
Journal of

Personalized 

Medicine

Article

Pharmaco-Metabolomics of Inhaled Corticosteroid Response in
Individuals with Asthma

Priyadarshini Kachroo 1,† , Joanne E. Sordillo 2,†, Sharon M. Lutz 2, Scott T. Weiss 1 , Rachel S. Kelly 1 ,
Michael J. McGeachie 1, Ann Chen Wu 2,‡ and Jessica A. Lasky-Su 1,*,‡

����������
�������

Citation: Kachroo, P.; Sordillo, J.E.;

Lutz, S.M.; Weiss, S.T.; Kelly, R.S.;

McGeachie, M.J.; Wu, A.C.; Lasky-Su,

J.A. Pharmaco-Metabolomics of

Inhaled Corticosteroid Response in

Individuals with Asthma. J. Pers. Med.

2021, 11, 1148. https://doi.org/

10.3390/jpm11111148

Academic Editor: Margaret

M. DeAngelis

Received: 17 October 2021

Accepted: 30 October 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital and
Harvard Medical School, Boston, MA 02115, USA; reprk@channing.harvard.edu (P.K.);
scott.weiss@channing.harvard.edu (S.T.W.); hprke@channing.harvard.edu (R.S.K.);
remmg@channing.harvard.edu (M.J.M.)

2 PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine,
Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215, USA;
rejoa@channing.harvard.edu (J.E.S.); sharon.m.lutz@gmail.com (S.M.L.);
ann.wu@childrens.harvard.edu (A.C.W.)

* Correspondence: rejas@channing.harvard.edu; Tel.: +1-617-875-9992
† These authors contributed equally to this manuscript.
‡ These authors contributed as co-senior authors.

Abstract: Metabolomic indicators of asthma treatment responses have yet to be identified. In this
study, we aimed to uncover plasma metabolomic profiles associated with asthma exacerbations while
on inhaled corticosteroid (ICS) treatment. We determined whether these profiles change with age
from adolescence to adulthood. We utilized data from 170 individuals with asthma on ICS from the
Mass General Brigham Biobank to identify plasma metabolites associated with asthma exacerbations
while on ICS and examined potential effect modification of metabolite-exacerbation associations
by age. We used liquid chromatography–high-resolution mass spectrometry-based metabolomic
profiling. Sex-stratified analyses were also performed for the significant associations. The age range
of the participating individuals was 13–43 years with a mean age of 33.5 years. Of the 783 endogenous
metabolites tested, eight demonstrated significant associations with exacerbation after correction
for multiple comparisons and adjusting for potential confounders (Bonferroni p value < 6.2 × 10−4).
Potential effect modification by sex was detected for fatty acid metabolites, with males showing a
greater reduction in their metabolite levels with ICS exacerbation. Thirty-eight metabolites showed
suggestive interactions with age on exacerbation (nominal p-value < 0.05). Our findings demonstrate
that plasma metabolomic profiles differ for individuals who experience asthma exacerbations while
on ICS. The differentiating metabolites may serve as biomarkers of ICS response and may highlight
metabolic pathways underlying ICS response variability.
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1. Introduction

Asthma imparts a tremendous global health and economic burden, affecting over
350 million people worldwide [1–4]. While several genetic variants have been determined
to influence an individual’s asthma susceptibility [5–8], asthma also has substantial envi-
ronmental triggers [9] and the majority of cases arise from complex interactions between
both factors. Inhaled corticosteroids (ICS) are the most commonly used controller med-
ications for the treatment of individuals with moderate to severe asthma [10]. However,
approximately 25 to 35% of asthma patients either do not respond or respond poorly to
ICS [11,12]. Early identification of patients as responders or non-responders to ICS therapy
will enhance treatment efficacy and will minimize the overall impact of ICS side effects by
avoiding treatment in individuals who are non-responders [13–18].
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Metabolomics is one type of high-dimensional “omics” data that can be leveraged to
identify biomarkers of medication response [19,20]. Metabolomics, the systematic analysis
of small molecules in a biological sample, provides an integrated profile of genetics, envi-
ronmental exposures, and phenotype, reflecting the “net results” of genetic, transcriptomic,
proteomic, and environmental interactions, making it ideally suited to the study of asthma
etiology and phenotypes [21,22]. Pharmacometabolomics is an emerging discipline that
has the potential to improve our understanding of the mechanistic effects of drugs and
inform precision medicine initiatives for individuals with asthma on ICS [23].

Using data from our Age-Dependent Pharmacogenomics of Asthma Treatment (ADAPT)
study, [24] we examined plasma metabolomics to identify metabolites associated with
asthma exacerbations while on ICS. In secondary analyses, we tested metabolite interactions
with age to determine if pharmacometabolomic predictors of ICS response were age-
dependent. We leveraged Mass General Brigham Biobank (MGBB) and electronic medical
health record (EMR) data to conduct our analyses.

2. Methods
2.1. Study Population: Mass General Brigham Biobank

The Mass General Brigham Biobank (MGBB) (https://biobank.partners.org, access
date 30 June 2020) is a collection of DNA, serum, and plasma samples from 81,502 fully
consented subjects, linked to the Research Patient Data Registry (RPDR), a data warehouse
that gathers data from multiple electronic medical health record (EMR) systems and stores
it in an SQL Server database. We applied a validated phenotyping algorithm [25] for asthma
diagnosis (positive predictive value > 85%) using the RPDR and identified asthma cases
with the most recent diagnosis after the plasma collection date. Using the EMR data, we
obtained information on asthma medication use for the identified asthma cases. We created
a binary measure of ICS use using information on the total number of ICS prescriptions
for the following medications: beclomethasone dipropionate, budesonide, ciclesonide,
inhaled dexamethasone, flunisolide, fluticasone, fluticasone/salmeterol, mometasone,
and triamcinolone. Among the asthma cases with ICS intake, a quantitative measure of
exacerbation was defined using episodes of exacerbation based on the physician’s report.
Subjects were classified as “with exacerbation” if they either had at least one episode
in the reported count/frequency of the number of exacerbations or a yes to any of the
following criteria: (1) mild intermittent asthma with (acute) exacerbation, (2) mild persistent
asthma with (acute) exacerbation, (3) moderate persistent asthma with (acute) exacerbation,
(4) severe persistent asthma with (acute) exacerbation, and (5) unspecified asthma with
(acute) exacerbation. Otherwise, they were classified as “without exacerbation”. This study
was approved by the IRB of Mass General Brigham and all study participants provided
written consent at enrollment.

2.2. Metabolomic Profiling for Mass General Brigham Biobank

Metabolomic profiling was conducted by Metabolon Inc. (Durham, NC, USA) using
four non-targeted liquid chromatography couple mass spectroscopy (LCMS) platforms,
enabling the broadest coverage of the metabolome. The methods have been described in
detail previously [26]. In short, four non-targeted liquid chromatography couple mass
spectroscopy (LCMS) platforms were performed as follows: (1) UPLC-MS/MS under
positive ionization; (2) UPLC-MS/MS under negative ionization; (3) UPLC-MS/MS, polar
platform (negative ionization); and (4) GC-MS. Metabolites were identified by their mass-
to-charge ratio (m/z), retention time (rt), and through a comparison to a library of purified
known standards. Peaks were quantified using area-under-the-curve. Metabolite measures
were median normalized across run days (with medians set to 1).

Plasma samples for the cohort were collected between October 2010 and March
2017 and were stored immediately (within 4 h) in a freezer at −80 degrees. Non-fasting
plasma samples were available from all the participants, which were used for metabolomic
profiling. The most recent diagnosis of asthma was chosen based on the plasma collection
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date. Metabolomic data were available for 171 asthmatics with ICS use in MGBB. One
outlier subject with 82 exacerbations was removed from the analysis. There were 90 subjects
without exacerbation (zero counts of exacerbation) and 80 subjects with at least one episode
of exacerbation (Figure S1). Metabolite intensities were log transformed and pareto scaled,
and missing metabolite values were imputed by replacement with half the minimum value
for each metabolite in all samples. Metabolites with an interquartile range (IQR) of zero as
well as those with less variance (an IQR less than 0.25) were excluded from further analysis
(n = 143). Further, for this analysis we only considered endogenous metabolites.

2.3. Statistical Analysis
Metabolite Associations with Exacerbation and Their Effect Modification by Age

To account for the over-dispersion in the exacerbation count data, a quasi-Poisson
regression was used to test the association between plasma metabolites (predictor) and the
exacerbation counts (outcome). Models were adjusted for age, sex, race (White, African
American, and Other), body mass index (BMI), smoking status, and time gap (in years)
between the date of the first blood draw and the date until which the samples were followed
for the data freeze as the data in the biobank is dynamic. The data was downloaded
from the Biobank on 30 June 2020. We also explored these associations stratified by
sex and further evaluated these models for age–metabolite interactions, including the
interaction term (age*metabolite). The age–metabolite interactions were explored in these
subjects to understand the influence of age on these metabolite associations over adulthood.
Age was mean centered to reduce collinearity with the interaction term. To account for
multiple testing comparisons while taking into consideration the high correlation between
metabolites that exist within interconnected pathways, we applied the “effective number of
independent tests” (ENT) approach [27–32], exploring a threshold of ENT85% (accounting
for 85% of the total variance in metabolites; the corresponding Bonferroni p-value threshold
was 6.2 × 10−4). All analyses are conducted in R version 4.0.3 [33].

3. Results

Clinical characteristics of participating subjects (n = 170) from the MGBB-cohort are
summarized in Table 1. The mean age in these subjects was 33.5 years with an age range of
13–43 years. There was no significant difference between ICS-asthmatics with and without
exacerbation based on age, BMI, and smoking status; however, exacerbation status differed
by sex (p = 0.03) and race (p = 0.03).

Metabolite Associations with Exacerbation and Their Effect Modification by Age and Sex

In total, 783 endogenous metabolites remained for the downstream analyses after
quality control; 482 (61.6%) of those were annotated to metabolite super pathways. Most of
these annotated metabolites were lipids (38.0%) and amino acids (36.7%). There were
65 metabolites that were associated with exacerbation at a p-value threshold of 0.05
(Table S1). Eight of those 65 metabolites were also significant at an ENT85% (effective
number of independent tests accounting for 85% of the total variance in metabolites,
Table 2, Figure 1). There were four metabolites belonging to the lipid super-pathway
and all demonstrated a reduction in metabolite levels with an increase in exacerbation:
cortisone (β = −0.55; 95%CI =−0.79, −0.29; p-value = 2.90 × 10−5), cortisol (β=−0.61;
95%CI=−0.89, −0.30; p-value = 7.11 × 10−5), tetradecanedioate (β = −0.71; 95%CI = −1.08,
−0.31; p-value = 3.6 × 10−4), and hexadecanedioate (β = −1.05, 95%CI = −1.62, −0.49;
p-value = 3.7 × 10−4). The remaining four demonstrated positive associations with exacer-
bation and belonged to carbohydrate and amino acid super-pathways: mannitol/sorbitol
(β = 0.90; 95%CI = 0.47, 1.33; p-value = 5.93 × 10−5), urea (β = 1.50; 95%CI = 0.78, 2.23;
p-value = 7.78× 10−5), 5-methylthioadenosine (β= 1.49; 95%CI = 0.70, 2.24; p-value = 2.2 × 10−4),
and 1-carboxyethylvaline (β = 1.22, 95%CI = 0.58, 1.89; p-value = 3.8 × 10−4). Given known
sex differences in asthma cases, we further stratified these significant associations by sex
(Tables S2 and S3). All eight metabolite associations remained significant, and their direc-
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tion of effect remained consistent in females. Males had a limited sample size; therefore,
only the metabolites associated with lipid metabolism belonging to the corticosteroid (cor-
tisol and cortisone) and fatty acid (hexadecanedioate and tetradecanedioate) sub-pathways
retained significance in males who also demonstrated increased reduction in these metabo-
lite levels.

Table 1. Clinical characteristics of the subjects in the MGBB-cohort.

Clinical Characteristics
All Subjects

(n = 170)

Exacerbation
p-Value *Presence

(n = 80)
Absence
(n = 90)

Sex, n (%) 0.03

Female 136 (80.0) 70 (87.5) 66 (73.3)

Male 34 (20.0) 10 (12.5) 24 (26.7)

Race, n (%) 0.03

African American 23 (13.5) 15 (18.8) 8 (8.9)

White 132 (77.6) 55 (68.8) 77 (85.6)

Others 15 (8.8) 10 (12.5) 5 (5.6)

Smoking, n (%) 0.25

No 127 (74.7) 56 (70.0) 71 (78.9)

Yes 43 (25.3) 24 (30.0) 19 (21.1)

Exacerbation counts, mean (SD) 2.2 (4.6) 4.6 (5.8) 0.0 (0.0) NA

Age, mean (SD) 33.5 (7.1) 34.6 (5.9) 32.6 (7.8) 0.06

BMI kg/m2, mean (SD) 29.8 (8.6) 30.6 (8.6) 29.0 (8.5) 0.23
* Significance of difference was evaluated using chi-square test for categorical variables and two-sample t-test for
continuous variables. Data for body mass index (BMI) was missing for five subjects. Exacerbation counts are
shown for clarity since the quantitative variable was used to get the best power for models. Abbreviations: BMI,
body mass index; SD, standard deviation.

Table 2. Metabolite (predictor) associations with exacerbation (outcome) in asthma cases with inhaled corticosteroid (ICS)
intake at an “effective number of tests” (ENT) *.

Metabolite Super-Pathway Sub-Pathway β (95%CI) p-Value

Cortisone Lipid Corticosteroids −0.55 (−0.79, −0.29) 2.90 × 10−5

Cortisol Lipid Corticosteroids −0.61 (−0.89, −0.30) 7.11 × 10−5

Tetradecanedioate (C14-DC) Lipid Fatty acid, dicarboxylate −0.71 (−1.08, −0.31) 3.6 × 10−4

Hexadecanedioate (C16-DC) Lipid Fatty acid, dicarboxylate −1.05 (−1.62, −0.49) 3.7 × 10−4

Mannitol/Sorbitol Carbohydrate Fructose, mannose, and
galactose metabolism 0.90 (0.47, 1.33) 5.93 × 10−5

Urea Amino Acid Urea cycle; arginine and
proline metabolism 1.50 (0.78, 2.23) 7.78 × 10−5

5-methylthioadenosine (MTA) Amino Acid Polyamine metabolism 1.49 (0.70, 2.24) 2.2 × 10−4

1-carboxyethylvaline Amino Acid Valine derivative 1.22 (0.58, 1.89) 3.8 × 10−4

* Bonferroni threshold p-value of 6.2 × 10−4. The table is sorted by sub-pathway followed by p-value.
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Of the 783 tested metabolites, 38 metabolites demonstrated a significant interaction
with age in association with exacerbation at a nominal p-value threshold of 0.05; 10 of those
were significant even at a more stringent p-value threshold of 0.01 (Table S4), including
the named metabolites: lactate, fructose, glycoursodeoxycholate, 3-hydroxydecanoate,
ursodeoxycholate, and phenylalanyltryptophan. This suggests that these metabolites may
be modified over age in asthma cases with exacerbation and could potentially be a target
for age-related interventions. We did not identify a significant age–metabolite interaction
effect for the eight metabolites as highlighted above.

4. Discussion

Pharmacometabolomics is an emerging approach with the potential to identify biomark-
ers of treatment response as well as the metabolic pathways that underlie drug response
variability [34]. Pharmacometabolomic indicators of treatment responses may ultimately
help reduce asthma morbidity by increasing the precision of asthma treatment regimens.
In this work, we identified plasma metabolomic indicators of asthma exacerbations while
on ICS treatment.

We detected metabolite indicators of exacerbation while on ICS treatment from lipid
and amino acid biochemical classes. Two of the top metabolites, hexadecanedioate and
tetradecanedioate, are derived from omega fatty acid oxidation, a subsidiary pathway
of beta-oxidation [35]. Fatty acid oxidation may have a key role in asthma pathogenesis.
Emerging evidence from murine models of asthma shows that allergic inflammation in
the airways increases with fatty acid oxidation enzyme activity in immune cells [36].
Furthermore, in vivo and in vitro metabolomics studies of bronchial smooth muscle cells
from participants with asthma have identified beta-oxidation of fatty acids as a predictor
of cell proliferation, a marker of airway remodeling [37]. Lastly, omega-fatty acid oxidation
has a key role in leukotriene pathways [35]. While existing evidence shows links between
fatty acid oxidation and asthma pathogenesis, ours is the first report linking fatty acid
oxidation to ICS response in asthma. Our findings suggest that this metabolic pathway
could be a useful target for enhancing treatment outcomes. Additional population studies,
as well as functional validation models, will be necessary to fully understand the connection
between fatty acid oxidation and ICS treatment response.
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Our findings also show a potential link between ICS response in asthma and metabo-
lites in amino acid metabolism pathways. Valine metabolites have previously been in-
dicated as biomarkers of asthma case status in a study of the sputum metabolome [38].
Biomarkers of the urea cycle/arginine metabolism are also associated with lung eosinophilia
and airway hyper-responsiveness in experimental murine models of asthma [39]. Arginine
metabolism, and its connection to the urea cycle, has been linked to asthma case status,
airflow obstruction, and severity [40,41] in epidemiology studies, and now shows a connec-
tion to ICS response in our work presented here. Additional studies in human populations
as well as functional validation studies will be required to fully elucidate any connection
between urea cycle metabolites and ICS response.

Lastly, we identified reduced cortisol and cortisone as metabolomic correlates of
exacerbations while on ICS. Both metabolites are known markers of ICS treatment. The
fact that they are negatively associated with exacerbations suggests that individuals who
consistently used their ICS medication (and despite this use had higher levels of circulating
cortisone and cortisol) also had less frequent exacerbations.

Two previous studies have focused on metabolomic profiling of corticosteroid-resistant
asthma, both of which were conducted in pediatric populations. Fitzpatrick et al. [42]
reported that sphingolipid metabolism, oxidative stress pathways (glutathione), and amino
acid metabolites (involving glycine, serine, and threonine metabolism) were altered in
plasma samples from children with corticosteroid refractory severe asthma. Park et al. [43]
found that metabolites from tyrosine, glutathione, and catecholamine pathways differed
in urine samples from patients with corticosteroid-resistant asthma. Our study of ex-
acerbations while on ICS was conducted in participants across a wide age range (from
early adolescence to mid-life). The metabolite predictors in our study were distinct from
those identified in pediatric populations. There could be several explanations for why our
findings differ, including different tissue types, metabolomic platforms, and life stages,
which are key factors that may account for differences in the results. Given the wide age
range in our biobank population, we were able to interrogate potential age by metabolite
interactions, to determine if important metabolite predictors of ICS response vary by age.
Metabolites associated with tryptophan (phenylalanyltryptophan), glycolysis (lactate),
fructose metabolism, and bile acid metabolism (ursodeoxycholate and glycoursodeoxy-
cholate) were the top biomarkers demonstrating a potential interaction with age. Previous
studies have shown that lactate is a biomarker of exacerbations, and that serum lactase
is upregulated during acute asthma treatment [44–46], hinting towards early onset or
susceptibility to lung disease. Bile acid metabolites are associated with potential links
between the gut microbiome and asthma phenotypes [47] and may also help explain the
links to obesity/asthma [48]. Accounting for age by metabolite interaction in our models
still did not recapitulate any of the metabolite findings from the Fitzpatrick et al. or Park
et al. studies, perhaps because the lower end of the age range in our study (adolescence),
did not overlap enough with the age range (mid-childhood to early adolescence) in these
previous studies.

Our study showed several strengths as well as some limitations. The strengths of our
study include a relatively large population (as compared to prior studies of metabolomics
of ICS treatment responses), the use of untargeted metabolomics data to interrogate metabo-
lites across multiple chemical classes, and the leverage of existing biobank samples and
corresponding medical record data to answer our research question. The limitations of our
study include limited power to detect age by metabolite interactions, the cross-sectional
nature of metabolomic profiling and phenotype assessment, and the absence of pediatric
participants (to compare with metabolomics of ICS response in adolescents and adults).
In the present work we focused solely on metabolomics. However, future studies that
incorporate additional “omics” data, for example transcriptomics and/or epigenomics,
may uncover regulatory signals underlying associations of metabolites and phenotypes.

In conclusion, our findings demonstrate that plasma metabolomic profiles differ for
individuals who experience asthma exacerbations while on ICS. These metabolites may
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serve as biomarkers of ICS response and may highlight metabolic pathways underlying
ICS response variability.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11111148/s1, Figure S1: Distribution of counts/episodes of exacerbation for each asthma
case in MGBB-cohort; Table S1. Metabolite associations with exacerbation counts (continuous out-
come/number of exacerbations). The list is sorted by the p-value (glm quasipoisson). 65 metabolites in
the metabolite as main effect model were significant at nominal P threshold. However, top 8 metabo-
lites were also significant based on effective number of tests (ENT) bonferroni threshold Pvalue of
6.2 × 10−4; with 81 PCs explaining more than 85% of the variance in the data; Table S2. Metabolite
associations with exacerbation counts in females (n = 133 females, continuous outcome/number of
exacerbations). The list is sorted by the p-value (glm quasipoisson). We tested only eight metabo-
lites that were significant in Table 1 at ENT85% bonferroni threshold of 6.2 × 10−4. All except
hexadecanedioate would be significant if we use a bonferroni threshold of 6.25 × 10−3 (0.05/8 tested
metabolites); Table S3. Metabolite associations with exacerbation counts in males (n = 32 males,
continuous outcome/number of exacerbations). The list is sorted by the p-value (glm quasipoisson).
We tested only eight metabolites that were significant in Table 1 at ENT85% bonferroni threshold
of 6.2 × 10−4. We have less power here to detect robust associations); Table S4: Age-metabolite
associations with exacerbation counts (continuous outcome/number of exacerbations). The list
is sorted by the p-value of the age-metabolite analysis (glm quasipoisson). 38 metabolites were
significant at nominal threshold, however none passed the ENT Pvalue threshold. The results from
the metabolite and age as main effect for the 38 metabolites are also included.
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