2014). Finally, bone marrow-
derived mononuclear cells (Ribeiro et al. 2012), peripheral
blood mononuclear cells (Han et al. 2013), and umbilical cord
MSC (Hao et al. 2014b) were used in only one study each. Of
interest, detailed phenotypic and functional MSC characteri-
zation were provided in only one study (Yun et al. 2014).
Moreover, in three trials, MSC underwent in vitro osteogenic
differentiation before being applied into peri-implant defects
(Han et al. 2013; Ribeiro et al. 2012; Wang et al. 2011).

Scaffolds

Except for the study by Hao and coworkers (2014b), all stud-
ies used scaffolds to facilitate MSC application into the defects
and temporarily support the structure framework.

Effect of MSC on the healing potential of bone defects around dental
implants. Reports on the use of undifferentiated bone
marrow-derived MSC for the treatment of three-wall
peri-implant defects yielded conflicting results. According to
Xu et al. (2015), bone marrow-derived MSC significantly

©2016 The Authors. Clinical and Experimental Dental Research published by John Wiley & Sons Ltd 21
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increased new bone formation and BIC values as com-
pared with beta-tricalcium phosphate (BTCP) alone
(new bone formation: BM-MSC/BTCP=35.74% vs.
BTCP=19.10%; P < 0.05) (BIC%: BM-MSC/BTCP = 50.88%
vs. BTCP=31.95%; P < 0.05) (Xu et al. 2015). Conversely, in
other studies, bone marrow-derived MSC failed to improve to-
mographic outcomes (i.e., bone fill, bone density, and trabecu-
lar bone) (Zou et al. 2012) and histological parameters
(ie., BIC, bone density, and mineralization rate) at peri-
implant defects (Yun et al. 2014; Zou et al. 2012).

Treatment of peri-implant defects with bone marrow-
derived MSC and bone marrow mononuclear cells that had
undergone ex vivo osteogenic differentiation prior to clinical
use (Ribeiro et al. 2012; Wang et al. 2011) resulted in higher
new bone apposition than scaffolds alone. More specifically,
osteo-differentiated bone marrow-derived MSC outstripped
its scaffold regarding mineralization apposition rate by
0.14mm/day (P < 0.05) (Wang et al. 2011). Likewise, osteo-
differentiated bone marrow-derived mononuclear cells pro-
moted superior bone fill within implant threads as compared
with collagen carrier alone (35.47% vs. 9.96%, respectively;
P=0.0062), even though they had no effects on BIC values
and bone height (Ribeiro et al. 2012).

The combined effect of biologically active molecules. Biomaterials
used in association with stem cells included bone morphoge-
netic protein-2 (BMP-2) (Park et al. 2014; Wang et al. 2011),
fibroblast growth factor (FGF) (Wang et al. 2011), platelet-
derived growth factor (PDGF) (Xu et al. 2015), hypoxia-
inducible factor-lo. (HIF) (Zou et al. 2012), platelet-rich
plasma (PRP) (Ito et al. 2006; Yun et al. 2014), and platelet-
rich fibrin (PRF) (Hao et al. 2014b).

Bone morphogenetic protein-2 exerted an additive effect
on bone regeneration in peri-implant defects treated with
MSC. Precisely, the adjunctive use of 100 ng/ml of BMP-2
promoted greater mineralization apposition rate in peri-
implant defects treated with bone marrow-derived MSC
(BM-MSC/BMP-2 =1.58 mm/day vs. BM-MSC=1.28 mm/
day; P<0.01) (Wang et al. 2011). Moreover, according to
Park and coworkers (2014), periodontal ligament-derived
MSC transduced with adenoviral vectors containing BMP-2
(BMP-2/PDLSCs) promoted a 62% increase in bone forma-
tion within peri-implant defects, as compared with defects
treated with non-modified periodontal ligament-derived
MSC (P=0.002). This increase was accompanied by signifi-
cant gains in the rate of osseointegration (P < 0.001), re-
osseointegration height (P<0.001), and BIC height
(P=0.002) (Park et al. 2014).

Similarly, basic FGF (bFGF) substantially increased bone
formation in peri-implant defects treated with bone
marrow-derived MSC (BM-MSC/bFGF = 1.43 mm/day vs.
BM-MSC = 1.28 mm/day; P < 0.05), albeit in lesser extent
than BMP-2 (BM-MSC/BMP-2=1.58 mm/day) (Wang

M. Y. O. Misawa et al.

et al. 2011). Finally, a combination of BMP-2 and bFGF
was more effective than either one alone in enhancing
MSC-based regeneration of bone defects around dental
implants (BM-MSC/bFGF/BMP-2 =1.94 mm/day) (Wang
et al. 2011). Unfortunately, the impact of the adjunctive
use of MSC on BMP-2 and bFGF mediated peri-implant
bone healing has not yet been investigated.

The adjunctive use of PDGF-BB promoted an increase in
BIC values from 51% to 73%, in peri-implant defects treated
with bone marrow-derived MSC (P < 0.05), without enhanc-
ing overall bone fill (Xu et al. 2015). Of interest, both new
bone formation and BIC values were enhanced by the local
additive delivery of bone marrow-derived MSC in PDGF-BB
treated peri-implant defects (new bone formation: BM-
MSC/PDGEF-BB=49% vs. PDGF-BB=33%; P < 0.05) (BIC:
BM-MSC/PDGE-BB=73% vs. PDGF-BB=46%; P < 0.05)
(Xu et al. 2015).

Finally, transduction of bone marrow-derived MSC with a
constitutively active truncated allele of HIF-1a (cHIF) or a
transient wild-type HIF-loo (tHIF)-enhanced peri-implant
bone healing as measured by micro-CT and histometric anal-
ysis (Zou et al. 2012). Histometric data revealed that both
transient and constitutive HIF expressions enhanced by
approximately twofold the healing potential of bone
marrow-derived MSC in peri-implant bone defects, as
measured by mineralization apposition rate (P <0.05),
bone density (P < 0.01), and BIC values (P < 0.01). Micro-
CT images showed that cHIF and tHIF bone marrow-derived
MSC increased defect fill by 59% (P<0.01) and 45%
(P<0.01), respectively, as compared with bone marrow-
derived MSC transfected with empty vectors. Likewise, bone
density was increased by 50% (P<0.01) and 30%
(P < 0.01) with the constitutive and the transient expressions
of HIF, respectively. Finally, HIF expression (cHIF and tHIF)
also promoted increases in trabecular bone volume (P < 0.01)
and thickness (P < 0.01).

A combination of MSC and platelet concentrates has
also been tested for the treatment of peri-implant bone
defects. In a large animal study (Ito et al. 2006), PRP sig-
nificantly improved BIC values in peri-implant defects
treated with bone marrow-derived MSC, from 42% to
53% (P <0.05). In sharp contrast, Yun and coworkers
(2014) reported that although the adjunctive use of PRP
resulted in deposition of a more mature bone in peri-
implant defects treated with xenogeneic bone marrow-
derived MSC, it failed to further augment bone density
and BIC values (bone density: BM-MSC/PRP=72.4
+4.7% vs. BM-MSC=42.5%24.3) (BIC%: BM-MSC/
PRP=42.1£30.5% vs. BM-MSC=27.2+20.2) (Yun et al.
2014). The same group also showed that the adjunctive use
of xenogeneic bone marrow-derived MSC did not enhance
bone density and BIC values obtained by PRP alone (bone
density: BM-MSC/PRP=72.4+£4.7% vs. PRP=57.5+22.3)
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(BIC%: BM-MSC/PRP =42.1+30.5% vs. PRP=41.4+23.5)
(Yun et al. 2014).

More recently, umbilical cord MSC have been shown to ac-
celerate bone formation and stimulate greater defect fill in
peri-implant bone defects treated with a second-generation
platelet concentrate (Hao et al. 2014b). The percentage of
bone fill was 58% and 67% in defects around implants treated
with PRF only and PRF in association with MSC, respectively
(P<0.05) (Hao et al. 2014b). Finally, the addition of umbili-
cal cord MSC to PREF significantly boosted BIC values in the
defect area from 61% to 73% (P < 0.05) (Hao et al. 2014b).

The combined effect of barrier membranes. Both resorbable (Han
et al. 2013; Kim et al. 2009; Park et al. 2014) and non-
resorbable (Ito et al. 2006; Ribeiro et al. 2012) membranes
were commonly used in association with MSC for the treat-
ment of peri-implant defects. Although no study draw a direct
comparison between these membrane types, post-operative
complications, such as membrane exposure, were only re-
ported in studies using non-resorbable membranes.

The adjunctive use of autogenous bone marrow-derived
MSC (Kim et al. 2009) and peripheral blood-derived mesen-
chymal progenitor cells (Han et al. 2013) boosted the healing
potential of peri-implant defects treated with resorbable colla-
gen membranes. The additive use of these cells not only en-
hanced bone formation from 28% to 40% (Kim et al. 2009)
but also doubled bone density (Han et al. 2013) and BIC
values within peri-implant defects (Han et al. 2013; Kim
et al. 2009). In sharp contrast, Ito et al. (2006) reported that
the adjunctive use of xenogenous bone marrow-derived
MSC failed to promote increased BIC along the entire length
of the implant, when used in association with non-resorbable
membranes (Ito et al. 2006).

In contrast to the trend observed with the additive use of
autogenous bone marrow MSC, the adjunctive use of autoge-
nous periodontal ligament-derived MSC failed to improve
new bone formation, BIC% (Kim et al. 2009; Park et al.
2014), and re-osseointegration height (Park et al. 2014) in
peri-implant defects treated with resorbable membranes.

Finally, Ribeiro and coworkers (2012) demonstrated
that titanium reinforced expanded polytetrafluoroethylene
membranes may improve the healing potential of peri-
implant defects treated with bone marrow mononuclear
cells. More specifically, the adjunctive use of non-
resorbable membranes in peri-implant defects treated with
bone marrow mononuclear cells promoted an increase in
new bone formation from 1020 to 3170 mm? (Ribeiro
et al. 2012).

Safety

Seven studies reported that peri-implant sites healed unevent-
fully, and animals remained in good health throughout the

Use of Mesenchymal Stem Cells in Peri-implant Defects

study (Hao et al. 2014b; Ito et al. 2006; Kim et al. 2009; Park
et al. 2014; Ribeiro et al. 2012; Wang et al. 2011; Yun et al.
2014). The remaining ones failed to provide information on
adverse effects or signs of infection during experimental pe-
riod (Han et al. 2013; Xu et al. 2015; Zou et al. 2012).

Quality assessment of included studies

The risk of bias of included studies was assessed and listed in
Table 3. Sample size calculation was unclear in all studies, de-
spite its importance on testing new therapies, even in animal
trials (Faggion et al. 2011). Randomization was accurately re-
ported only in one study (Ribeiro et al. 2012) that used a
computer-generated sequence for randomization. The ade-
quacy of the allocation concealment was judged as unclear
in all 10 studies. Likewise, blinding of operators was not re-
ported. Outcome assessors were reported to be blinded only
in two studies (Han et al. 2013; Ribeiro et al. 2012).

All of the included studies reported the primary outcome as
BIC (Han et al. 2013; Hao et al. 2014b; Ito et al. 2006; Kim
et al. 2009; Park et al. 2014; Ribeiro et al. 2012; Xu et al.
2015; Yun et al. 2014; Zou et al. 2012) or bone mineral appo-
sition rate (Wang et al. 2011). They all appeared to be free of
selective reporting with respect to the primary outcome. In
seven of the included studies, all peri-implant defects random-
ized were included in the final analysis (Han et al. 2013; Hao
et al. 2014b; Kim et al. 2009; Park et al. 2014; Wang et al.
2011; Xu et al. 2015; Yun et al. 2014). In two trials, some
peri-implant defects were excluded from the analysis follow-
ing randomization, and data were analyzed by protocol (Ito
et al. 2006; Ribeiro et al. 2012). In the study by Ribeiro et al.
(2012), two out of the eight defects treated with a combination
of titanium reinforced expanded polytetrafluoroethylene
membranes and bone marrow-derived MSC were lost during
follow-up because of membrane exposure. Although Ito et al.
(2006) stated that defects were also excluded because of mem-
brane exposure during healing, the number of defects ex-
cluded was not reported. Finally, Zou et al. (2012) failed to
report if all defects randomized were included in the final
analysis. In one study (Ito et al. 2006), defect morphology
was not clearly described.

Taken together, three studies were considered at overall
“high risk” of bias (Hao et al. 2014b; Park et al. 2014; Xu
et al. 2015), and seven were considered at overall “unclear
risk” of bias (Han et al. 2013; Ito et al. 2006; Kim et al. 2009;
Ribeiro et al. 2012; Wang et al. 2011; Yun et al. 2014; Zou
etal. 2012).

Discussion

Development of novel strategies to promote predictable bone
neoformation/regeneration around dental implants is of clin-
ical interest. Along this line, this systematic review provides a
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Table 3. Risk of bias in individual studies.

M. Y. O. Misawa et al.

Blinding of
the Selective Overall
Allocation Blinding of outcome Incomplete outcome risk of
Study Randomization concealment  the surgeon assessor outcome data reporting Other source of bias bias
Xu Unclear (no Unclear (no Unclear (no Unclear (no High (unclear if Low Unclear (no sample size High
etal. information information information information all animals and calculation)
(2015) provided) provided) provided) provided) defects were
evaluated at
the completion
of the follow-
up)
Hao Unclear (no Unclear (no Unclear (no Unclear (no High (unclear if Low High (unclear how 48 High
etal. information information information information all defects were defects in eight animals
(2014b)  provided) provided) provided) provided) evaluated at were equally divided at
the completion 3 observing time points,
of the follow- given that no indication
up) is given that the
surgeries were
performed at different
moments)
Park Unclear (no Unclear (no unclear (no unclear (no Low High (not all Unclear (no sample size High
etal. information information information information of the calculation)
(2014) provided) provided) provided) provided) study’s
prespecified
primary
outcomes
have been
reported)
Yun Unclear (no Unclear (no Unclear (no Unclear (no Low Low Unclear (no sample size Unclear
etal. information information information information calculation)
(2014) provided) provided) provided) provided)
Han Unclear “each Unclear (no Unclear (no Low Low Low Unclear (no sample size Unclear
etal. defect was information information calculation)
(2013) randomly provided) provided)
assigned”
Ribeiro Low Unclear (no Unclear (no Low Low Low Unclear (no sample size Unclear
etal. “randomization information information calculation)
(2012) was performed provided) provided)
according to a
computer-
generated
code”
Zou Unclear Unclear (no Unclear (no Unclear (no Unclear Low Unclear (no sample size Unclear
etal. " defects were information information information (number of calculation)
(2012) generated and provided) provided) provided) defects
randomly analyzed at the
allocated” completion of
the follow-up
interval not
clearly stated)
Wang Unclear (no Unclear (no Unclear (no Unclear (no Low Low Unclear (no sample size Unclear
etal. information information information information calculation)
(2011) provided) provided) provided) provided)
Kim Unclear “were Unclear (no Undclear (no Unclear (no Low Low Unclear (no sample size Unclear
etal. randomly information information information calculation)
(2009) assigned to the provided) provided) provided)
(Continues)
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Table 3 (Continued)
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Blinding of
the Selective Overall
Allocation Blinding of outcome Incomplete outcome risk of
Study Randomization concealment  the surgeon assessor outcome data reporting Other source of bias bias
three prepared
defects”
ltoetal.  Unclear Unclear (no Undclear (no Unclear (no Unclear Low Unclear (no sample size Unclear
(2006) “selection of the  information information information (number of calculation; unclear
treatments and provided) provided) provided) defects description of the defect
localization was excluded from model)
random” the final
analysis not
stated)

comprehensive assessment of the effects of distinct popula-
tions of MSC in the healing of peri-implant bone defects in
large animal models.

We found that undifferentiated bone marrow-derived
MSC yielded conflicting results in the treatment of three-wall
peri-implant defects. While Xu et al. (2015) demonstrated in-
creased bone formation and BIC values in peri-implant de-
fects treated with autogenous bone marrow-derived MSC,
Yun et al. (2014) and Zou et al. (2012) failed to find differ-
ences in healing outcomes in peri-implant defects treated with
or without MSC. The basis for contrasting results is currently
unknown but might be related to differences in factors known
to influence the osteogenic potential of MSC, including age of
the donors, tissue of MSC origin, heterogeneity of selectively
isolated MSC subpopulations, MSC ex vivo expansion condi-
tions, scaffold composition, and three-dimensional arrange-
ment (Harris and Cooper 2004; Lee et al. 2001; Shamsul
et al. 2004). Additionally, these differences may be related to
the use of virally transfected cells by Zou and collaborators
(2012) and the use of xenogeneic MSC by Yun and coworkers
(2014). Although no study directly compared the efficacy of
xenogeneic and autogenous MSC in the healing of peri-
implant bone defects, xenogenic transplantation of MSCs
has been shown to promote poorer bone regeneration than
autologous transplantation of MSCs in tibia bone defects
(Niemeyer et al. 2010).

Transplantation of ex vivo osteo-differentiated autogenous
bone marrow-derived MSC and bone marrow mononuclear
cells promoted increased bone apposition in peri-implant de-
fects (Ribeiro et al. 2012; Wang et al. 2011). Although it
remains unclear if predifferentiated MSC are superior to un-
differentiated cells in promoting peri-implant bone healing,
some indirect evidence of superiority of differentiated over
undifferentiated MSC comes from a study that evaluated bone
marrow-derived MSC transduced with HIF, a short-lived
transcriptional activator that regulates osteogenic genes
(Drager et al. 2015; Mamalis and Cochran 2013). Accordingly,
transduction of bone marrow-derived MSC with a cHIF or a

tHIF enhanced by twofold the healing potential of undifferen-
tiated bone marrow-derived MSC in peri-implant bone de-
fects (Zou et al. 2012). However, in sharp contrast, in other
experimental models, osteoblastic predifferentiation of MSC
failed to promote increased ectopic bone formation over the
one obtained with undifferentiated cells (De Kok et al.
2006). Thus, the significance of ex vivo MSC predifferentiation
still requires confirmation.

Bone-forming osteoblasts are non-replicating cells derived
from MSC (Park et al. 2012). Accordingly, new bone forma-
tion relays on MSC and molecular signals that favor MSC os-
teoblastic differentiation. Along with these lines, we found
that a few growth factors, namely, BMP-2, FGF, and PDGF,
enhance the efficacy of MSC on the healing of peri-implant
defects (Park et al. 2014; Wang et al. 2011; Xu et al. 2015;
Zou et al. 2012). BMP-2 influences cellular behaviors known
to affect bone and cartilage formation. Its properties are con-
fined primarily in the early stages of bone formation and bone
repair, when BMP-2 promotes MSC differentiation to osteo-
blast precursors and the development of these precursors into
mature osteoblasts (Carreira et al. 2014; Darby and Morris
2012; Haversath et al. 2012). FGF has crucial roles on bone re-
pair by promoting osteoblastic differentiation and enhancing
the osteoinductive activity of BMP-2 (Du et al. 2012; Fujimura
et al. 2002). Moreover, FGF has been shown to enhance MSC
survival (Bianchi et al. 2003; Eiselleova et al. 2009) and MSC
osteogenic differentiation (Hou et al. 2007; Tanaka et al.
2003; Tsutsumi et al. 2001). Likewise, PDGF promotes MSC
osteogenic differentiation and induces vascular endothelial
growth factor (VEGF) expression, thereby supporting angio-
genesis during wound healing (Darby and Morris 2012; Shah
etal. 2012).

Contrary to the additive effects of specific growth fac-
tors on MSC-mediated peri-implant bone healing, the ef-
fects of platelet concentrates are less clear. PRP consists
of an aggregate of PDGFs including PDGF-AA, PDGEF-BB,
PDGF-AB, transforming growth factor-beta, platelet-derived
epidermal growth factor, platelet-derived angiogenesis factor,
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insulin growth factor-1, and platelet factor-4 (van den Dolder
etal. 2006). PRP is thought to support bone regeneration, pre-
sumably through the action of growth factors. However, its ef-
fects are likely to be limited by the quick, non-sustained
release of these factors and lack of BMP-2 (Kumar &
Shubhashini, 2013). Not surprisingly, Yun and coworkers
(2014) reported that the adjunctive use of PRP failed to fur-
ther augment bone density and BIC values in peri-implant de-
fects treated with undifferentiated bone marrow-derived
MSC. However, it is also conceivable that this lack of addi-
tional gains by the adjunctive use of PRP may be related to a
mismatch between xenogenic MSC and autogenous PRP used
by Yun and coworkers (2014). Lastly, although one study re-
ported that PRP improves bone healing in peri-implant de-
fects treated with autologous bone marrow-derived MSC
(Ito et al. 2006), it is unclear if MSC used in this study were
applied at the defect site in an undifferentiated or differenti-
ated state.

In all but one study, the adjunctive use of autogenous bone
marrow-derived MSC boosted the healing potential of peri-
implant defects treated with resorbable collagen membranes
(Han et al. 2013; Kim et al. 2009). It can be argued, however,
that the lack of additive effect reported by the exception study
(Ito et al. 2006) was because histological measurements were
taken along the entire length of the implants, instead of within
the defect lengths only and therefore included both newly
formed and pristine bone.

Interestingly, the adjunctive use of autogenous periodontal
ligament-derived MSC failed to improve bone healing within
peri-implant defects treated with resorbable membranes (Kim
et al. 2009; Park et al. 2014). Thus, it is reasonable to hypoth-
esize that periodontal ligament-derived MSC may not be an
ideal source of MSC for the treatment of peri-implant defects.
This observation is in consensus with reports that demon-
strated that although periodontal ligament-derived MSC have
the ability to form mineralized deposits, their mineralization
and osteogenesis potentials are markedly lower from those re-
ported for their bone marrow-derived counterparts
(Vasandan et al. 2014).

Periodontal ligament-derived MSC share similarities to
other MSC with respect to clonality, surface-antigen profiles,
and generation of multiple types of differentiated cells (Kim
et al. 2007). However, a thorough one-to-one comparison of
periodontal ligament-derived and bone marrow-derived
MSC for their surface characteristics revealed key differ-
ences in the expression of mesenchymal (CD105) and
pluripotent/multipotent stem cell-associated cell surface
antigens (i.e,, SSEA4, CD117, CD123, and CD29) (Vasandan
et al. 2014). To this regard, the lower osteogenic potential of
periodontal ligament-derived MSC could be related to their
lower levels of CD105 expression. Detailed comparative mo-
lecular studies of osteoblasts derived from primary cultures
and those derived from periodontal ligament and bone
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marrow could potentially explain the different clinical
outcomes obtained with periodontal ligament-derived and
bone marrow-derived MSC. However, to the knowledge of
the authors, these studies are yet to be published.

Conclusions

The available preclinical controlled animal model studies that

investigated the effect of MSC on peri-implant defect bone

healing are limited in number and have small sample size,
exhibiting high or moderate risk of bias. Despite the quality
level of the existing evidence, the existing data indicate that

+ The intraoral use of MSC in the treatment of peri-implant
defects was not associated with local or systemic adverse ef-
fects in preclinical studies. However, its therapeutic safety in
humans remains to be investigated.

+ The use of MSC may provide beneficial effects on the bone
healing within defects around dental implants. Ex vivo oste-
ogenic differentiation of MSC prior to defect application ap-
pears to be advantageous.

+ It is likely that the various degrees of success of MSC in peri-
implant bone healing are related to the use of distinct pop-
ulations of MSC derived from multiple lineages, tissues, and
donor species (i.e., autologous vs. xenogenous). Analysis of
existing low-level evidence suggests that autologous bone
marrow-derived MSC grant superior results. However,
much work remains to be performed to identify phenotypic
profiles of highly osteogenic MSC populations.

+ The combination of MSC with barrier membranes and
growth factors (i.e., BMP-2, FGFb, PDGEF-BB, HIF, PRP,
and PRF) appears to provide improved treatment outcomes.

+ Human investigations are necessary to confirm if the im-
proved histological parameters observed in large animal
studies are indeed translated into clinical gains.
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