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Quantitatively evaluate 
the impact of domestic aviation 
control measures on the spread 
of COVID‑19 in China
Yu Wang1,2, Ke Li2, Ting Yuan3 & Yi Liu3*

To quantitatively evaluate the impact of domestic aviation control measures on the spread of 
COVID‑19 in China. The number of international flights from March to September 2019 simulated the 
number of flights from March to September 2020 without implementing aviation control measures. 
In addition, the proportion of asymptomatic persons and the delay in case reporting were adjusted to 
estimate the prevalence of each country during the same period and calculate the estimated imported 
cases. The estimated imported cases were assigned each day with weight, and the estimated daily 
reported cases were obtained based on the actual daily number of domestic cases in China. Effective 
Reproduction Number ( R

t
 ) was calculated based on delayed distribution, Basic Reproductive Number 

( R
0
 ) distribution, and generation time distribution were reported in previous studies. Gaussian Process 

was used to estimate the effect of time‑varying on R
t
 , and the estimated R

t
 was compared with the 

actual R
t
 . The estimated imported cases increased significantly compared with the actual number of 

imported cases. The estimated imported cases were mainly concentrated in North America and Europe 
from March to April and gradually increased in many East Asian countries from May to September. The 
difference between predicted R

t
 and actual R

t
 was statistically significant. The estimated imported 

cases and the estimated R
t
 have increased compared to the actual situation. This paper quantitatively 

proves that Chinese aviation control measures significantly suppress the COVID‑19 epidemic, which is 
conducive to promoting and applying this measure.

At the end of 2019, Corona Virus Disease 2019, also called COVID-19, spread through the whole world via 
carriage and infection from person to person. On March 22nd, 2020, it was declared a pandemic by the World 
health organization. The clinical characteristics of which contained high speed of infectivity and prolonged 
incubation. As of June 15th, 2021, COVID-19 cases had reached 175,847,347, including 3,807,276 death  cases1. 
Every country has implemented the corresponding control measures to cope with the increasing access to health 
 care2. The United Nations World Tourism Organization reported that, as of April 20th, 2020, nearly every coun-
try had implemented some form of COVID-19-related travel  restrictions3–5 . This was the most extensive travel 
restriction throughout  history1, involving closing the border, suspending the flight, and implementing isolation 
and self-quarantine for the tourists.

In preventing and controlling the domestic epidemic of COVID-19 in China, the government decisively 
adopted a series of prevention, control, and treatment measures. It took one month to prevent the spread of the 
epidemic and about two months to maintaining the daily new cases in the mainland within single digits. It took 
about three months to cease the spread of the disease in Wuhan, Hubei province. At the same time, the epidemic 
abroad gradually developed and reached a dire situation. “External defense input and internal defense rebound” 
has become the dominant strategy in China. In this situation, the Civil Aviation Administration of China (CAAC) 
put forward a “Five-one” policy, that is, the international flight policy of “one airline, one country only reserves 
one route, and executes at most one flight a week” implemented since March 29th, 2020. After implementing 
the “Five one” policy, 11 domestic and 95 foreign airlines suspended international passenger flights to China. 
Compared with the situation that 30 domestic and 123 foreign airlines operated international passenger flights 
before this strategy. Further prevention measures included diversion and whole process management at the first 
entry point and nucleic acid testing at all ports.
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Due to the travel restrictions implemented by some regions during the epidemic, international aviation has 
shown an unprecedented downturn. The operation of China’s international flights in 2020 showed a steep decline 
compared with that in 2019, which was the direct result of the measures of aviation control and prevention the 
importation from outside. The studies of Zhang et al.6 and Bielecki et al.7 showed that travel restrictions have 
apparent effects when the cases in the destination country are zero or less. When the number of cases imported 
from international tourists dramatically impacts the total number of new cases, measures such as travel restric-
tions or blockades will be  effective8 . Therefore, it is complicated to evaluate the effect of travel restrictions on 
curbing the spread of COVID-19. It is necessary to consider the local epidemic spread in importing countries 
and the travel volume from these countries to China. At the same time, it is also essential to evaluate the extent to 
which imported cases have affected the Reproduction Number ( Rt ). No research quantitatively analyzed aviation 
controlling measurements’ effect on domestic infection until now. This study used the number of international 
flights from March to September 2019 to simulate the operation of flights without flight restrictions from March 
to September 2020. At the same time, it will use the epidemic data of COVID-19 worldwide from March to Sep-
tember 2020 to estimate the expected imported cases without travel restrictions and further evaluate the impact 
of the expected imported cases on Rt in China.

Contribution. 

1. Estimate the expected imported cases without travel restrictions from March to September 2020.
2. Further evaluate the impact of the expected imported cases on Rt in China.
3. Help develop similar public health response plans in the future.

Methods
In this study, we used the method proposed by  Russel8 to estimate the actual number of COVID-19 cases and 
calculated the prevalence rate in countries around the world from March to September 2020. We used detailed 
international flight data in each country from March to September 2019 to simulate the flights from March to 
September 2020 if no airline restrictions were taken. The expected number of imported cases was estimated from 
March to September 2020 if there were no airline restrictions. We evaluated the predicted number of imported 
cases in the major importing countries from March to September 2020. The impact of airline restrictions on 
the number of domestic time-varying Rt was estimated to measure the extent to which the airline restrictions 
implemented in March 2020 had controlled the development of the COVID-19 progress in China.

Because there were a substantial number of asymptomatic  infections9,10, and in addition there were delays 
in reporting  cases11, the available data on reported cases may not reflect the actual number of infections in 
the local area at that time. It was necessary to use mathematical models to adjust the reported cases to obtain 
the actual infection situation. First, the level of case ascertainment in each country was estimated as the ratio 
of a delay-adjusted country-specific case fatality ratio to an assumed baseline case fatality ratio (derived from 
published estimates). Then, temporal variation in under-ascertainment was inferred using a Gaussian process: 
a non-parametric Bayesian framework, suited for statistically robust estimates of time-dependent functions. 
Finally, these temporal under-ascertainment estimates were used to adjust the confirmed case time series. The 
adjusted case data represent the estimated true number of symptomatic individuals in each country, which is 
typically substantially larger than the confirmed case number.

Calculation and adjustment of prevalence rate in the importing country. The delay between the 
confirmation of a case and the death. Since it could take 2–3 weeks from the onset of symptoms in a person to 
the subsequent detection and reporting of a case and observation of the final clinical  outcome12, and also the 
result of some confirmed cases cannot be confirmed during an expanding epidemic transmission situation. In 
other words, the interval from the onset of symptoms in a case to the outcome had a censoring effect; the distri-
bution of temporal interval from the beginning of actual symptoms to the outcome was biased. So simply divid-
ing the cumulative number of reported deaths by the cumulative number of reported cases would underestimate 
the Case Fatality Rate (CFR) in the early epidemic  period13. The actual distribution was usually longer in dura-
tion than the distribution fitted to data that included censored  cases14. This pattern had also appeared in CFR 
estimates for previously prevalent respiratory infectious diseases, including severe acute respiratory syndrome 
(SARS)15 and H1N1  influenza16. On the other hand, the CFR of COVID-19 collected by hospitals and the CDC 
usually focused on critical  cases17, and the CFR calculated in this way was not applicable to describe the mortal-
ity of the entire infected population. Therefore, estimating the number of undiagnosed cases was necessary to 
know the actual number of patients under the accurate distribution.

Inference of undiagnosed cases. The COVID-19 cases consisted of both reported cases and unreported symp-
tomatic cases. The unreported cases are  calculated14 using the delay distribution from case diagnosis to death to 
estimate how many diagnosed cases had not observed definitive outcomes (including death and recovery). Thus 
the Adjusted Case Fatality Rate (dCFR) is estimated for each country. The ratio of the fatality rate, which served 
as the baseline fatality rate (bCFR) calculated by the available death data to the estimated dCFR for a given 
country, could be used to estimate the proportion of reported cases to the total number of cases in that country 
 roughly18. The specific calculation procedure was as follows.

Assuming dCc,t as the proportion of the cases with a known outcome in c country on the t day. The formula 
was as follows:
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Where Cc,t represented the incidence of COVID-19 in the c country on day t; gt was the proportion of cases 
with known outcomes at time t. Its distribution represented a probability mass function of the proportion of 
cases with available outcomes at the time interval from diagnosis to death. In this study, we used log-normal 
distribution to fit the time interval from diagnosis to death using data related to cases from hospitalization to 
death in the  literature19 to obtain a mean value of 13 days (95% CI 8.7–20.9 days) with a standard deviation of 
12.7 days (95% CI 6.4–26 days).

Let dCFRc,t be the delay-adjusted case fatality rate on day t in c country to estimate the proportion of con-
firmed cases with known outcome events. The following equation was therefore obtained:

Where Dc,t was the number of fatal cases on day t in c country. Let ac,t be the proportion of confirmed sympto-
matic cases on day t in c country, and the formula was as follows:

where bCFR was set as a base value of 1.4% (95% CI 1.2–1.5%). It was a constant value across countries concern-
ing a study of COVID-19 CFR in  China12. And based on constructing the framework as simple and easy as pos-
sible, bCFR for each country was adjusted by age distribution to prevent the population’s age distribution in each 
studied country from being different from that of  China14. The estimation of ac,t was a pointwise estimate that did 
not have stability over  time20, thus a Gaussian process was adopted to fit the situation of how ac,t varies over time.

Let a∗c,t be the proportion of identified symptomatic cases that vary over time (determination rate), and the 
following equation is given:

where fc(t) was the nonparametric equation of the country c concerning time t, εc,t were mutually independent 
random variables, �−1 was the inverse of the probit function, which allowed mapping the function values to 
the range of the determination rate per unit of time; fc(t) will be set as the following Gaussian process equation:

Where k(t, t′; θc) was the covariance function, which consisted of two parts of the covariance matrix:

kbias was called the deviation kernel function and was used to construct the mean of ac,t throughout the time 
interval. kSE was called the squared exponential covariance function and was used to determine how this mean 
value varied over time.

Adjusting for prevalence. Monthly prevalence in importing countries was estimated using the method of 
 Russell8. Publicly available data from the European Centre for Disease Control (ECDC), including time-series 
data on daily new cases ( Casec,t ) and deaths ( Dc,t ) in each country, and the average population in each country 
( Pc ) was used to estimate daily cases with uncertain outcomes in each country. We selected the countries with at 
least ten deaths per day and more than ten days to generate deaths to obtain ac,t . The proportion of asymptomatic 
infections ( ASYc,t ) that vary with age has been  confirmed21. But in the absence of age-stratified data in globally, 
we assumed to set ASYc,t as a constant across countries using the levels reported in the  literature11, a mean of 
which was 50% (95% CI 10–70%). We adjusted the Casec,t in the two above aspects to obtain aCasec,t and then 
the number of cases was summed monthly to obtain the estimated whole number of cases ( aCasec,T ) per month 
for each country:

Combined Pc to obtain the adjusted prevalence for each country per month ( Prec,T).

(1)dCc,t =

t
∑

j=0

Cc,t−jgj

(2)dCFRc,t =
Dc,t
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In addition, considering the uncertainty of the estimates, we used ASYc,t and bCFR values and ranges to derive 
95% confidence intervals for the final adjusted cases.

Flight between importing countries and China. The data were obtained from the IATA flight data 
between countries worldwide from March to September 2019. They were used to simulate the flights between 
March and September 2020 without flight restrictions and controls, and all restricted flights were from abroad to 
China, excluding flights within the country. The flight data included the month of the flight, the country of origin 
and destination, and the number of flights to obtain the expected monthly airline data from March to September 
2020 from each country to China(Airportc,T).

Based on the data provided, it can be seen that the number of flights in 2020 was significantly lower compared 
to the same period in 2019 due to the COVID-19 epidemic and the implementation of related aviation controls, 
as shown in Fig. 1.

Expected imported cases. Based on the above estimates of the prevalence of COVID-19 in each import-
ing country, the prevalence rate in each importing country from March to September 2020 was obtained. The 
expected number of imported cases per month in each importing country without controls ( Importc,T)was equal 
to the adjusted prevalence estimates ( Prec,T ) for each importing country each month from March to September 
2020 multiplied by the number of flights passengers ( Airportc,T ) from each country each month from March to 
September 2019:

Estimation of the effective reproduction number. The role of flight control in the pandemic control 
process was quantified by comparing the domestic time-varying Rt calculated by the actual reported cases and 
the time-varying Rt calculated by the expected importing cases in the absence of flight control.  Abbott22 proposed 
the method for calculating the time-varying Rt . Using the calculated daily estimated reported cases ( eCaset ) as 
the initial number of infections ( R0 ), a predictive model was used to infer the most likely infection time given 
the case confirmation date. Bayesian inference of the possible time of infection was made using a deconvolution 
approach within a Gaussian process framework, thus providing the database for the estimation for Rt.

Data source. The eCaset in our country per day without air traffic control was to be calculated. The estimated 
monthly number of imported cases ( ImportT ) was assigned each day using the distribution of reported cases in 
the actual situation. Here we set the weights as follows:

Then the estimated number of imported cases ( Importt ) in our country per day was calculated as follows:

(11)Prec,T =
aCasec,T

Pc

(12)Importc,T = Airportc,TPrec,T

(13)weight =
Caset

CaseT

(14)Importt = ImportTweight

Figure 1.  Total number of flights from March to September in 2019 and 2020.
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The eCaset was the sum of the estimated number of imported cases and actual reported cases each day:

Delay in reporting cases. Because of the temporal delay between patient infection and case reporting, it was 
necessary to estimate the reporting delay time with some uncertainty and thus measure the impact of this delay 
on the number of reported cases. Log-normal distribution of delay times was first simulated, and then 100 re-
samples were performed to calculate the mean of delay time.

The left and right-censored times were replaced with the most recent date that could be tracked, and the case 
reporting delay time was truncated at the maximum observable value, as shown in Fig. 2.

Since there were not enough data to study the variability of case reporting delay time, we assumed that such 
delays were fixed. We made use of the mean value of reported case delay published in the literature of 6.5 days 
with a standard deviation of 17 days, while the mean value of onset to death reporting delay was 13.1 days with 
a standard deviation of 11.7 days, and the maximum delay was set at 30 days.

Basic reproductive number. The initial reproductive number was set using a log-normal prior with a mean of 1 
and a standard deviation of 1. This setting was based on the current situation in most parts of the world, where 
public health interventions and individual behaviors were used to prevent significant increases in reproductive 
numbers over time.

Generation time. We used the generation time to predict when the transmission of COVID-19 began and to 
measure the infectiousness of this virus. Generation time describes the interval from when a patient was infected 
to when that patient transmitted to the next person. However, generation time was challenging to obtain in real-
ity, so we used the time interval between the onset of symptoms in different generations (Serial Interval) instead 
of the generation  time23. The relationship between these two is shown in the following figure (Fig. 3).

The time interval between the onset of symptoms in different generations differed from the generation time 
in that the former included the incubation period of the infected person. Here we used a log-normal distribution 
to estimate the incubation period. We set the mean incubation period to 5.1 days (95% CI 4.5–5.8), as described 
in  Lauer12.

(15)eCaset = Importt + Caset

Figure 2.  Reporting delay time of cases.

Figure 3.  The time interval between the onset of symptoms in different generations (serial interval).
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Estimating time‑varying Rt. Rt represented the average number of the second generation confirmed cases that 
a particular infected person diagnosed at a given moment t will transmit during their infection period. It can 
be used to measure the real-time transmissibility of an epidemic. When Rt > 1 , an epidemic will spread rapidly 
through the population, and as the value gradually decreases, the speed of development of the epidemic will also 
gradually decrease; when Rt < 1 , the number of infections will gradually decrease, and the epidemic will slowly 
die out.

The EpiNow2 package was used to estimate time-varying Rt based on the date of  infection22. The corre-
sponding infection time was inferred from the incubation and reporting delays distribution and reported cases’ 
periodicity. Where the actual time-varying Rt was calculated using real domestic reported cases, the expected 
daily domestic reported cases were the sum of the daily expected imported cases and daily indigenous cases 
introduced in the previous section. We used the EpiNow2 program package to calculate the time-varying Rt , 
which can’t be observed directly. So we used a Bayesian latent variable approach, which we can infer through a 
mathematical model using observed variables. The model works as follows.

The initial number of infections was estimated based on the initial number of cases as a priori. For calculat-
ing the infection rate It at moment t, the number of infections estimated before t was weighted by the probability 
mass function (w) of the first generation case’s generation time and then accumulated, then multiplied by the 
estimate of Rt.

Using a log-normal distribution with mean one and standard deviation one as the prior distribution of the R0 . 
Then, convolving the incubation and reported delayed distributions of infected cases (convolved into ξ ) at each 
time step, the resulting infection trajectory was expressed as the mean number of reported cases ( Dt).

We assumed that the observed number of reported cases ( Ct ) was generated by a negative binomial observation 
model with a dispersion of φ ( φ using an exponential prior with a mean of 1). The mean was the average number 
of reported cases multiplied by the impact of a particular day of the week, where the independent parameter 
( ωtmod7 ) for each day was used to measure the effects of that day.

The time-varying of Rt ’s was controlled by an approximate Gaussian process with a squared exponential kernel. 
The parameters of the Gaussian process kernel function were estimated using the following priors: an inverse 
gamma prior was used for the length scale, and a standard normal distribution was used for the magnitude. 
A Markov chain Monte Carlo method (MCMC) was used to fit each time series independently. Here we used 
four chains with 500 preliminaries each and 4000 samples after preliminaries. Convergence was assessed using 
R hat diagnostics.

where GP was the kernel function of the Gaussian process, It−τwas the infection rate before the moment t, and 
wτ was the value of the probability mass function (w) of the generation time of the first generation cases at the 
moment τ.

Results
Actual and adjusted prevalence rates for each critical importing country. The actual prevalence 
estimates of each critical importing country were shown in Table 1, and the prevalence rates of each country 
fluctuated significantly or slightly from March to September 2020.

Among the critical importing countries with significant fluctuations in prevalence, such as Belgium, Spain, 
Italy, the United States, the United Kingdom, the Netherlands, Germany, Iran, and Russia, most of them showed 
an increasing and then decreasing trend in prevalence from March to June. The United States and Singapore 
were exceptions. The prevalence rate in the United States showed an increasing trend from May to June; the 
prevalence rate in Singapore showed an increasing and then decreasing trend from April to June, and the rate 
of decrease was faster than the increase.

Between June and September, the second pandemic of COVID-19 began in some countries, such as the United 
States, Spain, France, Belgium, the Netherlands, the United Kingdom, and Canada. Specifically, the U.S. showed 
a second increase in prevalence from May and a significant increase in June, peaking in July; this far exceeded 
the prevalence rate in the first pandemic and the prevalence rate in the rest of the countries during the same 
period. Meanwhile, other countries showed an increasing trend in prevalence since June. For example, Spain 
conducted a growing trend in prevalence rate since June, which increased significantly in July and continued to 
increase until the month of our study, considerably exceeding the prevalence level during the first pandemic. In 
France, Belgium, the Netherlands, the United Kingdom, and Canada, the increase in prevalence rate during the 
second pandemic was relatively low. It did not exceed the level of prevalence during the first pandemic, but the 
upward trend was still more pronounced. At the same time, the prevalence rate in some countries was decreasing 
or slightly fluctuating, such as Singapore, Russia, and Iran.

(16)It = Rt
∑

τ

wτ It−τ

(17)Dt =
∑

τ

ξτ It−τ

(18)Ct ∼ NB(Dtωtmod7,φ)

(19)Rt ∼ Rt−1 × GP
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We adjusted the number of currently reported cases considering the proportion of subjects with symptoms 
still undiagnosed and asymptomatic  infections12, and the delay in case detection was deemed. The adjusted preva-
lence rates for each critical importing country show an increase in most countries from March, a peak in April, 
and then a rapid decline to relatively low levels. However, the prevalence rates in the post-adjusted countries 
remained high compared to those in the unadjusted countries. It was easy to find that the United States was still 
the country with the highest prevalence rate between May and September.

Actual and expected imported cases. Table 2 shows the actual and expected imported cases. It can find 
that the real imported cases were higher from March to April in 2020, and then there was a significant decrease. 
There was a particular rebound in August, but it showed a downward trend in September. If no airline control 
was carried out, there were many imported cases in March and April, which peaked in April. Then the imported 
cases fluctuated, but they also remained at a large number, so if there were no flight restrictions and control, it 
could lead to a severe secondary outbreak.

Analysis of expected imported cases in each critical importing country. Since March 2020, the 
world epidemic has spread rapidly, with a high overall expected number of imported cases and a high number 
of importing countries (Table 3). The top 10 expected importing countries among them in descending order of 
the number of imported cases were called critical importing countries, namely France (FRA 2762), Spain (ESP 
2598), Italy (ITA 2567), the United States (USA 1941), the United Kingdom (GBR 1720), Germany (DEU 847), 
Belgium (BEL 756), Netherlands (NLD 562), Korea (KOR 322), and Switzerland (CHE 303).

The rapid increase in expected imported cases continued in April 2020, with the United States (USA 7840), 
United Kingdom (GBR 5543), France (FRA 4955), Italy (ITA 2134), Spain (ESP 2060), Germany (DEU 1916), 
Canada (CAN 1697), Singapore (SGP 1548), Netherlands (NLD 1162), and Belgium (BEL 1141), the top 10 
critical importing countries were all expected to import more than 1000 cases, with a continued rapid growth 
rate compared to March.

The overall expected number of imported cases in May 2020 was somewhat lower than in April, with the 
United States (USA 5667), Singapore (SGP 1904), the United Kingdom (GBR 1876), Canada (CAN 1142), France 

Table 1.  Actual and expected prevalence rates in critical countries from March to September 2020.

Country 
codes Countries

March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020

Actual 
(%)

Expected 
(%)

Actual 
(%)

Expected 
(%)

Actual 
(%)

Expected 
(%)

Actual 
(%)

Expected 
(%)

Actual 
(%)

Expected 
(%)

Actual 
(%)

Expected 
(%)

Actual 
(%)

Expected 
(%)

BEL Belgium 0.13 7.92 0.30 10.90 0.08 1.55 0.03 0.21 0.07 0.23 0.14 0.33 0.21 0.42

CAN Canada 0.02 0.23 0.12 1.99 0.10 1.41 0.04 0.31 0.03 0.09 0.03 0.07 0.05 0.14

DEU Germany 0.07 1.04 0.12 2.27 0.03 0.39 0.02 0.10 0.02 0.05 0.04 0.08 0.04 0.08

ESP Spain 0.22 7.28 0.24 5.22 0.05 0.67 0.02 0.36 0.08 0.17 0.37 0.74 0.47 0.95

FRA France 0.07 5.49 0.13 7.31 0.03 1.03 0.02 0.22 0.03 0.13 0.14 0.28 0.28 0.59

GBR England 0.04 2.68 0.21 7.20 0.13 2.44 0.04 0.48 0.03 0.13 0.05 0.10 0.10 0.21

IRN Iran 0.05 0.63 0.06 0.42 0.07 0.34 0.09 0.71 0.09 1.06 0.09 0.74 0.07 0.64

ITA Italy 0.17 4.99 0.17 3.32 0.05 0.86 0.01 0.16 0.01 0.08 0.03 0.09 0.05 0.11

JPN Japan 0.00 0.01 0.01 0.11 0.00 0.04 0.00 0.00 0.01 0.03 0.03 0.07 0.01 0.03

KOR Korean 0.01 0.05 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.02 0.01 0.02

NLD Nether-
lands 0.07 3.58 0.16 5.05 0.04 0.81 0.02 0.12 0.02 0.05 0.09 0.19 0.16 0.33

RUS Russia 0.00 0.00 0.07 0.18 0.20 0.54 0.17 0.55 0.13 0.45 0.11 0.35 0.09 0.31

SGP Singapore NA NA 0.25 0.57 0.32 0.70 0.16 0.34 0.14 0.30 0.09 0.18 0.01 0.03

USA America 0.05 0.64 0.27 2.80 0.22 1.37 0.25 0.79 0.58 1.40 0.46 1.17 0.27 0.67

Table 2.  Actual and expected importing cases in China from March to September 2020 (number of 
individuals).

Time Actual importing cases Expected importing cases without airline control

Mar-20 787 15,794

Apr-20 750 34,033

May-20 88 15,711

Jun-20 170 8414

Jul-20 138 10,233

Aug-20 428 11,533

Sep-20 355 6881
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(FRA 712), Russia (RUS 672), Italy (ITA 545), the United Arab Emirates (ARE 351), Germany (DEU 336) and 
Japan (JPN 313), with still four critical importing countries with more than 1000 cases.

The expected number of imported cases in June 2020 decreased steadily compared to May; only the United 
States (USA 3111) was more than 1000 cases. Other critical importing countries were Singapore (SGP 944), 
Russia (RUS 862), United Kingdom (GBR 526), Canada (CAN 308), Spain (ESP 194), Brazil (BRA 178), United 
Arab Emirates (ARE 169), France (FRA 166), and Switzerland (SWE 156).

The number of expected imported cases continued to decline in most countries in July 2020. Still, the number 
of expected imported cases in the United States continued to show a significant increase. The top 10 countries 
in terms of expected imported cases were the United States (USA 4812), Singapore (SGP 886), Russia (RUS 
824), Japan (JPN 225), Indonesia (IDN 222), the United Kingdom (GBR 200), Brazil (BRA 186), Australia (AUS 
177), South Africa (ZAF 175), and the Philippines (PHL 155). Some new countries emerged among the top 10 
countries, such as Indonesia, Australia, South Africa, and the Philippines.

From August 2020, the number of expected imported cases gradually decreased in most countries that 
ranked high in the previous months. Still, the number of expected imported cases increased further in the new 
countries that entered the top 10, such as Australia, the Philippines, Indonesia, etc. The top 10 countries and the 
number of imported cases in August were as follows: United States (USA 4470), Russia (RUS 677), Japan (JPN 
638), Singapore (SGP 580), Australia (AUS 530), Philippines (PHL 425), Maldives (MDV 381), Spain (ESP 355), 
Indonesia (IDN 257), and France (FRA 234).

In September 2020, the expected number of imported cases declined in the formerly top-ranked critical 
importing countries. However, there was still a steady increase in the bottom-ranked countries such as France, 
Spain, Indonesia, and the United Arab Emirates. The specific situation was as follows: United States (USA 1889), 
Russia (RUS 528), France (FRA 414), Spain (ESP 362), the Philippines (PHL 233), Israel (ISR 231), Indonesia 
(IDN 229), the United Arab Emirates (ARE 227), and Japan (JPN 206).

The change situation of the expected number of imported cases in each critical importing country from 
March to September 2020 is shown in Fig. 4. From March to May 2020, the expected imported cases were 

Table 3.  Actual and expected imported cases in critical countries from March to September 2020.

Countries

March 2020 April 2020 May 2020 June 2020 July 2020 August 2020 September 2020

Actual Expected Actual Expected Actual Expected Actual Expected Actual Expected Actual Expected Actual Expected

America 115 1941 (835-
4147) 49

7840 
(3428–
16618)

13
5667 
(2439–
12069)

13
3111 
(1321–
6576)

21
4812 
(2218–
9955)

18
4470 
(1934–
9913)

21 1890 
(857–3987)

England 222 1721 
(872–3182) 80

5543 
(2862–
10779)

4 1876 
(957–3610) 5 526 

(245–964) 4 200 
(96–386) 28 176 

(92–405) 5 238 
(130–460)

Spain 78
2599 
(1346–
4706)

5
2060 
(1003–
4035)

1 279 
(132–802) 2 194 

(50–482) 0 97 (46–199) 5 355 
(197–592) 7 363 

(198–818)

France 6
2762 
(1398–
5075)

0
4956 
(2554–
9264)

0 713 
(331–1373) 0 167 

(73–337) 0 119 
(52–247) 0 234 

(127–427) 0 414 
(223–757)

Netherlands 3 563 
(281–1047) 3 1163 

(580–2164) 0 185 
(90–355) 0 26 (11–56) 2 12 (6–21) 0 39 (21–65) 0 68 

(38–117)

Italy 48
2568 
(1332–
4675)

2
2134 
(1109–
3907)

0 545 
(278–996) 0 132 

(64–248) 0 74 (35–144) 0 85 (43–160) 1 71 
(39–118)

Japan 2 80 (35–168) 1 782 
(372–1540) 4 313 

(144–633) 0 39 (18–81) 0 225 
(120–400) 4 638 

(299–1256) 2 206 
(87–429)

Russia 33 5 (1–10) 532 190 
(80–367) 30 672 

(323–1262) 6 863 
(387–1620) 20 824 

(374–1553) 10 678 
(315–1271) 5 528 

(241–1003)

Iran 43 48 (24–89) 1 42 (21–79) 0 39 (19–72) 1 68 (34–126) 1 107 
(53–199) 0 78 (39–145) 2 67 

(33–125)

Belgium 2 756 
(364–1442) 1 1141 

(555–2185) 0 157 
(70–306) 0 23 (10–47) 0 33 (13–69) 0 33 (15–66) 1 40 (22–68)

Canada 8 197 
(96–374) 5 1700 

(848–3180) 1 1143 
(573–2137) 2 308 

(147–597) 1 98 (46–199) 3 76 (41–136) 2 127 
(62–245)

German 6 847 
(424–1595) 0 1916 

(960–3602) 0 336 
(166–639) 0 80 (37–159) 0 43 (21–90) 0 84 (46–147) 0 77 

(43–132)

Korean 0 323 
(147–667) 0 82 (34–183) 0 26 (11–61) 0 39 (20–75) 0 43 (23–75) 1 185 

(95–356) 3 113 
(49–266)

Singapore 2 NA 1 1548 
(761–5430) 1 1904 

(972–4770) 1 944 
(492–2086) 11 886 

(463–1910) 40 580 
(302–1288) 13 82 

(42–215)

United Arab 
Emirates 10 15 (6–38) 1 675 

(295–1460) 4 351 
(170–715) 4 169 

(94–292) 0 146 
(81–266) 53 177 

(64–222) 7 227 
(125–397)

Indonesia 3 26 (12–50) 0 62 (30–121) 0 94 (46–178) 4 144 
(71–271) 4 222 

(111–418) 17 257 
(128–483) 25 229 

(114–432)

The Philip-
pines 42 34 (16–73) 1 67 (30–146) 2 34 (14–100) 1 55 (25–141) 24 155 

(79–332) 87 425 
(213–907) 70 233 

(105–592)
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mainly concentrated in North America and countries in the European region, primarily the United States, the 
United Kingdom, France, Italy, Singapore, Germany, Canada, and the Netherlands. From June to September, 
the expected imported cases fluctuated. The expected cases in many East Asian countries gradually increased, 
accounting for a more significant part of the total predicted imported cases. The U.S. had been ranked first since 
April with a much higher number of expected imported cases than the country with the second-highest number 
of expected imported cases. The countries with more actual imported cases were Russia, the United Kingdom, the 
United States, the Philippines, and Spain. It can be found that the top 10 countries in terms of actual imported 
cases were not all the same as the top 10 countries in terms of expected imported cases. There was a significant 
increase in the number of expected imported cases compared to the actual ones. A large number of imported 
cases would be generated without the control and lockdown of flights, thus then causing a rebound or even a 
secondary outbreak of the disease.

Effective reproduction number. Figure 5 shows the estimated actual and expected time-varying Rt with 
the actual and estimated number of reported cases. It can be seen that the fluctuation between time-varying Rt 
and the number of reported cases was closely correlated at inevitable delays.

The actual Rt change showed a rapid increase from the beginning of March 2020, reaching 1.61 (90% CI (1.35, 
1.88)) in the second week (March 15th), followed by a decline to 0.89 (90% CI (0.69, 1.05)) in the middle of the 
third week (March 25th). The actual Rt slightly increased to 1.09 (90% CI (0.90, 1.31)) in the fifth week (April 

Figure 4.  Expected number of imported cases in critical countries from March to September 2020.

Figure 5.  Acutal Rt and expected Rt with actual and expected number of importing cases in 2020.
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4th) and then dropped sharply to the beginning of the study of 0.38 (90% CI (0.27, 0.49)). It had a relatively large 
increase to 1.23 (90% CI (0.97, 1.54)) in the 9th week (May 5th); followed by smaller fluctuations, including a 
drop to 0.91 (90% CI (0.67, 1.14)) in the middle of week 10 (May 14th) and an increase to 1.04 (90% CI (0.83, 
1.29)) in week 12 (May 23rd). The actual Rt had a larger increase, reaching a peak of 1.79 (90% CI (1.42, 2.19)) 
in week 14 (June 7th); followed by a large decline to 0.69 (90% CI (0.52, 0.86)) in week 16 (June 20th). Then it 
rose to 1.48 (90% CI (1.27, 1.75)) in week 19 (July 10th); fell to 0.76 (90% CI (0.61, 0.90)) in week 21 (August 1st) 
and rose, after minor fluctuations, to 0.78 (90% CI (0.63, 0.95)) in week 22 (August 7th). The actual Rt decreased 
to 0.72 (90% CI (0.56, 0.88)) in week 23 (August 15th); then increased with fluctuations to 1.04 (90% CI (0.85, 
1.27)) in week 26 (September 7th). It decreased to 0.92 (90% CI (0.75, 1.09)) in the middle of week 27 (September 
17th) ), and rose to 1.14 (90% CI (0.92, 1.38)) in week 30 (September 29th). It can be seen that the period of each 
fluctuation was basically around 2-3 weeks until week 15. Then the fluctuation period became gradually longer, 
the range became smaller, and the value fluctuated around 1.

The expected Rt change showed a rapid rise from March 2020, reaching 1.58 (90% CI (1.22, 1.70)) in week 2 
(March 15th). It declined slightly to 1.36 (90% CI (1.13, 1.59)) in the middle of week 3 (March 26th), followed 
by a rapid decline to 0.47 (90% CI (0.35, 0.58)) in the middle of week 6 (April 15th). Then the expected Rt rose 
sharply to 1.41 (90% CI (1.17, 1.65)) in week 9 (May 2nd), fell slightly to 0.93 (90% CI (0.78, 1.10)) in the middle 
of week 10 (May 14th). It fell further to 0.51 (90% CI (0.35, 0.67)) in week 12 (May 26th) and increased sharply 
to 1.90 (90% CI (1.51, 2.37)) in week 14 (June 8th), reaching the highest value in the study range. The expected 
Rt decreased sharply to 0.51 (90% CI (0.36, 0.65)) in week 16 (June 23rd), then increased in week 19 (July 13th) 
to 1.54(90% CI (1.27, 1.78)). It declined to 0.79 (90% CI (0.62, 0.97)) in mid-week 21 (July 31st), then continued 
to decline slowly to 0.71 (90% CI (0.56, 0.86)) in mid-week 23 (August 13th). The expected Rt increased slightly 
to 1.13 (90% CI (0.92, 1.37)) in mid-week 25 (August 27th); then declined slightly to 0.94 (90% CI (0.76, 1.14)) 
in week 28 (September 15th); and then showed an increasing trend until the end of the study, reaching 1.67 (90% 
CI (0.46, 4.01)) in week 30 (September 30th). The trend was similar to the actual Rt , with 2-3 weeks fluctuation 
until week 16, followed by a longer fluctuation period and a slighter range. The difference was that there was a 
delay in the expected Rt compared with the actual Rt . Each fluctuation was slightly different because the Rt was 
related to daily diagnosed cases and all previous dates. Also, the estimation of expected Rt took into account the 
latency period and the time of reporting delay.

Paired ranked one-tailed test was used to compare the estimates of expected time-varying Rt with those of 
actual time-varying Rt . It found that the predicted time-varying Rt was significantly greater than the actual time-
varying Rt (V = 13828, p-value = 0.0052). It indicated that the aviation control measures implemented since the 
outbreak of COVID-19 had effectively prevented the spread of the epidemic in China.

Discussion
This research predicted the number of imported cases without aviation control via evaluating the situation of 
COVID-19 prevalence in the importing country and the data of flights among specific countries. When estimat-
ing the prevalence rate, the number of actual reported cases calculated by the real prevalence rate was identical 
to the result of the accumulated number of reported cases in the critical imported country in the thesis, which 
demonstrated the accuracy and stability of the calculation of the prevalence  rate24. In addition, there might be 
several reasons when the variation tendency of prevalence rate was different from the reality.

First, some studies illustrated that after the first pandemic of COVID-19, the diagnosis rate in many countries 
decreased. For example, in France, according to the model of health recording, although there were surveillance 
and control measures, many infected people did not receive testing or quarantine, which led to a low diagnosis 
 rate25,26. Therefore, the proportion we estimated from March to April in 2020 was relatively higher than the other 
months, resulting in a rapid increase in the adjusted number of cases. However, the proportion of undiagnosed 
cases decreased after May 2020. Then the number of adjusted cases decreased but was also relatively higher than 
the actual reported number of cases.

In addition, as mentioned above, the baseline CFR was assumed as 1.4% (95% CI 1.2–1.5%). Meanwhile, 
the range of asymptomatic proportion was assumed by 50% (95% CI 10–70%). Considering the uncertainty of 
the estimated prevalence rate value in the inference process, we propagated the variance of the baseline CFR, so 
the final 95% credible interval reported for under-ascertainment reflects underlying uncertainty in the model 
parameters. Thus, the ultimate 95% confidence interval would reflect the potential uncertainty of the model’s 
parameter. Our estimates were consistent with published serological data, which to some extent demonstrated 
the stability of  estimation27. At the same time, there were some restrictions because we assumed that the death 
case report was accurate. If the ability to identify was limited or there were some other factors affecting the death, 
some death cases may be incorrectly attributed to other death reasons. In this situation, we may underestimate 
the infection rate.

Furthermore, CFR in some countries may concentrate on a specific age group, and effective CFR may be 
either higher or lower than the baseline CFR we preset. So if we could group the baseline CFR according to dif-
ferent countries and ages, we could measure the disease burden in every country more precisely. In our paper, 
we simplified the explanation and calculation by presetting a reasonable range of CFR.

The results of calculating expected imported cases on foreign flights visualized that theoretically expected 
imported cases would far exceed actual imported cases if no airline control measures were implemented. This 
result was validated in the relevant thesis. One study analyzed the effect of simulated scenarios with different 
levels of airline control on an epidemiological curve and imported cases in the country. It showed that when 
combined with public health interventions and behavior change, airline control can significantly reduce the 
spread of the  disease28, which was the same conclusion as our analysis.
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The values of time-varying Rt estimated in this paper were similar to the results of other theses on time-
varying Rt in Asian  countries29,30, both exhibiting relatively low Rt . Due to effective control measures in China 
making Rt fluctuate around 1, the transmission rate of COVID-19 in China was relatively low. The approach 
for estimating time-varying Rt had many advantages. First, the estimation of the Rt used only the number of 
reported cases, which enabled our method to be applied to a broader range of scenarios and to be able to be 
used in studies that provide different types of data. For example, we can use the corresponding delayed time 
distributions in other kinds of data providing the number of inpatients, deaths, et al.. In addition, calculating 
confidence intervals with this method was more straightforward and accessible than using maximum likelihood 
estimation methods to estimate Rt31. It was also easier to implement and more flexible than parameter estimation 
used on the same data  set32.

Of course, this method had some limitations. This method required the proportion of reported infections 
to remain constant over the study time. In other words, it needed consistency in case collecting, the intensity of 
nucleic acid testing, and the definition of cases. However, the intensity of nucleic acid testing and the extent of 
delayed reporting in a country will often vary as the pandemic progresses. But if this variation remains consist-
ent after the start, it will only temporarily affect the estimated value. If the actual testing capacity was limited, 
or if there were some special distributions of cases in the early stage, we may underestimate the actual burden 
of the infection. The duration of bias in the Rt estimates will depend on the length of the incubation period of 
the case, the delayed distribution of reports, and the parameter settings of the Gaussian process used in the Rt 
estimation process. The impact of nucleic acid testing and other reporting biases on Rt depended on the measures 
used to control transmission (number of test-positive cases, number of hospitalizations, number of test-positive 
deaths). In addition, the delay from episodes to reporting affected the number of cases calculated by the date of 
episodes. If the actual delay were shorter than our estimated delay, it would overestimate the number of cases 
and, conversely, underestimate it. And this delay varied with the transmission characteristics and situations of 
the disease. In our paper, we used a re-sampling approach to generate distributions of delay times to reduce the 
uncertainty of such variation.

What’s more, adjusting for the actual number of asymptomatic was performed by simply assuming a wide 
range, reflecting the still-present uncertainty in the literature of 10-70% of all infections. The proportion of 
asymptomatic infections has been estimated to also vary with  age21.In the absence of age-stratified data globally, 
we opt for a simple adjustment, which is equivalent across all settings. Therefore, we likely overestimate incidence 
in countries with younger populations and vice versa in countries with older people. As more detailed data comes 
in, it would be possible to refine and improve the methods’ accuracy. When considering the estimation of Rt , we 
chose an experienced approach to assume the R0 . Some papers mentioned that it would be a different R0 when the 
other pandemic waves appeared, so it will be possible to consider more details on the specific pandemic situation 
of each  country33.The Bayesian latent variable method was used to estimate Rt in this study. Other methods, such 
as the Bernoulli S-I (Susceptible-Infected) equation, estimate transmission rates by the new daily  infections34.
These methods considered the epidemic’s growth and provided another way to solve this problem. Comparison 
between these methods will be considered in the future.

In conclusion, the analysis of the effects of aviation controls on the COVID-19 epidemic in the country can 
help evaluate and develop similar public health response plans in the future. This study showed that the aviation 
controls from March to September 2020 played an essential role in controlling the development of the epidemic 
in China.
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